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Abstract
The TCP remains the workhorse protocol for many modern

large-scale data centers. However, the increasingly demand-
ing performance expectations—led by advancements in both
hardware (e.g., 100Gbps linkspeed network) and software
(e.g., Intel DPDK support)—make the kernel-based TCP
stack no longer a favorable option. Over the past decade,
multiple parties have proposed various user-stack TCP stacks
offering things-as-usual TCP support with significant perfor-
mance improvement. Unfortunately, we find these proposals
may not function well in the field, especially when subjected
to large-scale deployments.

In this paper, we present LUNA, a user-space TCP stack
widely deployed at Alibaba Cloud. We elaborate on the de-
sign tradeoffs, emphasizing three unique features in thread,
memory, and traffic models. Further, we share our lessons
and experiences learned from the field deployment. Exten-
sive microbenchmark evaluations and performance statistics
collected from the production systems indicate that LUNA
outperforms kernel and other user-space solutions with up to
3.5× in throughput, and reduce up to 53% latency.

1 Introduction
At Alibaba Cloud, we follow a “compute-storage disaggre-
gation” philosophy to enable the frontend computing servers
(a.k.a Elastic Computing Service) and backend storage ser-
vices (e.g., Elastic Block Storage, EBS) to evolve and scale
separately. Initially, we adopted kernel TCP to connect com-
puting servers to the storage servers for high compatibility
and out-of-the-box usability.

However, advancement in hardware, including ultra-low
latency (ULL) NVMe SSDs and high linkspeed networks
(e.g., 100Gbps to 200Gbps), have significantly raised users’
expectations for cloud storage systems. Kernel TCP is no
longer a suitable option to deliver satisfactory performance,
as it cannot fully leverage these benefits, and can lead to
high tail latency and low single-core throughput. Moreover,
kernel TCP can impose the well-known "data center tax" (e.g.,
consuming 70% of its CPU cycles in the kernel) [6, 20, 22].

Back in 2017, we started to notice such mismatches be-
tween the inefficient kernel TCP stack and the growing ca-
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pabilities of new devices. We then began to look for an al-
ternative solution to connect the frontend servers to backend
storage systems. We explored the possibilities of replacing
TCP with other protocols, such as Remote Direct Memory Ac-
cess (RDMA), or leveraging hardware offloading (e.g., TCP
Offload Engines). In fact, we have successfully deployed
RDMA within our backend storage systems and achieved the
expected performance gains [14]. Moreover, we have also de-
signed a UDP-based protocol and leveraged Data Processing
Units (DPUs) to accelerate one of our services, EBS [29].

Yet, interconnecting frontend and backend for all services
is a different story. First, it requires inter-DC support to let
storage services to be accessed from geo-distributed availabil-
ity zones—not well supported by RDMA back then. More-
over, the interconnection network needs to provide compat-
ibility and legacy support for various services, thereby pro-
hibiting a complete overhaul with both the protocol altered
and specialized hardware installed.

It is user-space TCP to the rescue. We noticed that a se-
ries of work, from both academia and industry, had demon-
strated great performance potentials (e.g., saturating 40Gbps
with IX [7]) by moving the TCP from the kernel to the user
space [7, 9, 20, 21, 32]. More importantly, user-space TCP
solutions provide a familiar programming model to the upper-
level applications and offer legacy support by nature.

Unfortunately, we are unable to shoehorn existing user-
space TCP solutions onto our production systems. First, these
stacks normally use separate threads for application logic and
the TCP processing (e.g., IX [7] and mTCP [20]), thereby
incurring high communication overhead and impacting our
Service Level Objectives (SLOs). Second, these solutions
usually follow a copy-based memory model (e.g., mTCP and
VPP [9]), aggravating memory bandwidth bottlenecks. Third,
existing solutions require exclusively ownership of the NICs,
thus preventing legacy support for kernel traffic.

In this paper, we present LUNA, a user-space TCP stack
in Alibaba Cloud. We have successfully deployed LUNA in
the field for more than 5 years and enable it to be the de-facto
transport layer for all new servers in Alibaba Cloud since its
release. Similar to previous practices (e.g., mTCP [20] and
IX [7]), LUNA runs in a LibOS mode, operates in a shared-
nothing architecture between threads and leverages DPDK
user-space driver support.
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Compared to previous practices, there are also three unique
features in thread, memory and traffic models help LUNA
successfully serve as an alternative to the kernel TCP. First,
LUNA uses the run-to-completion (r2c) thread model. In
each thread, LUNA packs both the application logic and TCP
stack together, and process them with an event loop in each
thread. Under this design, LUNA can significantly reducing
the context switch overhead. Second, LUNA supports full
data-path zero copy for both send and receive buffers based on
a user-space slab subsystem. The zero-copy buffer effectively
reduces the overhead from data movement. Third, LUNA can
collaborate with kernel TCP stack to provide legacy support.
We orchestrate the two types of traffic in the same NIC by
utilizing Flow Bifurcation and SR-IOV to reserve certain
ranges for user-space traffic.

