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Illustrative experiment

- 12 node 10G test cluster 

- 8 nodes Hadoop MR 

- 2 nodes PTPd 

- 2 nodes memcached
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By

Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By

Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By

Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By

Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By

Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By

Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By

Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By

Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By

Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.

8

12



Application impact

Draft of 01/10/2014, 17:49 – please do not distribute.

0

400

800

1200 + Hadoop

1200

Ti
m

e
[µ

s]

Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By

Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By

Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By

Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By

Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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Congestion from one 
application causes queuing 
that delays traffic from 
another* application. 

*possibly related

Network Interference:
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Differentiated Service Classes (diff-serv)



Solving network interference?

Packet by Packet Generalised Processor 
Sharing (PGPS)

Borrow some old ideas

Parekh-Gallager Theorem

(Weighted) Fair Queuing (WFQ)
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Differentiated Service Classes (diff-serv)

Apply in a new context : Datacenters
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- Static network 
- Single admin domain 
- Cooperation

- Unmodified applications 
- Unmodified kernel code 
- Commodity hardware

Datacenter Opportunities 

Deployability Constraints
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If we can find a bound for 
servicing delay, we can rate-
limit hosts so that they never 
experience queuing delay 

Rate-Limiting
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Switch

Assume edge 
speed 

R = 10Gb/s

Assume packet  
size P = 1500B

Assume sending 
hosts n = 4
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  = n ⨉ per packet
  = 4 ⨉ 1.5 μs
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  = 1.5 μs
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Calculating Servicing Delay

Where

n - number of hosts
P - bytes sent
R - edge speed 
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Where

n - number of hosts
P - bytes sent
R - edge speed 
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P

R
n ⨉          

network** 
servicing delay* =

*Assuming a fair scheduler
**Apply hose constraint model
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1. Network is idle
2. Hosts send  ≤ P bytes
3. Wait ( n x P / R ) secs
4. Goto 1

44

}Network  
Epoch

Rate-Limiting
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EpochEpoch



≈ 8 packets per 
epoch
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EpochEpoch



Eliminating Synchronization

network epoch = 2n ⨉          
P

R
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Where

n - number of hosts
P - bytes sent
R - edge speed 
2 - mesochronous compensation



51The dark side of network epoch

2n
R

throughput =

n is the number of hosts
R is the edge speed

Where
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10Gb/s

2 x 1000
= 5Mb/s

n = 1000 hosts
R = 10 Gb/s

Where

The dark side of network epoch

throughput*=
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10Gb/s

2 x 1000
throughput*= = 5Mb/s

n = 1000 hosts
R = 10 Gb/s

Where

The dark side of network epoch

*at guaranteed latency!
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What if assumption is wrong? Queuing will happen!
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guaranteed latency 
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no latency guarantee
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Low latency

High priority 
Low rate-limit
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Medium Latency
Low latency

Medium priority 
Medium rate-limit
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High Throughput
Medium Latency
Low latency

Low priority 
No rate-limit
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High Throughput
Medium Latency
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Queue Jumping!
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High Throughput
Medium Latency
Low latency

Queues don’t matter when you can Jump them!
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Use hardware priorities to run 
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high throughput (low priority).

We call the assignment of an f value to a priority a
QJUMP level. The latency variance of a given QJUMP
level is a function of the sum of the QJUMP levels above
it. In Section 5, we discuss various ways of assigning f
values to QJUMP levels.

4 QJUMP Implementation
QJUMP has two components: a rate-limiter to provide ad-
mission control to the network, and an application util-
ity to configure unmodified applications to use QJUMP
levels. In a multi-tenant environment, the rate-limiter is
deployed as a component in the hypervisor and QJUMP
is configured for the total number of virtual hosts. In
a single-authority environment, the rate-limiter is de-
ployed as an addition to the kernel network egress path
and QJUMP is configured for the number of physical
hosts.

Rate limiting QJUMP differs from many other systems
that use rate-limiters. Instead of requiring a rate-limiter
for each flow, each host only needs one coarse-grained
rate-limiter per QJUMP level. Hence, eight rate-limiters
per host are sufficient when using IEEE 802.1Q prior-
ities. As a result, QJUMP rate-limiters can be imple-
mented efficiently in software.

In our prototype, we use the queueing discipline
(qdisc) mechanism offered by the Linux kernel traffic
control (TC) subsystem to rate-limit packets. TC mod-
ules do not require kernel modifications and can be in-
serted and removed at runtime, making them flexible and
easy to deploy. We also use Linux’s built-in 802.1Q
VLAN support to send layer 2 priority-tagged packets.

Listing 1 shows our a custom rate-limiter implemen-
tation. To keep the rate-limiter efficient, all operations
quantify time in cycles. This requires us to initially con-
vert the network epoch value from seconds into cycles
(line 1). We then synthesize a clock from the CPU re-
altime counter (rdtsc, line 6). This gives microsecond
granularity timing, but uses only one instruction on the
critical path.

When a new packet arrives at the rate-limiter, it is clas-
sified into a QJUMP level using the priority tag found in
its sk buff (line 7). Users can set the priority directly
in the application or use our application utility to assign
priorities to sockets. Next, the rate-limiter checks if a
new epoch has begun. If so, it issues a fresh allocation
of bytes to itself (lines 8–10). It then checks to see if
sufficient bytes are remaining to send the packet in this
network epoch (line 12). If so, the packet is forwarded
to the driver (line 15–16), if not, the packet is dropped
(line 13). In practice, packets are rarely dropped because
our application utility also resizes socket buffers to apply
early back-pressure.

Forwarded packets are mapped onto individual driver

1 long epoch_cycles = to_cycles(network_epoch);
2 long timeout = start_time;
3 long bucket[NUM_QJUMP_LEVELS];
4

5 int qJumpRateLimiter(struct sk_buff* buffer) {
6 long cycles_now = asm("rdtsc"); /* read cycle ctr */

7 int level = buffer->priority;
8 if (cycles_now > timeout) { /* new token alloc? */

9 timeout += epoch_cycles;
10 bucket[level] = tokens[level];
11 }
12 if (buffer->len > bucket[level]) {
13 return DROP; /* tokens for epoch exhausted */

14 }
15 bucket[level] -= buffer->len;
16 sendToHWQueue(buffer, level);
17 return SENT;
18 }

Listing 1: QJUMP rate-limiter pseudocode.

queues depending on the priority level. QJUMP there-
fore prioritizes low-latency traffic in the end-host itself,
before packets are issued to the network card.

Since Equation 2 assumes pessimal conditions, our
rate-limiter also tolerates bursts up to the level-specific
byte limit per epoch. This makes it compatible with hard-
ware offload techniques such as TSO, LSO or GSO.

On our test machines, we found no measurable ef-
fect of the rate-limiter on CPU utilization or throughput.
On average it imposes a cost of 35.2 cycles per packet
(s = 18.6; 99th% = 69 cycles) on the Linux kernel crit-
ical path of ⇡8,000 cycles. This amounts to a less than
0.5% overhead.

QJUMP Application Utility QJUMP requires that ap-
plications (or, specifically, sockets within applications)
are assigned to QJUMP levels. This is easily done in ap-
plication code directly with a setsockopt() using the
SO PRIORITY option. However, we would also like to
support unmodified applications without recompilation.
To achieve this, we have implemented a utility that dy-
namically intercepts socket setup system calls and alters
their options. We inject the utility into unmodified ex-
ecutables via the Linux dynamic linker’s LD PRELOAD

support (a similar technique to OpenOnload [31]).

The utility performs two tasks: (i) it configures socket
priority values, and (ii) it sets socket send buffer sizes.
Modifying socket buffer sizes is an optimization to ap-
ply early back-pressure to applications. If an applica-
tion sends more data than its QJUMP level’s permits,
an ENOBUFS error is returned rather than packets being
dropped. While not strictly required, this optimization
brings a significant performance benefit in practice as it
helps avoid TCP retransmit timeouts (minRTOs).
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high throughput (low priority).

We call the assignment of an f value to a priority a
QJUMP level. The latency variance of a given QJUMP
level is a function of the sum of the QJUMP levels above
it. In Section 5, we discuss various ways of assigning f
values to QJUMP levels.

4 QJUMP Implementation
QJUMP has two components: a rate-limiter to provide ad-
mission control to the network, and an application util-
ity to configure unmodified applications to use QJUMP
levels. In a multi-tenant environment, the rate-limiter is
deployed as a component in the hypervisor and QJUMP
is configured for the total number of virtual hosts. In
a single-authority environment, the rate-limiter is de-
ployed as an addition to the kernel network egress path
and QJUMP is configured for the number of physical
hosts.

Rate limiting QJUMP differs from many other systems
that use rate-limiters. Instead of requiring a rate-limiter
for each flow, each host only needs one coarse-grained
rate-limiter per QJUMP level. Hence, eight rate-limiters
per host are sufficient when using IEEE 802.1Q prior-
ities. As a result, QJUMP rate-limiters can be imple-
mented efficiently in software.

In our prototype, we use the queueing discipline
(qdisc) mechanism offered by the Linux kernel traffic
control (TC) subsystem to rate-limit packets. TC mod-
ules do not require kernel modifications and can be in-
serted and removed at runtime, making them flexible and
easy to deploy. We also use Linux’s built-in 802.1Q
VLAN support to send layer 2 priority-tagged packets.

Listing 1 shows our a custom rate-limiter implemen-
tation. To keep the rate-limiter efficient, all operations
quantify time in cycles. This requires us to initially con-
vert the network epoch value from seconds into cycles
(line 1). We then synthesize a clock from the CPU re-
altime counter (rdtsc, line 6). This gives microsecond
granularity timing, but uses only one instruction on the
critical path.

When a new packet arrives at the rate-limiter, it is clas-
sified into a QJUMP level using the priority tag found in
its sk buff (line 7). Users can set the priority directly
in the application or use our application utility to assign
priorities to sockets. Next, the rate-limiter checks if a
new epoch has begun. If so, it issues a fresh allocation
of bytes to itself (lines 8–10). It then checks to see if
sufficient bytes are remaining to send the packet in this
network epoch (line 12). If so, the packet is forwarded
to the driver (line 15–16), if not, the packet is dropped
(line 13). In practice, packets are rarely dropped because
our application utility also resizes socket buffers to apply
early back-pressure.

Forwarded packets are mapped onto individual driver

1 long epoch_cycles = to_cycles(network_epoch);
2 long timeout = start_time;
3 long bucket[NUM_QJUMP_LEVELS];
4

5 int qJumpRateLimiter(struct sk_buff* buffer) {
6 long cycles_now = asm("rdtsc"); /* read cycle ctr */

7 int level = buffer->priority;
8 if (cycles_now > timeout) { /* new token alloc? */

9 timeout += epoch_cycles;
10 bucket[level] = tokens[level];
11 }
12 if (buffer->len > bucket[level]) {
13 return DROP; /* tokens for epoch exhausted */

14 }
15 bucket[level] -= buffer->len;
16 sendToHWQueue(buffer, level);
17 return SENT;
18 }

Listing 1: QJUMP rate-limiter pseudocode.

queues depending on the priority level. QJUMP there-
fore prioritizes low-latency traffic in the end-host itself,
before packets are issued to the network card.

Since Equation 2 assumes pessimal conditions, our
rate-limiter also tolerates bursts up to the level-specific
byte limit per epoch. This makes it compatible with hard-
ware offload techniques such as TSO, LSO or GSO.

On our test machines, we found no measurable ef-
fect of the rate-limiter on CPU utilization or throughput.
On average it imposes a cost of 35.2 cycles per packet
(s = 18.6; 99th% = 69 cycles) on the Linux kernel crit-
ical path of ⇡8,000 cycles. This amounts to a less than
0.5% overhead.

QJUMP Application Utility QJUMP requires that ap-
plications (or, specifically, sockets within applications)
are assigned to QJUMP levels. This is easily done in ap-
plication code directly with a setsockopt() using the
SO PRIORITY option. However, we would also like to
support unmodified applications without recompilation.
To achieve this, we have implemented a utility that dy-
namically intercepts socket setup system calls and alters
their options. We inject the utility into unmodified ex-
ecutables via the Linux dynamic linker’s LD PRELOAD

support (a similar technique to OpenOnload [31]).

The utility performs two tasks: (i) it configures socket
priority values, and (ii) it sets socket send buffer sizes.
Modifying socket buffer sizes is an optimization to ap-
ply early back-pressure to applications. If an applica-
tion sends more data than its QJUMP level’s permits,
an ENOBUFS error is returned rather than packets being
dropped. While not strictly required, this optimization
brings a significant performance benefit in practice as it
helps avoid TCP retransmit timeouts (minRTOs).
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high throughput (low priority).

We call the assignment of an f value to a priority a
QJUMP level. The latency variance of a given QJUMP
level is a function of the sum of the QJUMP levels above
it. In Section 5, we discuss various ways of assigning f
values to QJUMP levels.

4 QJUMP Implementation
QJUMP has two components: a rate-limiter to provide ad-
mission control to the network, and an application util-
ity to configure unmodified applications to use QJUMP
levels. In a multi-tenant environment, the rate-limiter is
deployed as a component in the hypervisor and QJUMP
is configured for the total number of virtual hosts. In
a single-authority environment, the rate-limiter is de-
ployed as an addition to the kernel network egress path
and QJUMP is configured for the number of physical
hosts.

