The Moving Cloud: Predictive Placement in the Wild

Azarias Reda, Meritful Brian Noble, University of Michigan

Latency

- Latency as a first class concern
 - With mobile devices, the "reach" is extending
- Latency is difficult:
 - Simply packing more bits doesn't improve it
 - It has a hard upper bound
 - Additional services impact it the most
 - It's doesn't sell:

Max Turbo	Max Plus	Max	Elite	Pro
24 Mbps	18 Mbps	12 Mbps	6 Mbps	3 Mbps

Humans and latency

- We are very sensitive to delay and jitter
 - Even in systems with adequate balance
- Humans notice even a modest increase in latency
 - Experiments with streaming, interactive services
- At a few hundred millisecs, many applications degrade
 - All too common in mobile connectivity

Latency in challenged networks

- Even more pronounced in many scenarios
 - Mobile connectivity
 - Shared access centers
 - Makes even simple network tasks unpleasant
- We have been looking at bandwidth primarily
 - Several approaches towards improving access
 - Some of these approaches help with latency too

Spoiler

- Provisioning data as close to demand as possible
 - Trading latency for storage and bandwidth
- The moving cloud:
 - Proposing a framework for proactive data delivery
 - Partial validation for components

Themes in the moving cloud

- People are creatures of habit
 - Move in patterns that can be probabilistically learned
 - Access data in patterns*
- 1. A proactive delivery infrastructure
 - Secure and extensible
- Augmenting predictions with time bounds
 - Understanding temporal component of mobility
- 3. Leveraging the context of data access
 - Using context for data selection

Improved Delivery

An Example: Cyber foraging

- Augmenting computation with local surrogates
 - Cut on the latency to reach the cloud
 - Perform computationally intensive tasks on mobile devices
- Computation as a replaceable resource
 - Can be provisioned by nearby machines
 - Often a single hop away
- Try to define units of computation to offload not easy

"Cloudlets"

- The latest in cyber foraging
- "Data centers in a box"
 - Can be deployed alongside wireless access points
 - Provide on-demand augmentation
- Use virtual machines to encapsulate computation
 - "Base" VM at public nodes, and private "overlays"

The moving cloud and cloudlets

- Cloudlets augment computation
- However, VM matching and updating is hard
 - Many overlays to work with various base VMs
 - Updates are difficult to propagate
- The moving cloud simplifies targeted, proactive delivery
- Can be used to implement the cloudlet idea
 - Deliver targeted VMs ahead of time
 - Employ techniques for smarter and efficient delivery

High level design

Key principles:

- Proactive placement
- Extensibility
- Access models

Application model

- An application will have two components
- Server based component:
 - Deals with high fidelity, first level replica of its data
- A "mobile" component:
 - Provides the user facing interactions
 - Interacts with augmentation nodes
- A node is a publicly available storage and compute node

Application interaction model

- As updates to data happen in the wild:
 - Changes propagate back to the server component
 - Server component deals with data semantics
- The moving cloud should support a simple set of APIs
 - Pushing data into the service
 - Accessing data from nodes
 - Harvesting state from nodes
 - Versioning data pieces
 - Providing contextual access information

Mobility

- Several models for capturing human mobility
- Algorithms to predict next location of individuals
 - Some with very good success, close to 90%
- We worked on adding time bounds to location prediction
 - Important for proactive data delivery
 - Provides actionable information
 - Needed to deliver fresh data

Mobility

- Approaches:
 - Fingerprints to identify distinct routes
 - Probabilistically analyzing associated route times
- A route is a recorded mobility edge between two nodes
 - Has an identifying precedent (its fingerprint)
 - A measured time of travel

Time augmentation

- M captures the statistical distribution of route times
 - Used to estimate expected route time
- For the fingerprint, we use the previous two locations
 - For the following route, (A,B) is used as the fingerprint:

A fingerprint is not unique, can lead to multiple routes

Time augmentation

- A second order Markov chain to represent fingerprints
 - A fingerprint matrix
 - A sparse matrix used to decide on route choices
- The Markov chain is used to select next possible route
 - Statistical distribution is used to estimate route time
- Capture deviation from ground truth to estimate error
 - Used to establish time bound confidence
 - Good first results with the CROWDAD mobility data

Contextual access behavior

- Data access patterns used for system design
 - Temporal and spatial locality in access
 - Clusters of files accessed together
- We posit access can be correlated with context of access
 - For example: location and time
 - "office data" vs. "home data"
- Patterns emerge over time, and can be used for delivery

Applications in challenged networks

- Predictors work well in the absence of detailed location
 - Location at the granularity of internet kiosks, for example
- Pushing data proactively reduces access latency
- However, special sensitivity to prediction confidence
 - Since resources are limited to begin with
- We have modified Sulula to support this style of delivery

A few challenges/directions

Consistency models

- Data that was consistent at delivery might not remain so
- Harvesting residual state from nodes is important
- Vertical and horizontal consistency
- Need robust versioning and consistency

Challenges

- Improving prediction certainty
- Especially important in constrained environments
- Utility models for deciding data placement
- Dealing with phase changes in human mobility
 - Quick learning when errors increase
 - Enough memory to revert back to old routines

Challenges

System level support for modeling access context

- A lot of work in the space of application hints
 - For optimizing network and energy use

Capturing and communicating patterns in access context

Thank you!

Azarias Reda azarias@umich.edu