We extensively evaluate LUNA against kernel TCP and
two other user-space TCP implementations (mTCP [20] and
VPP [9]) in a series of microbenchmarks. Results show that
LUNA can outperform kernel and other user-space TCP stacks
with up to 3.5× in throughput and reduce latency by up to
53%. Also, we compare performance between LUNA and
kernel in the field across three representative scenarios. The
field statistics show that LUNA could reduce latency by up to
50% and/or improve throughput by up to 50%.

The rest of the paper is organized as follows. We introduce
the network architecture and the corresponding requirements
at Alibaba Cloud (§2). We discuss the motivations behind
LUNA in §3. We present the LUNA overview (§4) and three
features in thread (§5), memory (§6) and traffic model (§7)
designs. We further conduct series of evaluations on both
microbenchmarks and field deployment (§8). We end this
paper with several lessons we learned from deployment (§9)
and a short conclusion(§10).

2 Background
2.1 Alibaba Cloud Storage Network Architecture

Alibaba Cloud offers various storage services, such as Elastic
Block Storage (EBS), Object Storage Service (OSS), and
Cloud Tablestore Service (OTS). In Figure 1, we illustrate
the typical three layers of a service, including the interface,
the function, and the persistence. In a nutshell, the interface
layer comprises a set of servers to relay users’ requests from
the Internet (e.g., OSS and OTS) or the virtual stack within
computing instances (e.g., vhost for EBS) to the function
layer. The users’ requests are further parsed and processed
by the function layer (e.g., the BlockServers of EBS) before
finally being sent to the persistence layer (i.e., Chunkstore
Server, the storage engine of our distributed file system Pangu)
for storage or retrieval. We use Pangu [25], an HDFS-like
distributed file system developed by Alibaba Cloud, as the
persistence layer.

Our cloud architecture adheres to a “compute-to-storage
disaggregation” philosophy. This allows the computing
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Figure 1: Alibaba Cloud storage network architecture. VM: Virtual
Machine; BA: Block storage interface Agent; OS: Object storage
interface Server; TS: Tablestore interface Server; BS: Block stor-
age function Server; KVS: OSS Key-Value Server; TE: Tablestore
Engine; CS: Pangu distributed file system Chunkstore Server.

servers—hosting the interface layer and virtual machine in-
stances subscribed by the users—and backend storage sys-
tems (i.e., the function and persistence layers) to scale and
evolve at different paces. In this case, we can divide our net-
works into two scopes, the frontend network and the backend
network (see Figure 1). In the frontend network, we primarily
use TCP. The backend network normally follows a two-layer
Clos topology of Point of Delivery (PoD) and utilizes TCP or
RDMA [14]. We focus on the frontend network in this paper.

2.2 Requirements for Our Networks

Following hardware evolution. With an ever-increasing user
base, we are always in the process of expanding our fleet to
accommodate more users and offering better performance.
To achieve such goals, cloud vendors like us usually seek
help from hardware advancement. For example, there are
two aspects of recent development that fundamentally change
the landscape of our data center networks. First, the network
linkspeed has jumped from 10Gbps to 50Gbps and, more re-
cently, 200Gbps. Moreover, high-throughput and low-latency
storage devices become readily accessible. For example, off-
the-shelf products, such as Intel P5800 [19] and Samsung
Z-NAND SSD [36], can achieve up to 6GB/s throughput with
around 10 microseconds latency. The combination of the two
provides opportunities but also drastically raises the users’
expectations of the cloud storage services.

Inter-DC access. A major difference between frontend and
backend network is that the former needs to support comput-
ing servers accessing the storage servers from different clus-
ters, data centers or even geographically far-apart availability
zones. On the contrary, supporting the latter is relatively
straightforward—normally a two-layer Clos of PoD.

Legacy support. Over the years, the sizes and types of our
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Figure 2: Different network stacks’ performance in an offline RPC
microbenchmark. a) RPC latency CDF with a single core; b) Maxi-
mal throughput and multi-core scalability.

storage services have been rapidly growing. Consequently,
many outdated servers, while functioning, do not offer certain
functionalities (e.g., DPDK-ready NICs), thereby may still
require classic kernel traffic support.

3 Motivation & Related Work
In this section, we revisit the motivations behind LUNA. Al-
though LUNA was initiated back in 2017, we believe the
many observations and related work that inspired LUNA re-
main valid today and may even be strengthened over time.

3.1 Revisiting Kernel TCP

The kernel TCP was (in 2017) and may still remain to be a
popular choice for large-scale clusters for its ease of usage
and compatibility. However, it has become evident that the
kernel TCP can no longer meet the performance demands of
data centers (e.g., charging expensive data center tax due to
kernel interruptions and memory copies) [6,22,33]. Here, we
examines the kernel TCP performance via a microbenchmark.

We set up knb (Kuafu Network Benchmark)—an internal
network stack benchmark that emulates the RPC services
in the datacenters—to evaluate the kernel TCP latency and
throughput. In this test, the client node sends a RPC request
with 4KB messages to the server, measures the latency when
receiving the RPC response with the same message size from
the server, and then sends out the next request. (See § 8 for
knb detailed usage.)