Rate limiting QJUMP differs from many other systems
that use rate-limiters. Instead of requiring a rate-limiter
for each flow, each host only needs one coarse-grained
rate-limiter per QJUMP level. Hence, eight rate-limiters
per host are sufficient when using IEEE 802.1Q prior-
ities. As a result, QJUMP rate-limiters can be imple-
mented efficiently in software.

In our prototype, we use the queueing discipline
(qdisc) mechanism offered by the Linux kernel traffic
control (TC) subsystem to rate-limit packets. TC mod-
ules do not require kernel modifications and can be in-
serted and removed at runtime, making them flexible and
easy to deploy. We also use Linux’s built-in 802.1Q
VLAN support to send layer 2 priority-tagged packets.

Listing 1 shows our a custom rate-limiter implemen-
tation. To keep the rate-limiter efficient, all operations
quantify time in cycles. This requires us to initially con-
vert the network epoch value from seconds into cycles
(line 1). We then synthesize a clock from the CPU re-
altime counter (rdtsc, line 6). This gives microsecond
granularity timing, but uses only one instruction on the
critical path.

When a new packet arrives at the rate-limiter, it is clas-
sified into a QJUMP level using the priority tag found in
its sk buff (line 7). Users can set the priority directly
in the application or use our application utility to assign
priorities to sockets. Next, the rate-limiter checks if a
new epoch has begun. If so, it issues a fresh allocation
of bytes to itself (lines 8–10). It then checks to see if
sufficient bytes are remaining to send the packet in this
network epoch (line 12). If so, the packet is forwarded
to the driver (line 15–16), if not, the packet is dropped
(line 13). In practice, packets are rarely dropped because
our application utility also resizes socket buffers to apply
early back-pressure.

Forwarded packets are mapped onto individual driver

1 long epoch_cycles = to_cycles(network_epoch);
2 long timeout = start_time;
3 long bucket[NUM_QJUMP_LEVELS];
4

5 int qJumpRateLimiter(struct sk_buff* buffer) {
6 long cycles_now = asm("rdtsc"); /* read cycle ctr */

7 int level = buffer->priority;
8 if (cycles_now > timeout) { /* new token alloc? */

9 timeout += epoch_cycles;
10 bucket[level] = tokens[level];
11 }
12 if (buffer->len > bucket[level]) {
13 return DROP; /* tokens for epoch exhausted */

14 }
15 bucket[level] -= buffer->len;
16 sendToHWQueue(buffer, level);
17 return SENT;
18 }

Listing 1: QJUMP rate-limiter pseudocode.

queues depending on the priority level. QJUMP there-
fore prioritizes low-latency traffic in the end-host itself,
before packets are issued to the network card.

Since Equation 2 assumes pessimal conditions, our
rate-limiter also tolerates bursts up to the level-specific
byte limit per epoch. This makes it compatible with hard-
ware offload techniques such as TSO, LSO or GSO.

On our test machines, we found no measurable ef-
fect of the rate-limiter on CPU utilization or throughput.
On average it imposes a cost of 35.2 cycles per packet
(s = 18.6; 99th% = 69 cycles) on the Linux kernel crit-
ical path of ⇡8,000 cycles. This amounts to a less than
0.5% overhead.

QJUMP Application Utility QJUMP requires that ap-
plications (or, specifically, sockets within applications)
are assigned to QJUMP levels. This is easily done in ap-
plication code directly with a setsockopt() using the
SO PRIORITY option. However, we would also like to
support unmodified applications without recompilation.
To achieve this, we have implemented a utility that dy-
namically intercepts socket setup system calls and alters
their options. We inject the utility into unmodified ex-
ecutables via the Linux dynamic linker’s LD PRELOAD

support (a similar technique to OpenOnload [31]).

The utility performs two tasks: (i) it configures socket
priority values, and (ii) it sets socket send buffer sizes.
Modifying socket buffer sizes is an optimization to ap-
ply early back-pressure to applications. If an applica-
tion sends more data than its QJUMP level’s permits,
an ENOBUFS error is returned rather than packets being
dropped. While not strictly required, this optimization
brings a significant performance benefit in practice as it
helps avoid TCP retransmit timeouts (minRTOs).

5

Linux TC

~36 cycles / packet 

78



ImplementationDraft of 01/10/2014, 17:49 – please do not distribute.
high throughput (low priority).

We call the assignment of an f value to a priority a
QJUMP level. The latency variance of a given QJUMP
level is a function of the sum of the QJUMP levels above
it. In Section 5, we discuss various ways of assigning f
values to QJUMP levels.

4 QJUMP Implementation
QJUMP has two components: a rate-limiter to provide ad-
mission control to the network, and an application util-
ity to configure unmodified applications to use QJUMP
levels. In a multi-tenant environment, the rate-limiter is
deployed as a component in the hypervisor and QJUMP
is configured for the total number of virtual hosts. In
a single-authority environment, the rate-limiter is de-
ployed as an addition to the kernel network egress path
and QJUMP is configured for the number of physical
hosts.

Rate limiting QJUMP differs from many other systems
that use rate-limiters. Instead of requiring a rate-limiter
for each flow, each host only needs one coarse-grained
rate-limiter per QJUMP level. Hence, eight rate-limiters
per host are sufficient when using IEEE 802.1Q prior-
ities. As a result, QJUMP rate-limiters can be imple-
mented efficiently in software.

In our prototype, we use the queueing discipline
(qdisc) mechanism offered by the Linux kernel traffic
control (TC) subsystem to rate-limit packets. TC mod-
ules do not require kernel modifications and can be in-
serted and removed at runtime, making them flexible and
easy to deploy. We also use Linux’s built-in 802.1Q
VLAN support to send layer 2 priority-tagged packets.

Listing 1 shows our a custom rate-limiter implemen-
tation. To keep the rate-limiter efficient, all operations
quantify time in cycles. This requires us to initially con-
vert the network epoch value from seconds into cycles
(line 1). We then synthesize a clock from the CPU re-
altime counter (rdtsc, line 6). This gives microsecond
granularity timing, but uses only one instruction on the
critical path.

When a new packet arrives at the rate-limiter, it is clas-
sified into a QJUMP level using the priority tag found in
its sk buff (line 7). Users can set the priority directly
in the application or use our application utility to assign
priorities to sockets. Next, the rate-limiter checks if a
new epoch has begun. If so, it issues a fresh allocation
of bytes to itself (lines 8–10). It then checks to see if
sufficient bytes are remaining to send the packet in this
network epoch (line 12). If so, the packet is forwarded
to the driver (line 15–16), if not, the packet is dropped
(line 13). In practice, packets are rarely dropped because
our application utility also resizes socket buffers to apply
early back-pressure.

Forwarded packets are mapped onto individual driver

1 long epoch_cycles = to_cycles(network_epoch);
2 long timeout = start_time;
3 long bucket[NUM_QJUMP_LEVELS];
4

5 int qJumpRateLimiter(struct sk_buff* buffer) {
6 long cycles_now = asm("rdtsc"); /* read cycle ctr */

7 int level = buffer->priority;
8 if (cycles_now > timeout) { /* new token alloc? */

9 timeout += epoch_cycles;
10 bucket[level] = tokens[level];
11 }
12 if (buffer->len > bucket[level]) {
13 return DROP; /* tokens for epoch exhausted */

14 }
15 bucket[level] -= buffer->len;
16 sendToHWQueue(buffer, level);
17 return SENT;
18 }

Listing 1: QJUMP rate-limiter pseudocode.

queues depending on the priority level. QJUMP there-
fore prioritizes low-latency traffic in the end-host itself,
before packets are issued to the network card.

Since Equation 2 assumes pessimal conditions, our
rate-limiter also tolerates bursts up to the level-specific
byte limit per epoch. This makes it compatible with hard-
ware offload techniques such as TSO, LSO or GSO.

On our test machines, we found no measurable ef-
fect of the rate-limiter on CPU utilization or throughput.
On average it imposes a cost of 35.2 cycles per packet
(s = 18.6; 99th% = 69 cycles) on the Linux kernel crit-
ical path of ⇡8,000 cycles. This amounts to a less than
0.5% overhead.

QJUMP Application Utility QJUMP requires that ap-
plications (or, specifically, sockets within applications)
are assigned to QJUMP levels. This is easily done in ap-
plication code directly with a setsockopt() using the
SO PRIORITY option. However, we would also like to
support unmodified applications without recompilation.
To achieve this, we have implemented a utility that dy-
namically intercepts socket setup system calls and alters
their options. We inject the utility into unmodified ex-
ecutables via the Linux dynamic linker’s LD PRELOAD

support (a similar technique to OpenOnload [31]).

The utility performs two tasks: (i) it configures socket
priority values, and (ii) it sets socket send buffer sizes.
Modifying socket buffer sizes is an optimization to ap-
ply early back-pressure to applications. If an applica-
tion sends more data than its QJUMP level’s permits,
an ENOBUFS error is returned rather than packets being
dropped. While not strictly required, this optimization
brings a significant performance benefit in practice as it
helps avoid TCP retransmit timeouts (minRTOs).
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high throughput (low priority).

We call the assignment of an f value to a priority a
QJUMP level. The latency variance of a given QJUMP
level is a function of the sum of the QJUMP levels above
it. In Section 5, we discuss various ways of assigning f
values to QJUMP levels.

4 QJUMP Implementation
QJUMP has two components: a rate-limiter to provide ad-
mission control to the network, and an application util-
ity to configure unmodified applications to use QJUMP
levels. In a multi-tenant environment, the rate-limiter is
deployed as a component in the hypervisor and QJUMP
is configured for the total number of virtual hosts. In
a single-authority environment, the rate-limiter is de-
ployed as an addition to the kernel network egress path
and QJUMP is configured for the number of physical
hosts.

Rate limiting QJUMP differs from many other systems
that use rate-limiters. Instead of requiring a rate-limiter
for each flow, each host only needs one coarse-grained
rate-limiter per QJUMP level. Hence, eight rate-limiters
per host are sufficient when using IEEE 802.1Q prior-
ities. As a result, QJUMP rate-limiters can be imple-
mented efficiently in software.

In our prototype, we use the queueing discipline
(qdisc) mechanism offered by the Linux kernel traffic
control (TC) subsystem to rate-limit packets. TC mod-
ules do not require kernel modifications and can be in-
serted and removed at runtime, making them flexible and
easy to deploy. We also use Linux’s built-in 802.1Q
VLAN support to send layer 2 priority-tagged packets.

Listing 1 shows our a custom rate-limiter implemen-
tation. To keep the rate-limiter efficient, all operations
quantify time in cycles. This requires us to initially con-
vert the network epoch value from seconds into cycles
(line 1). We then synthesize a clock from the CPU re-
altime counter (rdtsc, line 6). This gives microsecond
granularity timing, but uses only one instruction on the
critical path.

When a new packet arrives at the rate-limiter, it is clas-
sified into a QJUMP level using the priority tag found in
its sk buff (line 7). Users can set the priority directly
in the application or use our application utility to assign
priorities to sockets. Next, the rate-limiter checks if a
new epoch has begun. If so, it issues a fresh allocation
of bytes to itself (lines 8–10). It then checks to see if
sufficient bytes are remaining to send the packet in this
network epoch (line 12). If so, the packet is forwarded
to the driver (line 15–16), if not, the packet is dropped
(line 13). In practice, packets are rarely dropped because
our application utility also resizes socket buffers to apply
early back-pressure.

Forwarded packets are mapped onto individual driver

1 long epoch_cycles = to_cycles(network_epoch);
2 long timeout = start_time;
3 long bucket[NUM_QJUMP_LEVELS];
4

5 int qJumpRateLimiter(struct sk_buff* buffer) {
6 long cycles_now = asm("rdtsc"); /* read cycle ctr */

7 int level = buffer->priority;
8 if (cycles_now > timeout) { /* new token alloc? */

9 timeout += epoch_cycles;
10 bucket[level] = tokens[level];
11 }
12 if (buffer->len > bucket[level]) {
13 return DROP; /* tokens for epoch exhausted */

14 }
15 bucket[level] -= buffer->len;
16 sendToHWQueue(buffer, level);
17 return SENT;
18 }

Listing 1: QJUMP rate-limiter pseudocode.

queues depending on the priority level. QJUMP there-
fore prioritizes low-latency traffic in the end-host itself,
before packets are issued to the network card.

Since Equation 2 assumes pessimal conditions, our
rate-limiter also tolerates bursts up to the level-specific
byte limit per epoch. This makes it compatible with hard-
ware offload techniques such as TSO, LSO or GSO.

On our test machines, we found no measurable ef-
fect of the rate-limiter on CPU utilization or throughput.
On average it imposes a cost of 35.2 cycles per packet
(s = 18.6; 99th% = 69 cycles) on the Linux kernel crit-
ical path of ⇡8,000 cycles. This amounts to a less than
0.5% overhead.

QJUMP Application Utility QJUMP requires that ap-
plications (or, specifically, sockets within applications)
are assigned to QJUMP levels. This is easily done in ap-
plication code directly with a setsockopt() using the
SO PRIORITY option. However, we would also like to
support unmodified applications without recompilation.
To achieve this, we have implemented a utility that dy-
namically intercepts socket setup system calls and alters
their options. We inject the utility into unmodified ex-
ecutables via the Linux dynamic linker’s LD PRELOAD

support (a similar technique to OpenOnload [31]).

The utility performs two tasks: (i) it configures socket
priority values, and (ii) it sets socket send buffer sizes.
Modifying socket buffer sizes is an optimization to ap-
ply early back-pressure to applications. If an applica-
tion sends more data than its QJUMP level’s permits,
an ENOBUFS error is returned rather than packets being
dropped. While not strictly required, this optimization
brings a significant performance benefit in practice as it
helps avoid TCP retransmit timeouts (minRTOs).
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high throughput (low priority).

We call the assignment of an f value to a priority a
QJUMP level. The latency variance of a given QJUMP
level is a function of the sum of the QJUMP levels above
it. In Section 5, we discuss various ways of assigning f
values to QJUMP levels.

4 QJUMP Implementation
QJUMP has two components: a rate-limiter to provide ad-
mission control to the network, and an application util-
ity to configure unmodified applications to use QJUMP
levels. In a multi-tenant environment, the rate-limiter is
deployed as a component in the hypervisor and QJUMP
is configured for the total number of virtual hosts. In
a single-authority environment, the rate-limiter is de-
ployed as an addition to the kernel network egress path
and QJUMP is configured for the number of physical
hosts.

Rate limiting QJUMP differs from many other systems
that use rate-limiters. Instead of requiring a rate-limiter
for each flow, each host only needs one coarse-grained
rate-limiter per QJUMP level. Hence, eight rate-limiters
per host are sufficient when using IEEE 802.1Q prior-
ities. As a result, QJUMP rate-limiters can be imple-
mented efficiently in software.

In our prototype, we use the queueing discipline
(qdisc) mechanism offered by the Linux kernel traffic
control (TC) subsystem to rate-limit packets. TC mod-
ules do not require kernel modifications and can be in-
serted and removed at runtime, making them flexible and
easy to deploy. We also use Linux’s built-in 802.1Q
VLAN support to send layer 2 priority-tagged packets.

Listing 1 shows our a custom rate-limiter implemen-
tation. To keep the rate-limiter efficient, all operations
quantify time in cycles. This requires us to initially con-
vert the network epoch value from seconds into cycles
(line 1). We then synthesize a clock from the CPU re-
altime counter (rdtsc, line 6). This gives microsecond
granularity timing, but uses only one instruction on the
critical path.

When a new packet arrives at the rate-limiter, it is clas-
sified into a QJUMP level using the priority tag found in
its sk buff (line 7). Users can set the priority directly
in the application or use our application utility to assign
priorities to sockets. Next, the rate-limiter checks if a
new epoch has begun. If so, it issues a fresh allocation
of bytes to itself (lines 8–10). It then checks to see if
sufficient bytes are remaining to send the packet in this
network epoch (line 12). If so, the packet is forwarded
to the driver (line 15–16), if not, the packet is dropped
(line 13). In practice, packets are rarely dropped because
our application utility also resizes socket buffers to apply
early back-pressure.

Forwarded packets are mapped onto individual driver

1 long epoch_cycles = to_cycles(network_epoch);
2 long timeout = start_time;
3 long bucket[NUM_QJUMP_LEVELS];
4

5 int qJumpRateLimiter(struct sk_buff* buffer) {
6 long cycles_now = asm("rdtsc"); /* read cycle ctr */

7 int level = buffer->priority;
8 if (cycles_now > timeout) { /* new token alloc? */

9 timeout += epoch_cycles;
10 bucket[level] = tokens[level];
11 }
12 if (buffer->len > bucket[level]) {
13 return DROP; /* tokens for epoch exhausted */

14 }
15 bucket[level] -= buffer->len;
16 sendToHWQueue(buffer, level);
17 return SENT;
18 }

Listing 1: QJUMP rate-limiter pseudocode.

queues depending on the priority level. QJUMP there-
fore prioritizes low-latency traffic in the end-host itself,
before packets are issued to the network card.

Since Equation 2 assumes pessimal conditions, our
rate-limiter also tolerates bursts up to the level-specific
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QJUMP Application Utility QJUMP requires that ap-
plications (or, specifically, sockets within applications)
are assigned to QJUMP levels. This is easily done in ap-
plication code directly with a setsockopt() using the
SO PRIORITY option. However, we would also like to
support unmodified applications without recompilation.
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namically intercepts socket setup system calls and alters
their options. We inject the utility into unmodified ex-
ecutables via the Linux dynamic linker’s LD PRELOAD

support (a similar technique to OpenOnload [31]).
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priority values, and (ii) it sets socket send buffer sizes.
Modifying socket buffer sizes is an optimization to ap-
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tion sends more data than its QJUMP level’s permits,
an ENOBUFS error is returned rather than packets being
dropped. While not strictly required, this optimization
brings a significant performance benefit in practice as it
helps avoid TCP retransmit timeouts (minRTOs).
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By

Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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terference mitigated by QJUMP (bottom).
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to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.
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§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By
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contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.
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bounded latency level, we built a simple distributed two-
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The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
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another that sends fixed-size bursts followed by a 25ms
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point the impact of retransmissions degrades throughput
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contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.

8



How well does it work?

Draft of 01/10/2014, 17:49 – please do not distribute.

0

400

800

1200 + Hadoop

150 200 250 300 350
Time since start [sec]

0

400

800

1200 + Hadoop, with QJump
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interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By
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throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
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terference mitigated by QJUMP (bottom).
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by QJUMP, as we will further show in §6.3.
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The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
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on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
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achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.
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Figure 7: QJUMP comes closest to ideal performance for
all of Hadoop, PTPd and memcached.

down. Figure 7 shows that Ethernet Flow Control has a
limited positive influence on memcached, but increases
the RMS for PTPd. Hadoop’s performance remains un-
affected.

Early Congestion Notification (ECN) ECN is a net-
work layer mechanism in which switches indicate queue-
ing to end hosts by marking TCP packets. Our Arista
7050 switch implements ECN with Weighted Random
Early Detection (WRED). The effectiveness of WRED
depends on an administrator correctly configuring upper
and lower marking thresholds. We investigated ten dif-
ferent marking thresholds pairs, ranging between [5, 10]
and [2560, 5120] ([upper, lower], in packets). None of
these settings achieve ideal performance for all three ap-
plications, but the best compromise was [40, 80]. With
this configuration, ECN very effectively resolves the in-
terference experienced by PTPd and memcached. How-
ever, this comes at the expense of increased Hadoop run-
times.

Datacenter TCP (DCTCP) DCTCP uses the rate at
which ECN markings are received to build an estimate of
network congestion. It applies this to a new TCP conges-
tion avoidance algorithm to achieve lower queueing de-
lays [1]. We configured DCTCP with the recommended
ECN marking thresholds of [65, 65]. Figure 7 shows
that DCTCP reduces the variance in PTPd synchroniza-
tion and memcached latency compared to the contended
case. However, this comes at an increase in Hadoop job
runtimes, as Hadoop’s bulk data transfers are affected by
DCTCP’s congestion avoidance.

QJUMP Figure 7 shows that QJUMP achieves the best
results. The variance in Hadoop, PTPd and memcached
performance is close to (Hadoop, PTPd) or slightly better
than (memcached) in the uncontended ideal case.

Figure 8: 144 node leaf-spine topology used for simula-
tion experiments.

6.4 QJUMP Improves Flow Completion
In addition to resolving network interference, QJUMP
also provides excellent overall average and 99th per-
centile flow completion times (FCTs). Although QJUMP
specifically optimizes tail latencies for small flows (at the
expense of larger flows), doing so imposes a natural order
on the network. This results in a surprisingly good over-
all network schedule with a generally positive impact on
flow completion times.

The pFabric architecture has been shown to sched-
ule flows close to optimally [3]. Therefore, we com-
pare QJUMP against pFabric to assess the quality of the
network schedule it imposes. pFabric “is a clean-slate
design [that] requires modifications both at the switches
and the end-hosts” [3, §1] and is therefore only available
in simulation. By contrast, QJUMP is far simpler and
readily deployable, but applies rigid, global rate limits.

We compare QJUMP against a TCP baseline, DCTCP
and pFabric by extending an ns2 simulation provided
by the authors of pFabric. This replicates the leaf-spine
network topology used to evaluate pFabric (see Fig-
ure 8). We also run the same workloads derived from
web search [1, §2.2] and data mining [16, §3.1] clusters
in Microsoft datacenters, and show matching graphs in
Figure 9.7 As in pFabric, we normalize flows to their
ideal flow completion time on an idle network.

Figure 9 reports the average and 99th percentile nor-
malized FCTs for small flows (0kB, 100kB] and the av-
erage FCTs for large flows (10MB, •). For both work-
loads, QJUMP is configured with P = 9kB, n = 144, and
{ f0... f7} = {144,100,20,10,5,3,2,1}. We chose this
configuration based on the distribution of flow sizes in
the web search workload. However, in practice it worked
well for both workloads.

Despite its simplicity, QJUMP performs very well. As
expected, it works best on short flows: on both work-
loads, QJUMP achieves average and 99th percentile FCTs
close to or better than pFabric’s. On the web-search
workload, QJUMP beats pFabric by a margin of up to
32% at the 99th percentile (Fig. 9b). For larger flows, the
results are mixed. On the web search workload, QJUMP

7An extended set of graphs for both of the workloads is available at
http://www.cl.cam.ac.uk/netos/camsas/qjump.
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down. Figure 7 shows that Ethernet Flow Control has a
limited positive influence on memcached, but increases
the RMS for PTPd. Hadoop’s performance remains un-
affected.

Early Congestion Notification (ECN) ECN is a net-
work layer mechanism in which switches indicate queue-
ing to end hosts by marking TCP packets. Our Arista
7050 switch implements ECN with Weighted Random
Early Detection (WRED). The effectiveness of WRED
depends on an administrator correctly configuring upper
and lower marking thresholds. We investigated ten dif-
ferent marking thresholds pairs, ranging between [5, 10]
and [2560, 5120] ([upper, lower], in packets). None of
these settings achieve ideal performance for all three ap-
plications, but the best compromise was [40, 80]. With
this configuration, ECN very effectively resolves the in-
terference experienced by PTPd and memcached. How-
ever, this comes at the expense of increased Hadoop run-
times.

Datacenter TCP (DCTCP) DCTCP uses the rate at
which ECN markings are received to build an estimate of
network congestion. It applies this to a new TCP conges-
tion avoidance algorithm to achieve lower queueing de-
lays [1]. We configured DCTCP with the recommended
ECN marking thresholds of [65, 65]. Figure 7 shows
that DCTCP reduces the variance in PTPd synchroniza-
tion and memcached latency compared to the contended
case. However, this comes at an increase in Hadoop job
runtimes, as Hadoop’s bulk data transfers are affected by
DCTCP’s congestion avoidance.

QJUMP Figure 7 shows that QJUMP achieves the best
results. The variance in Hadoop, PTPd and memcached
performance is close to (Hadoop, PTPd) or slightly better
than (memcached) in the uncontended ideal case.
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tion experiments.

6.4 QJUMP Improves Flow Completion
In addition to resolving network interference, QJUMP
also provides excellent overall average and 99th per-
centile flow completion times (FCTs). Although QJUMP
specifically optimizes tail latencies for small flows (at the
expense of larger flows), doing so imposes a natural order
on the network. This results in a surprisingly good over-
all network schedule with a generally positive impact on
flow completion times.

The pFabric architecture has been shown to sched-
ule flows close to optimally [3]. Therefore, we com-
pare QJUMP against pFabric to assess the quality of the
network schedule it imposes. pFabric “is a clean-slate
design [that] requires modifications both at the switches
and the end-hosts” [3, §1] and is therefore only available
in simulation. By contrast, QJUMP is far simpler and
readily deployable, but applies rigid, global rate limits.

We compare QJUMP against a TCP baseline, DCTCP
and pFabric by extending an ns2 simulation provided
by the authors of pFabric. This replicates the leaf-spine
network topology used to evaluate pFabric (see Fig-
ure 8). We also run the same workloads derived from
web search [1, §2.2] and data mining [16, §3.1] clusters
in Microsoft datacenters, and show matching graphs in
Figure 9.7 As in pFabric, we normalize flows to their
ideal flow completion time on an idle network.

Figure 9 reports the average and 99th percentile nor-
malized FCTs for small flows (0kB, 100kB] and the av-
erage FCTs for large flows (10MB, •). For both work-
loads, QJUMP is configured with P = 9kB, n = 144, and
{ f0... f7} = {144,100,20,10,5,3,2,1}. We chose this
configuration based on the distribution of flow sizes in
the web search workload. However, in practice it worked
well for both workloads.

Despite its simplicity, QJUMP performs very well. As
expected, it works best on short flows: on both work-
loads, QJUMP achieves average and 99th percentile FCTs
close to or better than pFabric’s. On the web-search
workload, QJUMP beats pFabric by a margin of up to
32% at the 99th percentile (Fig. 9b). For larger flows, the
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http://www.cl.cam.ac.uk/netos/camsas/qjump.
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Figure 7: QJUMP comes closest to ideal performance for
all of Hadoop, PTPd and memcached.

down. Figure 7 shows that Ethernet Flow Control has a
limited positive influence on memcached, but increases
the RMS for PTPd. Hadoop’s performance remains un-
affected.