From Figure 2, we can see that the kernel TCP performance
is far from our SLOs. Specifically, Figure 2(a) indicates the
median basic RPC latency of kernel TCP has already reached
50µs. In stark contrast, our high-performance class EBS
requires end-to-end response latency to be 100µs [3]. Fig-
ure 2(b) further shows that the kernel network stack on a sin-
gle core could only provide a maximum of 600Mbps through-
put. Moreover, Figure 2(b) also reveals that the performance
issue of the kernel TCP cannot be resolved by allocating more
cores. A possible reason is that the kernel overhead—such
as inter-core competition—increases with the scaling of CPU
cores.

3.2 Beyond Kernel TCP
Since the kernel TCP can be inefficient for the modern data
center networks, it becomes urgent to explore possible al-
ternatives. In general, there are three types of solutions: 1)
developing new protocols, 2) moving TCP stack to user space,
and 3) hardware offloading.

First, researchers have been proposing new transport layer
protocols to replace TCP [4, 13, 16, 30]. pFabric [4] assigns
priorities to packets based on the flow size, and tends to dis-
card lower-priority packets in the switch when the buffer is
full, thereby achieving both high throughput and low flow
completion time. pHost [13], Homa [30] and NDP [16] lever-
age receiver-driven traffic control where the sender’s sending
rate is limited by the tokens sent from the receiver side. As
each receiver has a global view of the incoming traffic, the
receiver-driven protocols can achieve high bandwidth and
low latency, and avoid the in-cast issue. For instance, Homa
achieves less than 15µs for short messages on a 10 Gbps
network running at 80% load. Moreover, these new protocols
can eliminate the head-of-line blocking issue in TCP due to
its byte-streaming nature.

Moreover, there are multiple work explore building a user-
space TCP stack, such as mTCP [20], IX [7], ZygOS [35],
TAS [23] and F-Stack [1]. These proposals usually lever-
age the user-space NIC drivers such as DPDK [2] to directly
access packets from the NIC queues, and optimize the perfor-
mance with techniques such as polling, batching [7,20], cache
planning [23], lock-free [7], and zero-copy buffers [7,24]. The
user-space network stacks minimize the overhead from the
kernel, and demonstrate significant performance gain under
the hardware advancement. For example, IX could achieve
one-way latency of 5.7µs and fully utilize the 40Gbps band-
width with 8 cores.

Third, there are several attempts aim to resolve the network
performance issues with hardware assistance. For example,
offloading TCP processing entirely [8,37,38] or partially [31]
to specific devices can significantly improve packet process-
ing performance and reduce the CPU overhead. RDMA [15]
offloads traffic control and data movement to hardware, thus
bypassing the CPU and achieving microsecond-level latency.

3.3 Our Choice
Among the available options, we chose to build a user-space
TCP stack (i.e., LUNA) based on two aspects of reasons.
Inter-DC access and legacy support. Recall that, unlike
the backend network, the frontend network needs to provide
inter-DC access support (e.g., connecting computing servers
from geo-distributed availability zones to storage servers).
Therefore, we did not choose RDMA because it did not sup-
port inter-DC communication back then. Further, designing
and deploying a new transport protocol (with hardware of-
floading) may also be rather challenging due to the required
support for legacy software/hardware (e.g., sharing the NICs
with kernel TCP traffic).
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Table 1: Characteristics of existing user-space TCP

kernel
collaboration

zero-copy
high

throughput
low

latency
mTCP
VPP ✓
IX ✓ ✓ ✓
LUNA ✓ ✓ ✓ ✓

Engineering effort. Note that enabling inter-DC access over
RDMA or providing legacy support with the new protocol is
still achievable but can be time-consuming. For example, the
intra-region RDMA solution was not proposed until 2021 and
a recent paper further discusses their strenuous effort on real-
izing wide-area RDMA accessing at Azure Cloud [5]. Back
in 2017, we did have a rather tight timetable. Therefore, we
chose user-space TCP stack solution to avoid designing/de-
bugging the protocol and/or hacking support for legacy hard-
ware. In fact, it only takes us 9 months to build LUNA from
scratch to deployment. Later on, we have gradually added
various optimizations and patches over the next five years
(§ 9).

3.4 Why Not Just Use Existing Solutions?
Once we decided to use a user-space TCP stack for the fron-
tend network, the next question is—“should we employ exist-
ing user-space TCP solutions or should we build our own?"
Owning to the following reasons or concerns, we chose to
develop a new user-space TCP stack, called LUNA.

High packet processing overhead. The microsecond-scale
Service Level Objectives (SLOs) place significant pressures
on packet processing speed within the network stack. Sev-
eral existing user-space TCP solutions (e.g., mTCP and IX)
delegate TCP protocol processing and application logic to
separate threads for better portability. Meanwhile, others (e.g.,
VPP and TAS [23]) assign network and application processing
to different cores for better scaling. Such partitioning could
slow the processing speed due to context switch overhead or
inter-core communication. For example, in Figure 2(a), we
further profile the mTCP and VPP with the microbenchmark
in §3.1. The results indicate that VPP suffers high latency,
mainly introduced by the CPU cycles waste, and inter-core
communication overheard.