Early Congestion Notification (ECN) ECN is a net-
work layer mechanism in which switches indicate queue-
ing to end hosts by marking TCP packets. Our Arista
7050 switch implements ECN with Weighted Random
Early Detection (WRED). The effectiveness of WRED
depends on an administrator correctly configuring upper
and lower marking thresholds. We investigated ten dif-
ferent marking thresholds pairs, ranging between [5, 10]
and [2560, 5120] ([upper, lower], in packets). None of
these settings achieve ideal performance for all three ap-
plications, but the best compromise was [40, 80]. With
this configuration, ECN very effectively resolves the in-
terference experienced by PTPd and memcached. How-
ever, this comes at the expense of increased Hadoop run-
times.

Datacenter TCP (DCTCP) DCTCP uses the rate at
which ECN markings are received to build an estimate of
network congestion. It applies this to a new TCP conges-
tion avoidance algorithm to achieve lower queueing de-
lays [1]. We configured DCTCP with the recommended
ECN marking thresholds of [65, 65]. Figure 7 shows
that DCTCP reduces the variance in PTPd synchroniza-
tion and memcached latency compared to the contended
case. However, this comes at an increase in Hadoop job
runtimes, as Hadoop’s bulk data transfers are affected by
DCTCP’s congestion avoidance.

QJUMP Figure 7 shows that QJUMP achieves the best
results. The variance in Hadoop, PTPd and memcached
performance is close to (Hadoop, PTPd) or slightly better
than (memcached) in the uncontended ideal case.

Figure 8: 144 node leaf-spine topology used for simula-
tion experiments.

6.4 QJUMP Improves Flow Completion
In addition to resolving network interference, QJUMP
also provides excellent overall average and 99th per-
centile flow completion times (FCTs). Although QJUMP
specifically optimizes tail latencies for small flows (at the
expense of larger flows), doing so imposes a natural order
on the network. This results in a surprisingly good over-
all network schedule with a generally positive impact on
flow completion times.

The pFabric architecture has been shown to sched-
ule flows close to optimally [3]. Therefore, we com-
pare QJUMP against pFabric to assess the quality of the
network schedule it imposes. pFabric “is a clean-slate
design [that] requires modifications both at the switches
and the end-hosts” [3, §1] and is therefore only available
in simulation. By contrast, QJUMP is far simpler and
readily deployable, but applies rigid, global rate limits.

We compare QJUMP against a TCP baseline, DCTCP
and pFabric by extending an ns2 simulation provided
by the authors of pFabric. This replicates the leaf-spine
network topology used to evaluate pFabric (see Fig-
ure 8). We also run the same workloads derived from
web search [1, §2.2] and data mining [16, §3.1] clusters
in Microsoft datacenters, and show matching graphs in
Figure 9.7 As in pFabric, we normalize flows to their
ideal flow completion time on an idle network.

Figure 9 reports the average and 99th percentile nor-
malized FCTs for small flows (0kB, 100kB] and the av-
erage FCTs for large flows (10MB, •). For both work-
loads, QJUMP is configured with P = 9kB, n = 144, and
{ f0... f7} = {144,100,20,10,5,3,2,1}. We chose this
configuration based on the distribution of flow sizes in
the web search workload. However, in practice it worked
well for both workloads.

Despite its simplicity, QJUMP performs very well. As
expected, it works best on short flows: on both work-
loads, QJUMP achieves average and 99th percentile FCTs
close to or better than pFabric’s. On the web-search
workload, QJUMP beats pFabric by a margin of up to
32% at the 99th percentile (Fig. 9b). For larger flows, the
results are mixed. On the web search workload, QJUMP

7An extended set of graphs for both of the workloads is available at
http://www.cl.cam.ac.uk/netos/camsas/qjump.
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Figure 7: QJUMP comes closest to ideal performance for
all of Hadoop, PTPd and memcached.

down. Figure 7 shows that Ethernet Flow Control has a
limited positive influence on memcached, but increases
the RMS for PTPd. Hadoop’s performance remains un-
affected.

Early Congestion Notification (ECN) ECN is a net-
work layer mechanism in which switches indicate queue-
ing to end hosts by marking TCP packets. Our Arista
7050 switch implements ECN with Weighted Random
Early Detection (WRED). The effectiveness of WRED
depends on an administrator correctly configuring upper
and lower marking thresholds. We investigated ten dif-
ferent marking thresholds pairs, ranging between [5, 10]
and [2560, 5120] ([upper, lower], in packets). None of
these settings achieve ideal performance for all three ap-
plications, but the best compromise was [40, 80]. With
this configuration, ECN very effectively resolves the in-
terference experienced by PTPd and memcached. How-
ever, this comes at the expense of increased Hadoop run-
times.

Datacenter TCP (DCTCP) DCTCP uses the rate at
which ECN markings are received to build an estimate of
network congestion. It applies this to a new TCP conges-
tion avoidance algorithm to achieve lower queueing de-
lays [1]. We configured DCTCP with the recommended
ECN marking thresholds of [65, 65]. Figure 7 shows
that DCTCP reduces the variance in PTPd synchroniza-
tion and memcached latency compared to the contended
case. However, this comes at an increase in Hadoop job
runtimes, as Hadoop’s bulk data transfers are affected by
DCTCP’s congestion avoidance.

QJUMP Figure 7 shows that QJUMP achieves the best
results. The variance in Hadoop, PTPd and memcached
performance is close to (Hadoop, PTPd) or slightly better
than (memcached) in the uncontended ideal case.

Figure 8: 144 node leaf-spine topology used for simula-
tion experiments.

6.4 QJUMP Improves Flow Completion
In addition to resolving network interference, QJUMP
also provides excellent overall average and 99th per-
centile flow completion times (FCTs). Although QJUMP
specifically optimizes tail latencies for small flows (at the
expense of larger flows), doing so imposes a natural order
on the network. This results in a surprisingly good over-
all network schedule with a generally positive impact on
flow completion times.

The pFabric architecture has been shown to sched-
ule flows close to optimally [3]. Therefore, we com-
pare QJUMP against pFabric to assess the quality of the
network schedule it imposes. pFabric “is a clean-slate
design [that] requires modifications both at the switches
and the end-hosts” [3, §1] and is therefore only available
in simulation. By contrast, QJUMP is far simpler and
readily deployable, but applies rigid, global rate limits.

We compare QJUMP against a TCP baseline, DCTCP
and pFabric by extending an ns2 simulation provided
by the authors of pFabric. This replicates the leaf-spine
network topology used to evaluate pFabric (see Fig-
ure 8). We also run the same workloads derived from
web search [1, §2.2] and data mining [16, §3.1] clusters
in Microsoft datacenters, and show matching graphs in
Figure 9.7 As in pFabric, we normalize flows to their
ideal flow completion time on an idle network.

Figure 9 reports the average and 99th percentile nor-
malized FCTs for small flows (0kB, 100kB] and the av-
erage FCTs for large flows (10MB, •). For both work-
loads, QJUMP is configured with P = 9kB, n = 144, and
{ f0... f7} = {144,100,20,10,5,3,2,1}. We chose this
configuration based on the distribution of flow sizes in
the web search workload. However, in practice it worked
well for both workloads.

Despite its simplicity, QJUMP performs very well. As
expected, it works best on short flows: on both work-
loads, QJUMP achieves average and 99th percentile FCTs
close to or better than pFabric’s. On the web-search
workload, QJUMP beats pFabric by a margin of up to
32% at the 99th percentile (Fig. 9b). For larger flows, the
results are mixed. On the web search workload, QJUMP

7An extended set of graphs for both of the workloads is available at
http://www.cl.cam.ac.uk/netos/camsas/qjump.
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Figure 7: QJUMP comes closest to ideal performance for
all of Hadoop, PTPd and memcached.

down. Figure 7 shows that Ethernet Flow Control has a
limited positive influence on memcached, but increases
the RMS for PTPd. Hadoop’s performance remains un-
affected.

Early Congestion Notification (ECN) ECN is a net-
work layer mechanism in which switches indicate queue-
ing to end hosts by marking TCP packets. Our Arista
7050 switch implements ECN with Weighted Random
Early Detection (WRED). The effectiveness of WRED
depends on an administrator correctly configuring upper
and lower marking thresholds. We investigated ten dif-
ferent marking thresholds pairs, ranging between [5, 10]
and [2560, 5120] ([upper, lower], in packets). None of
these settings achieve ideal performance for all three ap-
plications, but the best compromise was [40, 80]. With
this configuration, ECN very effectively resolves the in-
terference experienced by PTPd and memcached. How-
ever, this comes at the expense of increased Hadoop run-
times.

Datacenter TCP (DCTCP) DCTCP uses the rate at
which ECN markings are received to build an estimate of
network congestion. It applies this to a new TCP conges-
tion avoidance algorithm to achieve lower queueing de-
lays [1]. We configured DCTCP with the recommended
ECN marking thresholds of [65, 65]. Figure 7 shows
that DCTCP reduces the variance in PTPd synchroniza-
tion and memcached latency compared to the contended
case. However, this comes at an increase in Hadoop job
runtimes, as Hadoop’s bulk data transfers are affected by
DCTCP’s congestion avoidance.

QJUMP Figure 7 shows that QJUMP achieves the best
results. The variance in Hadoop, PTPd and memcached
performance is close to (Hadoop, PTPd) or slightly better
than (memcached) in the uncontended ideal case.

Figure 8: 144 node leaf-spine topology used for simula-
tion experiments.

6.4 QJUMP Improves Flow Completion
In addition to resolving network interference, QJUMP
also provides excellent overall average and 99th per-
centile flow completion times (FCTs). Although QJUMP
specifically optimizes tail latencies for small flows (at the
expense of larger flows), doing so imposes a natural order
on the network. This results in a surprisingly good over-
all network schedule with a generally positive impact on
flow completion times.

The pFabric architecture has been shown to sched-
ule flows close to optimally [3]. Therefore, we com-
pare QJUMP against pFabric to assess the quality of the
network schedule it imposes. pFabric “is a clean-slate
design [that] requires modifications both at the switches
and the end-hosts” [3, §1] and is therefore only available
in simulation. By contrast, QJUMP is far simpler and
readily deployable, but applies rigid, global rate limits.

We compare QJUMP against a TCP baseline, DCTCP
and pFabric by extending an ns2 simulation provided
by the authors of pFabric. This replicates the leaf-spine
network topology used to evaluate pFabric (see Fig-
ure 8). We also run the same workloads derived from
web search [1, §2.2] and data mining [16, §3.1] clusters
in Microsoft datacenters, and show matching graphs in
Figure 9.7 As in pFabric, we normalize flows to their
ideal flow completion time on an idle network.

Figure 9 reports the average and 99th percentile nor-
malized FCTs for small flows (0kB, 100kB] and the av-
erage FCTs for large flows (10MB, •). For both work-
loads, QJUMP is configured with P = 9kB, n = 144, and
{ f0... f7} = {144,100,20,10,5,3,2,1}. We chose this
configuration based on the distribution of flow sizes in
the web search workload. However, in practice it worked
well for both workloads.

Despite its simplicity, QJUMP performs very well. As
expected, it works best on short flows: on both work-
loads, QJUMP achieves average and 99th percentile FCTs
close to or better than pFabric’s. On the web-search
workload, QJUMP beats pFabric by a margin of up to
32% at the 99th percentile (Fig. 9b). For larger flows, the
results are mixed. On the web search workload, QJUMP

7An extended set of graphs for both of the workloads is available at
http://www.cl.cam.ac.uk/netos/camsas/qjump.
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Figure 7: QJUMP comes closest to ideal performance for
all of Hadoop, PTPd and memcached.

down. Figure 7 shows that Ethernet Flow Control has a
limited positive influence on memcached, but increases
the RMS for PTPd. Hadoop’s performance remains un-
affected.

Early Congestion Notification (ECN) ECN is a net-
work layer mechanism in which switches indicate queue-
ing to end hosts by marking TCP packets. Our Arista
7050 switch implements ECN with Weighted Random
Early Detection (WRED). The effectiveness of WRED
depends on an administrator correctly configuring upper
and lower marking thresholds. We investigated ten dif-
ferent marking thresholds pairs, ranging between [5, 10]
and [2560, 5120] ([upper, lower], in packets). None of
these settings achieve ideal performance for all three ap-
plications, but the best compromise was [40, 80]. With
this configuration, ECN very effectively resolves the in-
terference experienced by PTPd and memcached. How-
ever, this comes at the expense of increased Hadoop run-
times.

Datacenter TCP (DCTCP) DCTCP uses the rate at
which ECN markings are received to build an estimate of
network congestion. It applies this to a new TCP conges-
tion avoidance algorithm to achieve lower queueing de-
lays [1]. We configured DCTCP with the recommended
ECN marking thresholds of [65, 65]. Figure 7 shows
that DCTCP reduces the variance in PTPd synchroniza-
tion and memcached latency compared to the contended
case. However, this comes at an increase in Hadoop job
runtimes, as Hadoop’s bulk data transfers are affected by
DCTCP’s congestion avoidance.

QJUMP Figure 7 shows that QJUMP achieves the best
results. The variance in Hadoop, PTPd and memcached
performance is close to (Hadoop, PTPd) or slightly better
than (memcached) in the uncontended ideal case.

Figure 8: 144 node leaf-spine topology used for simula-
tion experiments.

6.4 QJUMP Improves Flow Completion
In addition to resolving network interference, QJUMP
also provides excellent overall average and 99th per-
centile flow completion times (FCTs). Although QJUMP
specifically optimizes tail latencies for small flows (at the
expense of larger flows), doing so imposes a natural order
on the network. This results in a surprisingly good over-
all network schedule with a generally positive impact on
flow completion times.

The pFabric architecture has been shown to sched-
ule flows close to optimally [3]. Therefore, we com-
pare QJUMP against pFabric to assess the quality of the
network schedule it imposes. pFabric “is a clean-slate
design [that] requires modifications both at the switches
and the end-hosts” [3, §1] and is therefore only available
in simulation. By contrast, QJUMP is far simpler and
readily deployable, but applies rigid, global rate limits.

We compare QJUMP against a TCP baseline, DCTCP
and pFabric by extending an ns2 simulation provided
by the authors of pFabric. This replicates the leaf-spine
network topology used to evaluate pFabric (see Fig-
ure 8). We also run the same workloads derived from
web search [1, §2.2] and data mining [16, §3.1] clusters
in Microsoft datacenters, and show matching graphs in
Figure 9.7 As in pFabric, we normalize flows to their
ideal flow completion time on an idle network.

Figure 9 reports the average and 99th percentile nor-
malized FCTs for small flows (0kB, 100kB] and the av-
erage FCTs for large flows (10MB, •). For both work-
loads, QJUMP is configured with P = 9kB, n = 144, and
{ f0... f7} = {144,100,20,10,5,3,2,1}. We chose this
configuration based on the distribution of flow sizes in
the web search workload. However, in practice it worked
well for both workloads.

Despite its simplicity, QJUMP performs very well. As
expected, it works best on short flows: on both work-
loads, QJUMP achieves average and 99th percentile FCTs
close to or better than pFabric’s. On the web-search
workload, QJUMP beats pFabric by a margin of up to
32% at the 99th percentile (Fig. 9b). For larger flows, the
results are mixed. On the web search workload, QJUMP

7An extended set of graphs for both of the workloads is available at
http://www.cl.cam.ac.uk/netos/camsas/qjump.
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Figure 7: QJUMP comes closest to ideal performance for
all of Hadoop, PTPd and memcached.

down. Figure 7 shows that Ethernet Flow Control has a
limited positive influence on memcached, but increases
the RMS for PTPd. Hadoop’s performance remains un-
affected.

Early Congestion Notification (ECN) ECN is a net-
work layer mechanism in which switches indicate queue-
ing to end hosts by marking TCP packets. Our Arista
7050 switch implements ECN with Weighted Random
Early Detection (WRED). The effectiveness of WRED
depends on an administrator correctly configuring upper
and lower marking thresholds. We investigated ten dif-
ferent marking thresholds pairs, ranging between [5, 10]
and [2560, 5120] ([upper, lower], in packets). None of
these settings achieve ideal performance for all three ap-
plications, but the best compromise was [40, 80]. With
this configuration, ECN very effectively resolves the in-
terference experienced by PTPd and memcached. How-
ever, this comes at the expense of increased Hadoop run-
times.

Datacenter TCP (DCTCP) DCTCP uses the rate at
which ECN markings are received to build an estimate of
network congestion. It applies this to a new TCP conges-
tion avoidance algorithm to achieve lower queueing de-
lays [1]. We configured DCTCP with the recommended
ECN marking thresholds of [65, 65]. Figure 7 shows
that DCTCP reduces the variance in PTPd synchroniza-
tion and memcached latency compared to the contended
case. However, this comes at an increase in Hadoop job
runtimes, as Hadoop’s bulk data transfers are affected by
DCTCP’s congestion avoidance.

QJUMP Figure 7 shows that QJUMP achieves the best
results. The variance in Hadoop, PTPd and memcached
performance is close to (Hadoop, PTPd) or slightly better
than (memcached) in the uncontended ideal case.

Figure 8: 144 node leaf-spine topology used for simula-
tion experiments.

6.4 QJUMP Improves Flow Completion
In addition to resolving network interference, QJUMP
also provides excellent overall average and 99th per-
centile flow completion times (FCTs). Although QJUMP
specifically optimizes tail latencies for small flows (at the
expense of larger flows), doing so imposes a natural order
on the network. This results in a surprisingly good over-
all network schedule with a generally positive impact on
flow completion times.

The pFabric architecture has been shown to sched-
ule flows close to optimally [3]. Therefore, we com-
pare QJUMP against pFabric to assess the quality of the
network schedule it imposes. pFabric “is a clean-slate
design [that] requires modifications both at the switches
and the end-hosts” [3, §1] and is therefore only available
in simulation. By contrast, QJUMP is far simpler and
readily deployable, but applies rigid, global rate limits.

We compare QJUMP against a TCP baseline, DCTCP
and pFabric by extending an ns2 simulation provided
by the authors of pFabric. This replicates the leaf-spine
network topology used to evaluate pFabric (see Fig-
ure 8). We also run the same workloads derived from
web search [1, §2.2] and data mining [16, §3.1] clusters
in Microsoft datacenters, and show matching graphs in
Figure 9.7 As in pFabric, we normalize flows to their
ideal flow completion time on an idle network.

Figure 9 reports the average and 99th percentile nor-
malized FCTs for small flows (0kB, 100kB] and the av-
erage FCTs for large flows (10MB, •). For both work-
loads, QJUMP is configured with P = 9kB, n = 144, and
{ f0... f7} = {144,100,20,10,5,3,2,1}. We chose this
configuration based on the distribution of flow sizes in
the web search workload. However, in practice it worked
well for both workloads.

Despite its simplicity, QJUMP performs very well. As
expected, it works best on short flows: on both work-
loads, QJUMP achieves average and 99th percentile FCTs
close to or better than pFabric’s. On the web-search
workload, QJUMP beats pFabric by a margin of up to
32% at the 99th percentile (Fig. 9b). For larger flows, the
results are mixed. On the web search workload, QJUMP

7An extended set of graphs for both of the workloads is available at
http://www.cl.cam.ac.uk/netos/camsas/qjump.
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Figure 7: QJUMP comes closest to ideal performance for
all of Hadoop, PTPd and memcached.

down. Figure 7 shows that Ethernet Flow Control has a
limited positive influence on memcached, but increases
the RMS for PTPd. Hadoop’s performance remains un-
affected.

Early Congestion Notification (ECN) ECN is a net-
work layer mechanism in which switches indicate queue-
ing to end hosts by marking TCP packets. Our Arista
7050 switch implements ECN with Weighted Random
Early Detection (WRED). The effectiveness of WRED
depends on an administrator correctly configuring upper
and lower marking thresholds. We investigated ten dif-
ferent marking thresholds pairs, ranging between [5, 10]
and [2560, 5120] ([upper, lower], in packets). None of
these settings achieve ideal performance for all three ap-
plications, but the best compromise was [40, 80]. With
this configuration, ECN very effectively resolves the in-
terference experienced by PTPd and memcached. How-
ever, this comes at the expense of increased Hadoop run-
times.

Datacenter TCP (DCTCP) DCTCP uses the rate at
which ECN markings are received to build an estimate of
network congestion. It applies this to a new TCP conges-
tion avoidance algorithm to achieve lower queueing de-
lays [1]. We configured DCTCP with the recommended
ECN marking thresholds of [65, 65]. Figure 7 shows
that DCTCP reduces the variance in PTPd synchroniza-
tion and memcached latency compared to the contended
case. However, this comes at an increase in Hadoop job
runtimes, as Hadoop’s bulk data transfers are affected by
DCTCP’s congestion avoidance.

QJUMP Figure 7 shows that QJUMP achieves the best
results. The variance in Hadoop, PTPd and memcached
performance is close to (Hadoop, PTPd) or slightly better
than (memcached) in the uncontended ideal case.

Figure 8: 144 node leaf-spine topology used for simula-
tion experiments.

6.4 QJUMP Improves Flow Completion
In addition to resolving network interference, QJUMP
also provides excellent overall average and 99th per-
centile flow completion times (FCTs). Although QJUMP
specifically optimizes tail latencies for small flows (at the
expense of larger flows), doing so imposes a natural order
on the network. This results in a surprisingly good over-
all network schedule with a generally positive impact on
flow completion times.

The pFabric architecture has been shown to sched-
ule flows close to optimally [3]. Therefore, we com-
pare QJUMP against pFabric to assess the quality of the
network schedule it imposes. pFabric “is a clean-slate
design [that] requires modifications both at the switches
and the end-hosts” [3, §1] and is therefore only available
in simulation. By contrast, QJUMP is far simpler and
readily deployable, but applies rigid, global rate limits.

We compare QJUMP against a TCP baseline, DCTCP
and pFabric by extending an ns2 simulation provided
by the authors of pFabric. This replicates the leaf-spine
network topology used to evaluate pFabric (see Fig-
ure 8). We also run the same workloads derived from
web search [1, §2.2] and data mining [16, §3.1] clusters
in Microsoft datacenters, and show matching graphs in
Figure 9.7 As in pFabric, we normalize flows to their
ideal flow completion time on an idle network.

Figure 9 reports the average and 99th percentile nor-
malized FCTs for small flows (0kB, 100kB] and the av-
erage FCTs for large flows (10MB, •). For both work-
loads, QJUMP is configured with P = 9kB, n = 144, and
{ f0... f7} = {144,100,20,10,5,3,2,1}. We chose this
configuration based on the distribution of flow sizes in
the web search workload. However, in practice it worked
well for both workloads.

Despite its simplicity, QJUMP performs very well. As
expected, it works best on short flows: on both work-
loads, QJUMP achieves average and 99th percentile FCTs
close to or better than pFabric’s. On the web-search
workload, QJUMP beats pFabric by a margin of up to
32% at the 99th percentile (Fig. 9b). For larger flows, the
results are mixed. On the web search workload, QJUMP

7An extended set of graphs for both of the workloads is available at
http://www.cl.cam.ac.uk/netos/camsas/qjump.
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QJump applies datacenter opportunities to 
simplify QoS rate calculations. 

It can be deployed using without 
modifications to applications, kernel 
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(a) CDF of packet latency across a switch.
Note the change in x-axis scale at x = 5µs.
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Figure 3: Application-level latency experiments: QJUMP (green, dotted line) mitigates the latency tails from Figure 1.

6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

RPC vs. Bulk Transfer Remote Procedure Calls
(RPCs) and bulk data transfers represent extreme ends
of the latency-bandwidth spectrum. QJUMP resolves net-
work interference at these extremes. As in §2.1, we
emulate RPCs and bulk data transfers using ping and
iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

RPC vs. Bulk Transfer Remote Procedure Calls
(RPCs) and bulk data transfers represent extreme ends
of the latency-bandwidth spectrum. QJUMP resolves net-
work interference at these extremes. As in §2.1, we
emulate RPCs and bulk data transfers using ping and
iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

RPC vs. Bulk Transfer Remote Procedure Calls
(RPCs) and bulk data transfers represent extreme ends
of the latency-bandwidth spectrum. QJUMP resolves net-
work interference at these extremes. As in §2.1, we
emulate RPCs and bulk data transfers using ping and
iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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(a) CDF of packet latency across a switch.
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6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

RPC vs. Bulk Transfer Remote Procedure Calls
(RPCs) and bulk data transfers represent extreme ends
of the latency-bandwidth spectrum. QJUMP resolves net-
work interference at these extremes. As in §2.1, we
emulate RPCs and bulk data transfers using ping and
iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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(b) QJUMP reduces memcached request la-
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6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

RPC vs. Bulk Transfer Remote Procedure Calls
(RPCs) and bulk data transfers represent extreme ends
of the latency-bandwidth spectrum. QJUMP resolves net-
work interference at these extremes. As in §2.1, we
emulate RPCs and bulk data transfers using ping and
iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

RPC vs. Bulk Transfer Remote Procedure Calls
(RPCs) and bulk data transfers represent extreme ends
of the latency-bandwidth spectrum. QJUMP resolves net-
work interference at these extremes. As in §2.1, we
emulate RPCs and bulk data transfers using ping and
iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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Figure 10: memcached throughput (top) and latency
(bottom, log10) as a function of the QJUMP rate limit.

Figure 11: Latency bound validation: 60 host fan-in of
f7 and f0 traffic; 100 million samples per data point.

are sent to a single destination.
Figure 11 shows the latency distribution of coordina-

tion packets as a function of the throughput factor at the
highest QJUMP level, f7. If the f7 is set to less than 1.0
(region A), the latency bound is met (as we would ex-
pect). In region B, where f7 is between 1.0 and 2.7, tran-
sient queueing affects some packets—as evident from the
100th percentile outliers—but all requests make it within
the latency bound. Beyond f7 = 2.7 (region C), perma-
nent queueing occurs.

This experiment offers two further insights about
QJUMP’s rate-limiting: (i) at throughput factors near 1.0,
the latency bound is usually still met, and (ii) via rate-
limiting, QJUMP prevents latency-sensitive applications
from interfering with their own traffic.