Expensive memory copying. Data movement contributes
a large proportion of datacenter tax. In a typical cloud stor-
age service test on the 50Gbps network, memory copy can
consume up to 12.5% CPU cycles, severely impacting the
end-to-end latency (see §8). When the bandwidth grows to
100Gbps or more, the memory copy will take more than 40%
CPU cycles, and further incur the memory bandwidth bottle-
neck problem. However, for user-space network stacks with
a traditional IO path like mTCP [20] and VPP, there are two
copy operations on the both receive and send paths (i.e., from
user to TCP receive/send buffer and between TCP buffer to
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Figure 3: LUNA architecture

the packet). Figure 2(b) shows that, mTCP could not fully
utilize the 50Gbps network bandwidth even with 16 cores.
Our further analysis concludes that the memory copying does
consequence with excessive overhead. One reason that most
user-space TCP solutions do not support zero-copy buffer is
that the traditional BSD-like socket interface would introduce
inevitable memory copy between the application and TCP
buffer for isolation.

Supporting kernel traffic. Our storage services are deployed
across multiple clusters consisting of several generations of
machines. For many servers, their hardware are not capable of
running user-space networks (e.g., lack of hugepages support).
Moreover, many applications (such as monitoring agents)
still rely on the kernel TCP. However, many user-space TCP
stacks [1,7,20,23] demand to exclusively own the entire NIC,
thus could not collaborate with applications relies on kernel
network stack on the same machine.

Implementation quality. Many existing user-space TCP
works are research-oriented and thus can have various com-
patibility or performance issues. For instance, VPP is not
well-compatible with Mellanox NICs when applying flow
director filters. IX requires a particular Linux kernel version
to run as it relying on the Dune kernel module, and also only
provides drivers to the Intel NICs of outdated versions. Hack-
ing into these problems will take an unexpected amount of
engineering effort with rather limited community support.
Hence, building a new user-space TCP from scratch can be
actually more time-saving.

4 LUNA

4.1 Overview
LUNA is a high-performance user-space TCP/IP network
stack that powers the frontend network in nearly all Alibaba
Cloud Storage Services. Figure 3 shows that LUNA supports
both kernel and user-space IO paths. LUNA leverages NIC
multi-queues to separate user-space traffic from the kernel’s.
The u/ser-space IO path bypasses the kernel by leveraging the
DPDK’s user-space driver [2] to poll packets from the NIC
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queues, processes them with a customized TCP/IP network
stack, and interacts with applications mainly through an RPC
library. The user-space IO path follows a run-to-completion
mode, which runs iterations to complete both packet process-
ing and application logic in a single thread on each core, and
shares nothing between cores. LUNA separates kernel traffic
and user-space traffic with NIC’s hardware support. In this
case, the kernel traffic for traditional applications remains un-
affected. LUNA leaves the control plane (i.e., ARP table and
route table management) to the kernel, and uses the netlink
interface to access the route information.

4.2 Similar Design Choices
LUNA shares several similarities with existing work in the
data path and the architecture. Here, we will discuss our
rationales behind these design choices.
LibOS mode. LUNA operates in a LibOS mode, similar to
the mTCP [20] and F-stack [1]. In this setup, the application
and LUNA run in the same process and share the memory
address space. Alternatively, one can run the network stack
in the separate process, and communicate via shared memory.
In this case, if there is only one network process in every
server to serve different application processes, it is called the
Microkernel mode (e.g., Google Snap [27]). Another solution
is to have one network stack process for each application
process, known as the Sidecar mode.

Although microkernel-based solutions at the industry level
were not widely popular back in 2017, we later—after the
launch of LUNA—have observed several instances adopting
this approach. One notable example is Snap [27]—a user-
space network stack deployed in Google’s datacenter. One
prerequisite for Snap is to closely follow the weekly release
cycle of the network stack in Google Cloud. As a result,
to avoid service interferences, the support transparent/live
upgrade becomes indispensable. For microkernel-based solu-
tions, enabling transparent/live upgrade is rather straightfor-
ward as the network stack is an independent process. Further,
to achieve high efficiency, Snap also adopts Google’s Pony
Express transport protocol and one-side operation.

LUNA does not adopt the Microkernel or Sidecar mode
due to performance concerns because both modes require fre-
quent inter-process communication, incurring high runtime
overhead. Note that LUNA still uses TCP for the transporta-
tion layer (see§3) and thus can not fundamentally modify
the protocol like Pony Express or adopt one-side operation
for high performance. We are aware that LibOS mode lacks
live/transparent upgrade support as the network stacks with
LibOS mode have to be compiled with the application code
together. From our perspective, this disadvantage is accept-
able as the TCP protocol is rather mature (i.e., not requiring
frequent changes) and our storage services have periodical
upgrading schedules. Hence, LUNA can just follow storage
service upgrading roadmaps.
User-space NIC driver. Like most kernel-bypass network

systems [1, 7, 10, 20, 21, 23, 32, 35], we build LUNA with
DPDK [2] for its rich development kits and active community
support. LUNA leverages DPDK’s PMDs (Poll Mode Drivers)
to directly access packets from the NIC queues. We also uti-
lize DPDK’s hugepage management, and data structures like
hash map and mbuf. Further, as there are several genera-
tions of NICs in our cloud, the user-space driver provides
a convenient way to communicate with them in a uniform
interface.

Share-nothing architecture. To exploit the parallel process-
ing capability of multi-core systems, like many previous de-
signs [7, 20], LUNA runs the threads in a share-nothing mode.
Each core processes its own traffic divided by the NIC’s
multi-queue technique, and finishes related application-layer
processing on the same core. LUNA does not use a dispatcher
mode (like TAS [23]) or load balancing (like task-stealing in
Shenango [32]) due to cache efficiency and synchronization
overhead (e.g., from lock and atomic operations) concerns.
Note that there is already a service-level load balancing in-
side applications. The share-nothing architecture improves
multi-core scalability, as the system can simply allocate more
cores to applications to improve performance. Moreover, run-
to-completion LibOS avoids the potential CPU cycles waste
in dispateched mode as the user-space network stack has to
keep polling the NIC queues.

TCP stack. As discussed in § 3, LUNA uses TCP as the
transport layer protocol. LUNA implements TCP according to
RFCs [28, 34], and supports congestion control, flow control,
RTT estimation, and SACK. LUNA is compatible with other
standard TCP stacks like Linux kernel network stack.

4.3 Unique Features
To better serve our systems in the field, LUNA also includes
unique features from the following aspects:

Thread model. LUNA uses a run-to-completion thread model
to run network and application-layer processing in the same
thread. We use this design to improve the performance, and
avoid risks in scheduling (e.g., thread-hang) with the charac-
teristics of our storage service workloads (§ 5).

Memory model. LUNA supports a full data-path zero-copy
buffer on receive and send end, aiming to minimize the data
movement overhead. LUNA realizes its full-stack zero-copy
with the aid of a user-space slab subsystem. This subsys-
tem introduces little overhead and maintains the traditional
programming model.

Traffic model. LUNA collaborates with kernel network stack,
to offer the legacy applications with kernel TCP support, and
to leverage kernel TCP for the control plane (e.g., ARP).
LUNA uses the Flow Bifurcation and SR-IOV support to
reserve a certain port range for user-space traffic, so that there
is no interference with kernel traffic. The kernel network
stack directly processes the control plane messages such as
ARP requests and responses, and manages the control plane
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states. LUNA can obtain control plane information via netlink
interface.

5 Thread Model
Figure 4 shows that LUNA uses a run-to-completion (r2c)
thread model that encapsulates application logic and network
stack processing in a single thread. During runtime, LUNA
employs an event loop for each thread. Between threads,
LUNA keeps a share-nothing isolation. Moreover, LUNA
supports applications to use both kernel network stack and
user-space IO path (§ 7), and the two types of traffic could be
processed in the same thread.

5.1 Run-to-complete model
We assign varying numbers of cores to LUNA based on the ser-
vice type. For instance, in a block server (i.e., the functional
layer of EBS), LUNA can utilize 8 cores, while a comput-
ing server (from ECS) typically employs only 4 cores. Each
core initiates one thread and shares nothing with the other.
Moreover, each thread uses an event loop to manage data
processing.

LUNA offers two distinct r2c modes—–inline-r2c and
batch-r2c—–each tailored for different scenarios. In both
r2c modes, LUNA starts the loop after receiving a fixed num-
ber of packets (called a batch) from the corresponding NIC
Rx queue. Then, LUNA processes the packets based on the

type of r2c mode.
For batch-r2c, Figure 5(a) shows that LUNA processes the

received packets one at the time through the TCP/IP stack,
and then adds a read event to the event queue for every packet
with TCP payload. These read events would be immediately
processed by application after the LUNA has processed all
the received packets in this round. Then, the RPC framework
invokes the callback functions registered to each event, gen-
erates the response messages, and sends the messages to the
send buffer. After all the events are processed, LUNA adds the
protocol headers for the messages in the send buffer, forwards
them to the NIC, and starts the next round.

For inline-r2c, Figure 5(b) demonstrates that LUNA also
processes the packets one by one. However, LUNA avoids
adding event to the event queue, and instead immediately in-
vokes the registered callback function, generates the response
along with the protocol headers for the packets, and send
them out. In short, inline-r2c will process every packet to
completion.

Obviously, inline-r2c eliminates the overhead from event
enqueue and dequeue, and improves the cache locality,
thereby providing better performance. However, inline-r2c
also requires a new programming model and forces the upper-
layer application to use a zero-copy raw-packet-like read-
/write interface. Moreover, inline-r2c is only available in
LibOS model as the application-layer code has to co-locate
with the network stack. In contrast, batch-r2c works in a more
traditional epoll-like or libev-like programming model, and is
compatible with a traditional BSD-Socket-like interface. In
practice, we deploy inline-r2c on performance-oriented ser-
vices like EBS, and use batch-r2c for services such as object
store due to compatibility concerns.