7 Related Work
Network congestion in datacenter networks is an active
research area. Table 2 compares the properties of recent
systems, including those we already compared against

Figure 12: Latency bound validation topology: 10 hy-
pervisors (HV) and 60 guests (G1..60) and 120 apps.

in §6.3 and §6.4. We categorize systems as deployable if
they function on commodity hardware, unmodified trans-
port protocols and unmodified application source code.

Fastpass [29] employs a global arbiter that times the
admission of packets into the network and routes them.
While Fastpass eliminates in-network queueing, requests
for allocation must queue at the centralized arbiter.

EyeQ [22] primarily aims for bandwidth partitioning,
although it also reduces latency tails. It, however, re-
quires a full-bisection bandwidth network and a kernel
patch in addition to a TC module.

Deadline Aware TCP (D2TCP) [33] extends DCTCP’s
window adjustment algorithm with the notion of flow
deadlines, scheduling flows with earlier deadlines first.
Like DCTCP, D2TCP requires switches supporting
ECN;8 it also requires inter-switch coordination, kernel
and application modifications.

HULL combines DCTCP’s congestion avoidance ap-
plied on network links’ utilization (rather than queue
length) with a special packet-pacing NIC [2]. Its rate-
limiting is applied in reaction to ECN-marked packets.

D3 [35] allocates bandwidth on a first-come-first-serve
basis. It requires special switch and NIC hardware and
modifies transport protocols.

PDQ uses Earliest Deadline First (EDF) scheduling
to prioritize straggler flows, but requires coordination
across switches and application changes.

DeTail [37] and pFabric [3] pre-emptively schedule
flows using packet forwarding priorities in switches. De-
Tail also addresses load imbalance caused by poor flow
hashing. Flow priorities are explicitly specified by modi-
fied applications (DeTail) or computed from the remain-
ing flow duration (pFabric). However, both systems re-
quire special switch hardware: pFabric uses very short
queues and 64-bit priority tags, and DeTail coordinates
flows’ rates via special “pause” and “unpause” messages.

SILO [21] employs a similar reasoning to QJUMP to
estimate expected queue lengths. It places VMs accord-
ing to traffic descriptions to limit queueing and paces
hosts using “null” packets.

TDMA Ethernet [34] trades bandwidth for reduced
queueing by time diving network access, but requires in-

8Only one in five 10Gb/s switches we looked at supports ECN.
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(a) CDF of packet latency across a switch.
Note the change in x-axis scale at x = 5µs.
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(b) QJUMP reduces memcached request la-
tency: CDF of 9 million samples.

(c) QJ fixes Naiad barrier synchronization
latency: CDF over 10k samples.

Figure 3: Application-level latency experiments: QJUMP (green, dotted line) mitigates the latency tails from Figure 1.

6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

RPC vs. Bulk Transfer Remote Procedure Calls
(RPCs) and bulk data transfers represent extreme ends
of the latency-bandwidth spectrum. QJUMP resolves net-
work interference at these extremes. As in §2.1, we
emulate RPCs and bulk data transfers using ping and
iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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(a) CDF of packet latency across a switch.
Note the change in x-axis scale at x = 5µs.

(b) QJUMP reduces memcached request la-
tency: CDF of 9 million samples.
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6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.
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(RPCs) and bulk data transfers represent extreme ends
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work interference at these extremes. As in §2.1, we
emulate RPCs and bulk data transfers using ping and
iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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Figure 3: Application-level latency experiments: QJUMP (green, dotted line) mitigates the latency tails from Figure 1.
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Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
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iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.

7

Draft of 01/10/2014, 17:49 – please do not distribute.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10
Rate limit [Gb/s]

10µs
100µs

1ms
10ms

100ms
1s

La
te

nc
y

[lo
g 1

0
]

Max. latency
99%ile latency

0
50

100
150
200

Th
ro

ug
hp

ut
[k

re
q/

s]

best tradeoff

Throughput

Figure 10: memcached throughput (top) and latency
(bottom, log10) as a function of the QJUMP rate limit.

Figure 11: Latency bound validation: 60 host fan-in of
f7 and f0 traffic; 100 million samples per data point.

are sent to a single destination.
Figure 11 shows the latency distribution of coordina-

tion packets as a function of the throughput factor at the
highest QJUMP level, f7. If the f7 is set to less than 1.0
(region A), the latency bound is met (as we would ex-
pect). In region B, where f7 is between 1.0 and 2.7, tran-
sient queueing affects some packets—as evident from the
100th percentile outliers—but all requests make it within
the latency bound. Beyond f7 = 2.7 (region C), perma-
nent queueing occurs.

This experiment offers two further insights about
QJUMP’s rate-limiting: (i) at throughput factors near 1.0,
the latency bound is usually still met, and (ii) via rate-
limiting, QJUMP prevents latency-sensitive applications
from interfering with their own traffic.

7 Related Work
Network congestion in datacenter networks is an active
research area. Table 2 compares the properties of recent
systems, including those we already compared against

Figure 12: Latency bound validation topology: 10 hy-
pervisors (HV) and 60 guests (G1..60) and 120 apps.

in §6.3 and §6.4. We categorize systems as deployable if
they function on commodity hardware, unmodified trans-
port protocols and unmodified application source code.

Fastpass [29] employs a global arbiter that times the
admission of packets into the network and routes them.
While Fastpass eliminates in-network queueing, requests
for allocation must queue at the centralized arbiter.

EyeQ [22] primarily aims for bandwidth partitioning,
although it also reduces latency tails. It, however, re-
quires a full-bisection bandwidth network and a kernel
patch in addition to a TC module.

Deadline Aware TCP (D2TCP) [33] extends DCTCP’s
window adjustment algorithm with the notion of flow
deadlines, scheduling flows with earlier deadlines first.
Like DCTCP, D2TCP requires switches supporting
ECN;8 it also requires inter-switch coordination, kernel
and application modifications.

HULL combines DCTCP’s congestion avoidance ap-
plied on network links’ utilization (rather than queue
length) with a special packet-pacing NIC [2]. Its rate-
limiting is applied in reaction to ECN-marked packets.

D3 [35] allocates bandwidth on a first-come-first-serve
basis. It requires special switch and NIC hardware and
modifies transport protocols.

PDQ uses Earliest Deadline First (EDF) scheduling
to prioritize straggler flows, but requires coordination
across switches and application changes.

DeTail [37] and pFabric [3] pre-emptively schedule
flows using packet forwarding priorities in switches. De-
Tail also addresses load imbalance caused by poor flow
hashing. Flow priorities are explicitly specified by modi-
fied applications (DeTail) or computed from the remain-
ing flow duration (pFabric). However, both systems re-
quire special switch hardware: pFabric uses very short
queues and 64-bit priority tags, and DeTail coordinates
flows’ rates via special “pause” and “unpause” messages.

SILO [21] employs a similar reasoning to QJUMP to
estimate expected queue lengths. It places VMs accord-
ing to traffic descriptions to limit queueing and paces
hosts using “null” packets.

TDMA Ethernet [34] trades bandwidth for reduced
queueing by time diving network access, but requires in-

8Only one in five 10Gb/s switches we looked at supports ECN.
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are sent to a single destination.
Figure 11 shows the latency distribution of coordina-

tion packets as a function of the throughput factor at the
highest QJUMP level, f7. If the f7 is set to less than 1.0
(region A), the latency bound is met (as we would ex-
pect). In region B, where f7 is between 1.0 and 2.7, tran-
sient queueing affects some packets—as evident from the
100th percentile outliers—but all requests make it within
the latency bound. Beyond f7 = 2.7 (region C), perma-
nent queueing occurs.

This experiment offers two further insights about
QJUMP’s rate-limiting: (i) at throughput factors near 1.0,
the latency bound is usually still met, and (ii) via rate-
limiting, QJUMP prevents latency-sensitive applications
from interfering with their own traffic.
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Network congestion in datacenter networks is an active
research area. Table 2 compares the properties of recent
systems, including those we already compared against
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in §6.3 and §6.4. We categorize systems as deployable if
they function on commodity hardware, unmodified trans-
port protocols and unmodified application source code.

Fastpass [29] employs a global arbiter that times the
admission of packets into the network and routes them.
While Fastpass eliminates in-network queueing, requests
for allocation must queue at the centralized arbiter.

EyeQ [22] primarily aims for bandwidth partitioning,
although it also reduces latency tails. It, however, re-
quires a full-bisection bandwidth network and a kernel
patch in addition to a TC module.

Deadline Aware TCP (D2TCP) [33] extends DCTCP’s
window adjustment algorithm with the notion of flow
deadlines, scheduling flows with earlier deadlines first.
Like DCTCP, D2TCP requires switches supporting
ECN;8 it also requires inter-switch coordination, kernel
and application modifications.

HULL combines DCTCP’s congestion avoidance ap-
plied on network links’ utilization (rather than queue
length) with a special packet-pacing NIC [2]. Its rate-
limiting is applied in reaction to ECN-marked packets.

D3 [35] allocates bandwidth on a first-come-first-serve
basis. It requires special switch and NIC hardware and
modifies transport protocols.

PDQ uses Earliest Deadline First (EDF) scheduling
to prioritize straggler flows, but requires coordination
across switches and application changes.

DeTail [37] and pFabric [3] pre-emptively schedule
flows using packet forwarding priorities in switches. De-
Tail also addresses load imbalance caused by poor flow
hashing. Flow priorities are explicitly specified by modi-
fied applications (DeTail) or computed from the remain-
ing flow duration (pFabric). However, both systems re-
quire special switch hardware: pFabric uses very short
queues and 64-bit priority tags, and DeTail coordinates
flows’ rates via special “pause” and “unpause” messages.

SILO [21] employs a similar reasoning to QJUMP to
estimate expected queue lengths. It places VMs accord-
ing to traffic descriptions to limit queueing and paces
hosts using “null” packets.

TDMA Ethernet [34] trades bandwidth for reduced
queueing by time diving network access, but requires in-

8Only one in five 10Gb/s switches we looked at supports ECN.
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(a) CDF of packet latency across a switch.
Note the change in x-axis scale at x = 5µs.
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(b) QJUMP reduces memcached request la-
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(c) QJ fixes Naiad barrier synchronization
latency: CDF over 10k samples.

Figure 3: Application-level latency experiments: QJUMP (green, dotted line) mitigates the latency tails from Figure 1.

6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

RPC vs. Bulk Transfer Remote Procedure Calls
(RPCs) and bulk data transfers represent extreme ends
of the latency-bandwidth spectrum. QJUMP resolves net-
work interference at these extremes. As in §2.1, we
emulate RPCs and bulk data transfers using ping and
iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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(a) CDF of packet latency across a switch.
Note the change in x-axis scale at x = 5µs.

(b) QJUMP reduces memcached request la-
tency: CDF of 9 million samples.
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Figure 3: Application-level latency experiments: QJUMP (green, dotted line) mitigates the latency tails from Figure 1.

6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

RPC vs. Bulk Transfer Remote Procedure Calls
(RPCs) and bulk data transfers represent extreme ends
of the latency-bandwidth spectrum. QJUMP resolves net-
work interference at these extremes. As in §2.1, we
emulate RPCs and bulk data transfers using ping and
iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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Figure 3: Application-level latency experiments: QJUMP (green, dotted line) mitigates the latency tails from Figure 1.

6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

RPC vs. Bulk Transfer Remote Procedure Calls
(RPCs) and bulk data transfers represent extreme ends
of the latency-bandwidth spectrum. QJUMP resolves net-
work interference at these extremes. As in §2.1, we
emulate RPCs and bulk data transfers using ping and
iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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Figure 10: memcached throughput (top) and latency
(bottom, log10) as a function of the QJUMP rate limit.

Figure 11: Latency bound validation: 60 host fan-in of
f7 and f0 traffic; 100 million samples per data point.

are sent to a single destination.
Figure 11 shows the latency distribution of coordina-

tion packets as a function of the throughput factor at the
highest QJUMP level, f7. If the f7 is set to less than 1.0
(region A), the latency bound is met (as we would ex-
pect). In region B, where f7 is between 1.0 and 2.7, tran-
sient queueing affects some packets—as evident from the
100th percentile outliers—but all requests make it within
the latency bound. Beyond f7 = 2.7 (region C), perma-
nent queueing occurs.

This experiment offers two further insights about
QJUMP’s rate-limiting: (i) at throughput factors near 1.0,
the latency bound is usually still met, and (ii) via rate-
limiting, QJUMP prevents latency-sensitive applications
from interfering with their own traffic.

7 Related Work
Network congestion in datacenter networks is an active
research area. Table 2 compares the properties of recent
systems, including those we already compared against

Figure 12: Latency bound validation topology: 10 hy-
pervisors (HV) and 60 guests (G1..60) and 120 apps.

in §6.3 and §6.4. We categorize systems as deployable if
they function on commodity hardware, unmodified trans-
port protocols and unmodified application source code.

Fastpass [29] employs a global arbiter that times the
admission of packets into the network and routes them.
While Fastpass eliminates in-network queueing, requests
for allocation must queue at the centralized arbiter.

EyeQ [22] primarily aims for bandwidth partitioning,
although it also reduces latency tails. It, however, re-
quires a full-bisection bandwidth network and a kernel
patch in addition to a TC module.