The r2c design can significantly reduce the overhead and
improve performance. First, there is no context switch be-
tween application and stack processing. Second, as the net-
work stacks receive a fixed-sized batch of packets from NIC in
each iteration, it allows the upper-layer application to handle
them in a timely fashion (i.e., no need for buffering packets).
Hence, CPU could get most data from the L1 and L2 cache
directly, especially in inline-r2c. Moreover, as there are few
buffered packets, the DDIO will not fill up the Last Level
Cache (LLC), and further improves the cache hit rate [11].

5.2 Discussion

The risks of r2c model. R2c model could significantly im-
prove performance. However, it is not favored by many user-
space TCP stacks. A primary reason is that r2c model may
be stuck at application level, causing severe tail latency and
packet drop in NIC queues. LUNA adopts the r2c design
because the logics in our storage services (i.e., applications)
is rather simple and stable. Moreover, another safeguard is
that our applications also adopt flow control and can avoid
burst traffic by limiting the number of concurrent connections
and in-flight requests. Hence, with relatively simple logic at
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Figure 6: The structure of Zbuf .

the application level and flows throttled, it is unlikely for the
requests to be stuck in the application level and cause packet
drop. Note that it is still possible for a thread in LUNA to get
stuck by various exceptions (e.g., application bugs, burst in-
cast load, etc.), resulting in dropping packets and TCP/RPC
timeouts.

Unsuitable scenarios for r2c model. The LUNA’s r2c design
is not always suitable for all scenarios. In OSS service, we
discover that dedicating multiple cores to polling for run-to-
completion is not reliable because there are other services
on the same machine that should be guaranteed with a large
number of cores. Therefore, LUNA dedicates only one core
for NIC IO and protocol processing, and places application
logic to other threads on the other cores. The application
thread will block the event-poll when there is no more events
to avoid wasting CPU cycles on unnecessary polling.

6 Memory Model
LUNA achieves full-stack zero-copy to mitigate the overhead
associated with frequent data movement. A straightforward
approach to realize end-to-end (i.e., from NIC to TCP, and ap-
plication) zero-copy is to only transfer the memory addresses
of the read/write buffers. This is challenging for user-space
TCP due to three factors. First, the lifecycle (and status) of a
buffer is different from the application to the network. The
application typically frees or reuses the buffer after dispatch-
ing it to the network stack, whereas the network stack must
retain the buffer until it receives “acks”. Second, the NIC re-
quires the physical memory address while applications use the
virtual address. Third, the traditional BSD-socket APIs and
socket-oriented programming models are designed with copy
semantics for the isolation between the user space and kernel
space. To overcome these challenges, in LUNA, we build a
user-space slab system, called Zbuf , to provide cross-layer
memory lifecycle management and address translation.

6.1 Zbuf

User-space slab subsystem. Zbuf works as a user-space
slab subsystem that pre-allocates memory chunks for users.
Figure 6 shows the structure of Zbuf . We can see that Zbuf re-
serves several hugepages allocated from the DPDK’s memory
address space and divides them into multiple 2MB memory
zones. The header of each memory zone records the meta
information such as the physical address. memory zone is
further split into objs, which could be directly allocated by the
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Figure 7: The LUNA receive and send path with zero-copy.

users (i.e., applications). The metadata of objs (denoted as ctx
in Figure 6) is co-located with objs in the same memory zone,
right after zone metadata. All objs within the same memory
zone share the same size but the sizes can be different from
one memory zone to another (e.g., 2KB vs. 4KB in Figure 6).

Obj lifecycle management. Zbuf uses a reference counter to
manage the lifecycle of each obj. The counter is set to 1 after
initialization. Afterward, the counter increases by 1 whenever
the corresponding obj is replicated and decreases by 1 each
time the obj is freed. The obj will be put back to the free-list
of the memory zone once the count reaches 0.

Metadata and physical address translation. Translating
the virtual address to the physical address and parsing the
metadata are straightforward in Zbuf . For example, consider
a user allocating a 4KB obj. The user then generates a 2KB
string str within the obj, and the virtual address of str is
addr. When the user sends str to the network stack, it would
increase the reference count of the corresponding obj. Zbuf
first compares addr with the address range of contiguous
memory zone. By getting the offset of addr to the start of
memory zone area and dividing the offset with 2MB, Zbuf
could get the index of the memory zone which obj belongs
to. As the memory zone metadata records the start address
of contiguous obj and the size of each obj, the user could
directly get the index of the obj containing the str, and get the
obj meta data from the obj meta array. Therefore, the users
could directly make replicas or free the objects inside the
objs, but do not need to manage the obj. Since the metadata
of memory zone records the physical address of itself, the
physical address of str could be calculated by adding the
offset of str to the memory zone. When the str is going to
be sent to the NIC, LUNA can calculate the physical address
following the same procedures above.

6.2 Full-stack Zero-copy
With the support of Zbuf , LUNA provides full-stack zero-
copy on data receiving and sending. Moreover, upper-layer
applications could still use the traditional programming model
except for a few minor changes. Now, we use Figure 7 to
illustrate the procedures on both ends.