Deadline Aware TCP (D2TCP) [33] extends DCTCP’s
window adjustment algorithm with the notion of flow
deadlines, scheduling flows with earlier deadlines first.
Like DCTCP, D2TCP requires switches supporting
ECN;8 it also requires inter-switch coordination, kernel
and application modifications.

HULL combines DCTCP’s congestion avoidance ap-
plied on network links’ utilization (rather than queue
length) with a special packet-pacing NIC [2]. Its rate-
limiting is applied in reaction to ECN-marked packets.

D3 [35] allocates bandwidth on a first-come-first-serve
basis. It requires special switch and NIC hardware and
modifies transport protocols.

PDQ uses Earliest Deadline First (EDF) scheduling
to prioritize straggler flows, but requires coordination
across switches and application changes.

DeTail [37] and pFabric [3] pre-emptively schedule
flows using packet forwarding priorities in switches. De-
Tail also addresses load imbalance caused by poor flow
hashing. Flow priorities are explicitly specified by modi-
fied applications (DeTail) or computed from the remain-
ing flow duration (pFabric). However, both systems re-
quire special switch hardware: pFabric uses very short
queues and 64-bit priority tags, and DeTail coordinates
flows’ rates via special “pause” and “unpause” messages.

SILO [21] employs a similar reasoning to QJUMP to
estimate expected queue lengths. It places VMs accord-
ing to traffic descriptions to limit queueing and paces
hosts using “null” packets.

TDMA Ethernet [34] trades bandwidth for reduced
queueing by time diving network access, but requires in-

8Only one in five 10Gb/s switches we looked at supports ECN.
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they function on commodity hardware, unmodified trans-
port protocols and unmodified application source code.

Fastpass [29] employs a global arbiter that times the
admission of packets into the network and routes them.
While Fastpass eliminates in-network queueing, requests
for allocation must queue at the centralized arbiter.

EyeQ [22] primarily aims for bandwidth partitioning,
although it also reduces latency tails. It, however, re-
quires a full-bisection bandwidth network and a kernel
patch in addition to a TC module.

Deadline Aware TCP (D2TCP) [33] extends DCTCP’s
window adjustment algorithm with the notion of flow
deadlines, scheduling flows with earlier deadlines first.
Like DCTCP, D2TCP requires switches supporting
ECN;8 it also requires inter-switch coordination, kernel
and application modifications.

HULL combines DCTCP’s congestion avoidance ap-
plied on network links’ utilization (rather than queue
length) with a special packet-pacing NIC [2]. Its rate-
limiting is applied in reaction to ECN-marked packets.

D3 [35] allocates bandwidth on a first-come-first-serve
basis. It requires special switch and NIC hardware and
modifies transport protocols.

PDQ uses Earliest Deadline First (EDF) scheduling
to prioritize straggler flows, but requires coordination
across switches and application changes.

DeTail [37] and pFabric [3] pre-emptively schedule
flows using packet forwarding priorities in switches. De-
Tail also addresses load imbalance caused by poor flow
hashing. Flow priorities are explicitly specified by modi-
fied applications (DeTail) or computed from the remain-
ing flow duration (pFabric). However, both systems re-
quire special switch hardware: pFabric uses very short
queues and 64-bit priority tags, and DeTail coordinates
flows’ rates via special “pause” and “unpause” messages.

SILO [21] employs a similar reasoning to QJUMP to
estimate expected queue lengths. It places VMs accord-
ing to traffic descriptions to limit queueing and paces
hosts using “null” packets.

TDMA Ethernet [34] trades bandwidth for reduced
queueing by time diving network access, but requires in-

8Only one in five 10Gb/s switches we looked at supports ECN.
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By
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Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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(a) CDF of packet latency across a switch.
Note the change in x-axis scale at x = 5µs.
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Figure 3: Application-level latency experiments: QJUMP (green, dotted line) mitigates the latency tails from Figure 1.

6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

RPC vs. Bulk Transfer Remote Procedure Calls
(RPCs) and bulk data transfers represent extreme ends
of the latency-bandwidth spectrum. QJUMP resolves net-
work interference at these extremes. As in §2.1, we
emulate RPCs and bulk data transfers using ping and
iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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(a) CDF of packet latency across a switch.
Note the change in x-axis scale at x = 5µs.

(b) QJUMP reduces memcached request la-
tency: CDF of 9 million samples.
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Figure 3: Application-level latency experiments: QJUMP (green, dotted line) mitigates the latency tails from Figure 1.

6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

RPC vs. Bulk Transfer Remote Procedure Calls
(RPCs) and bulk data transfers represent extreme ends
of the latency-bandwidth spectrum. QJUMP resolves net-
work interference at these extremes. As in §2.1, we
emulate RPCs and bulk data transfers using ping and
iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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Figure 3: Application-level latency experiments: QJUMP (green, dotted line) mitigates the latency tails from Figure 1.

6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

RPC vs. Bulk Transfer Remote Procedure Calls
(RPCs) and bulk data transfers represent extreme ends
of the latency-bandwidth spectrum. QJUMP resolves net-
work interference at these extremes. As in §2.1, we
emulate RPCs and bulk data transfers using ping and
iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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Figure 10: memcached throughput (top) and latency
(bottom, log10) as a function of the QJUMP rate limit.

Figure 11: Latency bound validation: 60 host fan-in of
f7 and f0 traffic; 100 million samples per data point.

are sent to a single destination.
Figure 11 shows the latency distribution of coordina-

tion packets as a function of the throughput factor at the
highest QJUMP level, f7. If the f7 is set to less than 1.0
(region A), the latency bound is met (as we would ex-
pect). In region B, where f7 is between 1.0 and 2.7, tran-
sient queueing affects some packets—as evident from the
100th percentile outliers—but all requests make it within
the latency bound. Beyond f7 = 2.7 (region C), perma-
nent queueing occurs.

This experiment offers two further insights about
QJUMP’s rate-limiting: (i) at throughput factors near 1.0,
the latency bound is usually still met, and (ii) via rate-
limiting, QJUMP prevents latency-sensitive applications
from interfering with their own traffic.

7 Related Work
Network congestion in datacenter networks is an active
research area. Table 2 compares the properties of recent
systems, including those we already compared against

Figure 12: Latency bound validation topology: 10 hy-
pervisors (HV) and 60 guests (G1..60) and 120 apps.

in §6.3 and §6.4. We categorize systems as deployable if
they function on commodity hardware, unmodified trans-
port protocols and unmodified application source code.

Fastpass [29] employs a global arbiter that times the
admission of packets into the network and routes them.
While Fastpass eliminates in-network queueing, requests
for allocation must queue at the centralized arbiter.

EyeQ [22] primarily aims for bandwidth partitioning,
although it also reduces latency tails. It, however, re-
quires a full-bisection bandwidth network and a kernel
patch in addition to a TC module.

Deadline Aware TCP (D2TCP) [33] extends DCTCP’s
window adjustment algorithm with the notion of flow
deadlines, scheduling flows with earlier deadlines first.
Like DCTCP, D2TCP requires switches supporting
ECN;8 it also requires inter-switch coordination, kernel
and application modifications.

HULL combines DCTCP’s congestion avoidance ap-
plied on network links’ utilization (rather than queue
length) with a special packet-pacing NIC [2]. Its rate-
limiting is applied in reaction to ECN-marked packets.

D3 [35] allocates bandwidth on a first-come-first-serve
basis. It requires special switch and NIC hardware and
modifies transport protocols.

PDQ uses Earliest Deadline First (EDF) scheduling
to prioritize straggler flows, but requires coordination
across switches and application changes.

DeTail [37] and pFabric [3] pre-emptively schedule
flows using packet forwarding priorities in switches. De-
Tail also addresses load imbalance caused by poor flow
hashing. Flow priorities are explicitly specified by modi-
fied applications (DeTail) or computed from the remain-
ing flow duration (pFabric). However, both systems re-
quire special switch hardware: pFabric uses very short
queues and 64-bit priority tags, and DeTail coordinates
flows’ rates via special “pause” and “unpause” messages.

SILO [21] employs a similar reasoning to QJUMP to
estimate expected queue lengths. It places VMs accord-
ing to traffic descriptions to limit queueing and paces
hosts using “null” packets.

TDMA Ethernet [34] trades bandwidth for reduced
queueing by time diving network access, but requires in-

8Only one in five 10Gb/s switches we looked at supports ECN.
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tion packets as a function of the throughput factor at the
highest QJUMP level, f7. If the f7 is set to less than 1.0
(region A), the latency bound is met (as we would ex-
pect). In region B, where f7 is between 1.0 and 2.7, tran-
sient queueing affects some packets—as evident from the
100th percentile outliers—but all requests make it within
the latency bound. Beyond f7 = 2.7 (region C), perma-
nent queueing occurs.

This experiment offers two further insights about
QJUMP’s rate-limiting: (i) at throughput factors near 1.0,
the latency bound is usually still met, and (ii) via rate-
limiting, QJUMP prevents latency-sensitive applications
from interfering with their own traffic.
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Network congestion in datacenter networks is an active
research area. Table 2 compares the properties of recent
systems, including those we already compared against
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pervisors (HV) and 60 guests (G1..60) and 120 apps.

in §6.3 and §6.4. We categorize systems as deployable if
they function on commodity hardware, unmodified trans-
port protocols and unmodified application source code.

Fastpass [29] employs a global arbiter that times the
admission of packets into the network and routes them.
While Fastpass eliminates in-network queueing, requests
for allocation must queue at the centralized arbiter.

EyeQ [22] primarily aims for bandwidth partitioning,
although it also reduces latency tails. It, however, re-
quires a full-bisection bandwidth network and a kernel
patch in addition to a TC module.

Deadline Aware TCP (D2TCP) [33] extends DCTCP’s
window adjustment algorithm with the notion of flow
deadlines, scheduling flows with earlier deadlines first.
Like DCTCP, D2TCP requires switches supporting
ECN;8 it also requires inter-switch coordination, kernel
and application modifications.

HULL combines DCTCP’s congestion avoidance ap-
plied on network links’ utilization (rather than queue
length) with a special packet-pacing NIC [2]. Its rate-
limiting is applied in reaction to ECN-marked packets.

D3 [35] allocates bandwidth on a first-come-first-serve
basis. It requires special switch and NIC hardware and
modifies transport protocols.

PDQ uses Earliest Deadline First (EDF) scheduling
to prioritize straggler flows, but requires coordination
across switches and application changes.

DeTail [37] and pFabric [3] pre-emptively schedule
flows using packet forwarding priorities in switches. De-
Tail also addresses load imbalance caused by poor flow
hashing. Flow priorities are explicitly specified by modi-
fied applications (DeTail) or computed from the remain-
ing flow duration (pFabric). However, both systems re-
quire special switch hardware: pFabric uses very short
queues and 64-bit priority tags, and DeTail coordinates
flows’ rates via special “pause” and “unpause” messages.

SILO [21] employs a similar reasoning to QJUMP to
estimate expected queue lengths. It places VMs accord-
ing to traffic descriptions to limit queueing and paces
hosts using “null” packets.

TDMA Ethernet [34] trades bandwidth for reduced
queueing by time diving network access, but requires in-

8Only one in five 10Gb/s switches we looked at supports ECN.
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By
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Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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Figure 9: Normalized flow completion times in a 144-host simulation (1 is ideal): QJUMP outperforms TCP, DCTCP
and pFabric for small flows. N.B.: log-scale y-axis; QJUMP and pFabric overlap in (a), (d) and (e).

outperforms pFabric by up to 20% at high load, but loses
to pFabric by 15% at low load (Fig. 9c). On the data min-
ing workload, QJUMP’s average FCTs are between 30%
and 63% worse than pFabric’s (Fig. 9f).

In the data-mining workload, 85% of all flows transfer
fewer than 100kB, but over 80% of the bytes are trans-
ferred in flows of greater than 100MB (less than 15%
of the total flows). QJUMP’s short epoch intervals can-
not sense the difference between large flows, so it does
not apply any rate-limiting (scheduling) to them. This
results in sub-optimal behavior. A combined approach
where QJUMP regulates interactions between large flows
and small flows, while DCTCP regulates the interactions
between different large flows might improve this. We
plan to investigate this in the future.

6.5 QJUMP Configuration
As described in §5, QJUMP levels can be determined
in several ways. One approach is to tune the levels to
a specific mix of applications. For some applications,
it is clear that they perform best at guaranteed latency
(e.g. ptpd at f7 = 1) or high rate (e.g. Hadoop at f0 = n).
For others, their performance at different throughput fac-
tors is less straightforward. Memcached is an example
of such an application. It needs low request latency vari-
ance as well as reasonable request throughput. Figure 10
shows memcached’s request throughput and latency as

a function of rate-limiting. Peak throughput is reached
at a rate allocation of around 5Gb/s. At the same point,
the request latency also stabilizes. Hence, a rate-limit of
5Gb/s gives the best tradeoff for memcached. This point
has the strongest interference control possible without
throughput restrictions. To convert this to a throughput
factor, we get fi =

nTi
R by rearranging Equation 2 for fi.

On our test-bed (n = 12 at R =10Gb/s), Ti =5Gb/s yields
a throughput factor of f = 6. We can therefore choose
a QJUMP level for memcached (e.g. f4) and set it to a
throughput factor �6.

QJUMP offers a bounded latency level at throughput
factor f7. At this level, all packets admitted into the net-
work must reach the destination by the end of the net-
work epoch (§3.1). We now show that our model and the
derived configuration are correct. To do this, we perform
a scale-up emulation using a 60-host virtualized topology
running on ten physical machines (see Figure 12). In this
topology, each machine runs a “hypervisor” (Linux ker-
nel) with a 10Gb/s uplink to the network. Each hyper-
visor runs six “guests” (processes) each with a 1.6Gb/s
network connection. We provision QJUMP for the num-
ber of guests and run two applications on each guest: (i)
a coordination service that generates one 256 byte packet
per network epoch at the highest QJUMP level, and (ii) a
bulk sender that issues 1500 byte packets as fast as possi-
ble at the lowest QJUMP level. All coordination requests
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By
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Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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Figure 10: memcached throughput (top) and latency
(bottom, log10) as a function of the QJUMP rate limit.
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Figure 11: Latency bound validation: 60 host fan-in of
f7 and f0 traffic; 100 million samples per data point.

are sent to a single destination.
Figure 11 shows the latency distribution of coordina-

tion packets as a function of the throughput factor at the
highest QJUMP level, f7. If the f7 is set to less than 1.0
(region A), the latency bound is met (as we would ex-
pect). In region B, where f7 is between 1.0 and 2.7, tran-
sient queueing affects some packets—as evident from the
100th percentile outliers—but all requests make it within
the latency bound. Beyond f7 = 2.7 (region C), perma-
nent queueing occurs.

This experiment offers two further insights about
QJUMP’s rate-limiting: (i) at throughput factors near 1.0,
the latency bound is usually still met, and (ii) via rate-
limiting, QJUMP prevents latency-sensitive applications
from interfering with their own traffic.

7 Related Work
Network congestion in datacenter networks is an active
research area. Table 2 compares the properties of recent
systems, including those we already compared against

Figure 12: Latency bound validation topology: 10 hy-
pervisors (HV) and 60 guests (G1..60) and 120 apps.

in §6.3 and §6.4. We categorize systems as deployable if
they function on commodity hardware, unmodified trans-
port protocols and unmodified application source code.

Fastpass [29] employs a global arbiter that times the
admission of packets into the network and routes them.
While Fastpass eliminates in-network queueing, requests
for allocation must queue at the centralized arbiter.

EyeQ [22] primarily aims for bandwidth partitioning,
although it also reduces latency tails. It, however, re-
quires a full-bisection bandwidth network and a kernel
patch in addition to a TC module.

Deadline Aware TCP (D2TCP) [33] extends DCTCP’s
window adjustment algorithm with the notion of flow
deadlines, scheduling flows with earlier deadlines first.
Like DCTCP, D2TCP requires switches supporting
ECN;8 it also requires inter-switch coordination, kernel
and application modifications.

HULL combines DCTCP’s congestion avoidance ap-
plied on network links’ utilization (rather than queue
length) with a special packet-pacing NIC [2]. Its rate-
limiting is applied in reaction to ECN-marked packets.

D3 [35] allocates bandwidth on a first-come-first-serve
basis. It requires special switch and NIC hardware and
modifies transport protocols.

PDQ uses Earliest Deadline First (EDF) scheduling
to prioritize straggler flows, but requires coordination
across switches and application changes.

DeTail [37] and pFabric [3] pre-emptively schedule
flows using packet forwarding priorities in switches. De-
Tail also addresses load imbalance caused by poor flow
hashing. Flow priorities are explicitly specified by modi-
fied applications (DeTail) or computed from the remain-
ing flow duration (pFabric). However, both systems re-
quire special switch hardware: pFabric uses very short
queues and 64-bit priority tags, and DeTail coordinates
flows’ rates via special “pause” and “unpause” messages.

SILO [21] employs a similar reasoning to QJUMP to
estimate expected queue lengths. It places VMs accord-
ing to traffic descriptions to limit queueing and paces
hosts using “null” packets.

TDMA Ethernet [34] trades bandwidth for reduced
queueing by time diving network access, but requires in-

8Only one in five 10Gb/s switches we looked at supports ECN.
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Figure 3: Application-level latency experiments: QJUMP (green, dotted line) mitigates the latency tails from Figure 1.

6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

RPC vs. Bulk Transfer Remote Procedure Calls
(RPCs) and bulk data transfers represent extreme ends
of the latency-bandwidth spectrum. QJUMP resolves net-
work interference at these extremes. As in §2.1, we
emulate RPCs and bulk data transfers using ping and
iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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(a) CDF of packet latency across a switch.
Note the change in x-axis scale at x = 5µs.
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(b) QJUMP reduces memcached request la-
tency: CDF of 9 million samples.

(c) QJ fixes Naiad barrier synchronization
latency: CDF over 10k samples.

Figure 3: Application-level latency experiments: QJUMP (green, dotted line) mitigates the latency tails from Figure 1.

6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

RPC vs. Bulk Transfer Remote Procedure Calls
(RPCs) and bulk data transfers represent extreme ends
of the latency-bandwidth spectrum. QJUMP resolves net-
work interference at these extremes. As in §2.1, we
emulate RPCs and bulk data transfers using ping and
iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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(a) CDF of packet latency across a switch.
Note the change in x-axis scale at x = 5µs.

(b) QJUMP reduces memcached request la-
tency: CDF of 9 million samples.
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(c) QJ fixes Naiad barrier synchronization
latency: CDF over 10k samples.

Figure 3: Application-level latency experiments: QJUMP (green, dotted line) mitigates the latency tails from Figure 1.

6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal
performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

RPC vs. Bulk Transfer Remote Procedure Calls
(RPCs) and bulk data transfers represent extreme ends
of the latency-bandwidth spectrum. QJUMP resolves net-
work interference at these extremes. As in §2.1, we
emulate RPCs and bulk data transfers using ping and
iperf respectively. We measure in-network latency for
the ping traffic directly using a high resolution Endace
DAG capture card and two optical taps on either side of
a switch. This verifies that queueing latency at switches
is reduced by QJUMP. By setting ping to the highest
QJUMP level ( f7 = 1), we reduce its packets’ latency at
the switch by over 300⇥ (Figure 3a). The small differ-
ence between idle switch latency (1.6µs) and QJUMP la-
tency (2–4µs) arises due a small on-chip FIFO through
which the switch must process packets in-order. The
switch processing delay, represented as e in Equation 2,
is thus no more than 4µs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see
§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with

QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824µs in the shared case to 476µs, a nearly 2⇥ im-
provement.5

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600µs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5⇥ improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this
case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign

5The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =) f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ⇡30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
10,000 requests/sec observed on an idle network. By

Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5⇥ the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (⇡40µs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments, we
measure the degree to which it affects applications using
the root mean square (RMS) of each application-specific
metric.6 For Hadoop, the metric of interest is the job run-
time, for PTPd it is the time synchronization offset and
for memcached it is the request latency. Figure 7 shows
six cases: an ideal case, a contended case and one for
each of the four schemes used to mitigate network inter-
ference. All cases are normalized to the ideal case, which
has each application running alone on an idle network.
We discuss each result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages
when their queues are nearly full, alerting senders to slow

6RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.
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Figure 9: Normalized flow completion times in a 144-host simulation (1 is ideal): QJUMP outperforms TCP, DCTCP
and pFabric for small flows. N.B.: log-scale y-axis; QJUMP and pFabric overlap in (a), (d) and (e).

outperforms pFabric by up to 20% at high load, but loses
to pFabric by 15% at low load (Fig. 9c). On the data min-
ing workload, QJUMP’s average FCTs are between 30%
and 63% worse than pFabric’s (Fig. 9f).

In the data-mining workload, 85% of all flows transfer
fewer than 100kB, but over 80% of the bytes are trans-
ferred in flows of greater than 100MB (less than 15%
of the total flows). QJUMP’s short epoch intervals can-
not sense the difference between large flows, so it does
not apply any rate-limiting (scheduling) to them. This
results in sub-optimal behavior. A combined approach
where QJUMP regulates interactions between large flows
and small flows, while DCTCP regulates the interactions
between different large flows might improve this. We
plan to investigate this in the future.

6.5 QJUMP Configuration
As described in §5, QJUMP levels can be determined
in several ways. One approach is to tune the levels to
a specific mix of applications. For some applications,
it is clear that they perform best at guaranteed latency
(e.g. ptpd at f7 = 1) or high rate (e.g. Hadoop at f0 = n).
For others, their performance at different throughput fac-
tors is less straightforward. Memcached is an example
of such an application. It needs low request latency vari-
ance as well as reasonable request throughput. Figure 10
shows memcached’s request throughput and latency as

a function of rate-limiting. Peak throughput is reached
at a rate allocation of around 5Gb/s. At the same point,
the request latency also stabilizes. Hence, a rate-limit of
5Gb/s gives the best tradeoff for memcached. This point
has the strongest interference control possible without
throughput restrictions. To convert this to a throughput
factor, we get fi =

nTi
R by rearranging Equation 2 for fi.

On our test-bed (n = 12 at R =10Gb/s), Ti =5Gb/s yields
a throughput factor of f = 6. We can therefore choose
a QJUMP level for memcached (e.g. f4) and set it to a
throughput factor �6.

QJUMP offers a bounded latency level at throughput
factor f7. At this level, all packets admitted into the net-
work must reach the destination by the end of the net-
work epoch (§3.1). We now show that our model and the
derived configuration are correct. To do this, we perform
a scale-up emulation using a 60-host virtualized topology
running on ten physical machines (see Figure 12). In this
topology, each machine runs a “hypervisor” (Linux ker-
nel) with a 10Gb/s uplink to the network. Each hyper-
visor runs six “guests” (processes) each with a 1.6Gb/s
network connection. We provision QJUMP for the num-
ber of guests and run two applications on each guest: (i)
a coordination service that generates one 256 byte packet
per network epoch at the highest QJUMP level, and (ii) a
bulk sender that issues 1500 byte packets as fast as possi-
ble at the lowest QJUMP level. All coordination requests

10
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Figure 10: memcached throughput (top) and latency
(bottom, log10) as a function of the QJUMP rate limit.

Figure 11: Latency bound validation: 60 host fan-in of
f7 and f0 traffic; 100 million samples per data point.

are sent to a single destination.
Figure 11 shows the latency distribution of coordina-

tion packets as a function of the throughput factor at the
highest QJUMP level, f7. If the f7 is set to less than 1.0
(region A), the latency bound is met (as we would ex-
pect). In region B, where f7 is between 1.0 and 2.7, tran-
sient queueing affects some packets—as evident from the
100th percentile outliers—but all requests make it within
the latency bound. Beyond f7 = 2.7 (region C), perma-
nent queueing occurs.

This experiment offers two further insights about
QJUMP’s rate-limiting: (i) at throughput factors near 1.0,
the latency bound is usually still met, and (ii) via rate-
limiting, QJUMP prevents latency-sensitive applications
from interfering with their own traffic.

7 Related Work
Network congestion in datacenter networks is an active
research area. Table 2 compares the properties of recent
systems, including those we already compared against

Figure 12: Latency bound validation topology: 10 hy-
pervisors (HV) and 60 guests (G1..60) and 120 apps.

in §6.3 and §6.4. We categorize systems as deployable if
they function on commodity hardware, unmodified trans-
port protocols and unmodified application source code.

Fastpass [29] employs a global arbiter that times the
admission of packets into the network and routes them.
While Fastpass eliminates in-network queueing, requests
for allocation must queue at the centralized arbiter.

EyeQ [22] primarily aims for bandwidth partitioning,
although it also reduces latency tails. It, however, re-
quires a full-bisection bandwidth network and a kernel
patch in addition to a TC module.

Deadline Aware TCP (D2TCP) [33] extends DCTCP’s
window adjustment algorithm with the notion of flow
deadlines, scheduling flows with earlier deadlines first.
Like DCTCP, D2TCP requires switches supporting
ECN;8 it also requires inter-switch coordination, kernel
and application modifications.

HULL combines DCTCP’s congestion avoidance ap-
plied on network links’ utilization (rather than queue
length) with a special packet-pacing NIC [2]. Its rate-
limiting is applied in reaction to ECN-marked packets.

D3 [35] allocates bandwidth on a first-come-first-serve
basis. It requires special switch and NIC hardware and
modifies transport protocols.

PDQ uses Earliest Deadline First (EDF) scheduling
to prioritize straggler flows, but requires coordination
across switches and application changes.

DeTail [37] and pFabric [3] pre-emptively schedule
flows using packet forwarding priorities in switches. De-
Tail also addresses load imbalance caused by poor flow
hashing. Flow priorities are explicitly specified by modi-
fied applications (DeTail) or computed from the remain-
ing flow duration (pFabric). However, both systems re-
quire special switch hardware: pFabric uses very short
queues and 64-bit priority tags, and DeTail coordinates
flows’ rates via special “pause” and “unpause” messages.

SILO [21] employs a similar reasoning to QJUMP to
estimate expected queue lengths. It places VMs accord-
ing to traffic descriptions to limit queueing and paces
hosts using “null” packets.

TDMA Ethernet [34] trades bandwidth for reduced
queueing by time diving network access, but requires in-

8Only one in five 10Gb/s switches we looked at supports ECN.
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