On the receiving end, LUNA registers obj addresses to
NIC receive queue, so that the NIC will deliver the received
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packet data to the obj through DMA (①). The network stack
processes the packet with network protocols (②) and delivers
the pointer to the readable payload (marked as p1 in figure 7)
to the upper-layer application with an RPC interface (③). The
application could directly free the payload after finishing the
message processing (④). Zbuf will locate the related obj and
free it by decreasing the reference count.

On the send data path, application first allocates a writable
buffer from the Zbuf , or reuses the memory space of the re-
ceived data, and then directly writes data to the buffer (⑤).
The content (marked as p2 in figure 7) is directly sent to
LUNA’s TCP send queue, and the send API automatically
increases the reference count of the related obj (⑥), to avoid
the obj to be freed by the application after sending. LUNA al-
locates a new segment to generate the packet header (⑦ ), and
sends out the header and content as a whole packet together
through the DPDK interface (⑧). Moreover, if the application
wants to multicast the data (typical in cloud storage service),
it just needs to send out the same data segment multiple times,
and Zbuf will accordingly increase the reference count of the
obj. And the obj stored in the LUNA’s send buffer will be
freed after receiving the acknowledge packet.

6.3 Discussion

Alternative solutions. There are also other design choices to
achieve end-to-end zero copy. One is to pass the pointers of
the read/write buffers between the application and network
stack. However, adopting this practice requires the appli-
cation to fundamentally alter the programming model and
manage the buffer at application layer. For cloud services,
it can be rather difficult as there are multiple applications
developed by various developer teams. Another approach is
to leverage mmap to avoid copying large size messages [24],
which could maintain the programming model and standard
BSD-socket API format. However, the mmap call can intro-
duce considerable overhead of additional system calls [24].

7 Traffic Model
7.1 Traffic Split
LUNA uses Flow Bifurcation mechanism [18] (supported by
NIC’s flow-director) and SR-IOV functionalities to separate

kernel network traffic from the user-space network traffic,
thereby offering legacy support. LUNA establishes the hard-
ware filtering by setting the mask to the destination port of
TCP packets on each machine. LUNA routes the incoming
TCP packets with certain destination ports to the specific vir-
tual functions, which are then processed in user space. The
TCP packets that do not align with the port filters and the
not-TCP packets would still be accepted and processed by the
kernel network stack.

LUNA uses different flow-director filter rules for clients
and servers. On the client side, LUNA reserves the port from
61440 to 65535 for the user-space traffic, and allocates con-
tiguous sub-ranges of the port number to different LUNA
applications. The sub-range within an application are fur-
ther divided into ranges for different Rx queues which are
processed by the corresponding LUNA threads.

For instance, LUNA could reserve TCP port numbers be-
tween 61440 to 63487 to APPA, and write the flow-direct filter
rules to direct dest port between 61440 to 62463 to T hread1
in APPA. Then LUNA can direct TCP ports between 62464
to 63487 to T hread2 in APPA. On the server side, LUNA first
uses flow-director rules to direct TCP packets with the same
destination port as the application-listening port to the corre-
sponding application. Moreover, the RPC layer over LUNA
will establish full-mash connection for all thread peers be-
tween each client node and server node. Hence, LUNA on the
server side can simply hash all connections to different server
threads according to the source TCP port for load-balance
scheduling. For example, the TCP destination port of 1234
is directed to APPA, and uses the lowest 2 bits of the TCP
source port to hash the packets to the 4 threads of APPA. Each
client thread initializes connections with typical host ports to
establish a connection with every server thread, and selects a
connection for each RPC request for load balancing.

Further, although LUNA is compatible with standard TCP
stacks in the design and implementation, LUNA avoids di-
rectly communicating with the kernel network stack. In other
words, LUNA only supports kernel-to-kernel and LUNA-to-
LUNA traffic, and does not permit kernel-to-LUNA connec-
tion (or reverse). The reason for this choice is that LUNA
implements a tailored TCP for the datacenter environment
to optimize the performance (§ 9), and there are different
versions of LUNA running in different datacenter applications.
If we use LUNA to directly communicate with kernel network
stack, we have to verify and evaluate the communication
among all versions of kernels and the LUNA. Therefore, this
introduces extra verification costs every time updating the
kernel or modifying the kernel network configuration.

7.2 Thread Model Support
When the applications need to communicate with different
clusters through both kernel and user-space IO paths, LUNA
will process them in the same thread, so that the applica-
tions don’t need to manage the requests separately. In every
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iteration, after finishing the user-space run-to-completion pro-
cessing, LUNA will get a batch of events from kernel’s epoll
framework by calling epoll_wait(), and handle the events by
calling the callback function registered by the application.
LUNA calls epoll_wait() with non-blocking, and limits the
batch size of kernel events to prevent user-space IO path from
starving.

7.3 Control Plane
As LUNA only processes the TCP packets, the control plane
packets (e.g. ARP and ICMP requests) are sent to the kernel
network stack, and the kernel also manages the control plane
states (e.g. ARP table and route table).

LUNA gets the control plane information with netlink, a
rather infrequent behavior. LUNA initializes a netlink socket
which dumps the ARP table and route table in the kernel, and
wait event through linux epoll. When there are any variations
in these two tables, the kernel will send messages to the
netlink socket and raise epoll events. Then this would invoke
LUNA to receive the update message and update the control
plane information managed in user space.

Delegating the control plane to the kernel brings two ben-
efits. First, LUNA could focus on the transport layer and
leverage the well-developed kernel control plane implemen-
tation. This also enables the LUNA to evolve independently
without worrying about keeping up with changes in the con-
trol plane. Second, this allows LUNA to fast recover from
the system failures, as the just-restarted LUNA could simply
regain the control plane information stored in the kernel.

7.4 Discussion

Alternative solutions. There are several approaches to col-
locating user-space traffic within kernel network stack. The
first one is to separate different NICs (or different ports of the
same NIC) for user-space traffic and kernel network traffic.
Unfortunately, this can severely waste bandwidth. Another
approach is to receive all the packets using the user-space
TCP and then re-dispatch certain filtered packets back to the
kernel via KNI (Kernel NIC Interface). This solution can also
impact the performance and crash the whole network service
when the failure occurs in user-space network stack.

Complex filtering rules. LUNA splits the traffic according
to the TCP ports to collaborate with the legacy applications
and employs share-nothing design between cores for high per-
formance. However, the traffic splitting is limited by the NIC
hardware capabilities. The commodity NICs (e.g., Intel and
Mellanox NIC cards) provide limited flow director support,
i.e., setting masks to certain fields of the packet headers (e.g.,
IP address and TCP/UDP port number).

In LUNA design, one application keeps the same listening
port for all server threads to cater the existing programming
models. And the LUNA RPC framework establishes full-mash
connection channels between every thread of each peer node
for load balancing. Therefore, LUNA has to write multiple

flow director filter rules to the NIC to spray the traffic to
different Rx queues, and the number of rules increases dra-
matically when the number of LUNA threads is not a power
of 2. For instance, when a machine running 12 LUNA threads
communicate with a peer node running 6 LUNA threads, this
will lead to 160 traffic filter rules on both nodes, imposing
significant overhead onto the packet receiving, and resulting
in packet drops.

One simple approach to solve this problem is to assign
different listening ports for each LUNA thread. However,
this also requires modification of the application logic. A
more practical way is to reserve range of the port numbers
with flow-director, and perform build-in hash-based RSS to
establish the connections to different LUNA queues. Yet,
this feature is not supported by the commodity NICs when
the LUNA was developed. Once the flow bifurcation rule is
deployed, we have to provide legacy support for previous
versions for compatibility. As a result, LUNA still requires
complex filtering rules at the moment.

8 Evaluation
8.1 Microbenchmark Evaluation
8.1.1 Experiment Setup

We first evaluate with microbenchmarks in the emulated
client-server environment to compare LUNA against other
candidates including kernel TCP, mTCP and VPP. Both client
and server machine are equipped with an Intel(R) Xeon(R)
CPU E5-2682 v4 @ 2.50GHz CPU with 128GB DRAM
each. We connect the client with server through a Mellanox
ConnectX-4 Lx NIC with 2× 25Gbps network port, and uti-
lize both the port for a total 50Gbps bandwidth.

For the kernel network stack, we use Linux 4.19, and bind
all traffic to the certain CPU cores to optimize the perfor-
mance. We download the latest versions of mTCP and VPP,
and modify them to fit our environment. For VPP, we use half
of the cores for the VPP threads processing network pack-
ets, and use the rest cores for application logics. As for the
common hardware offloading, we enable both tso and lro for
Linux kernel, and enable tso for LUNA. For mTCP, tso is not
supported, and lro is not supported by default. For VPP, we
failed to enable lro and tso on our cx4 NIC with default driver
after a series of attempts. And the MTU is 1,500 bytes for all
the systems.

We use knb, a datacenter network microbenchmark, to eval-
uate the performance of LUNA and the rest. knb emulates the
RPC workloads in the datacenter, and evaluates the network
stack performance at both client and server side. knb runs a
configured number of threads at client and server, and builds
long-lived TCP connection between every client and server
thread, similar to most data center RPC frameworks. Then,
the knb client will send requests with configurable message
size to the server. Afterwards, the server send back the re-
sponse with the same message size on each request, and the
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(msg_size=4KB, #core=4)

client will send another request when it receive a response.
The number of in-flight requests on each connection could be
controlled with the variable iodepth.

8.1.2 Experiment Results

Throughput We first evaluate the throughput under different
message sizes. Here, we set LUNA with both the copy mode
(backed by batch-r2c) and the zero-copy mode (backed by
inline-r2c). In this experiment, we allocate 8 cores for each
candidate, and limit iodepth to 1 (i.e., only one request on
each connection, and do not send next request until receiving
the response). The Figure 9 shows the result. LUNA with
zero-copy can fully utilize the bandwidth when the message
size grows to 4K, a typical size in our storage services. The
throughput of LUNA is 3.5× of kernel, and outperform mTCP
and VPP by 50%. The mTCP and VPP do not fully utilize
the bandwidth in these experiments. For mTCP, its perfor-
mance is limited by the heavy overhead from copy and context
switch. As for VPP, when the packet size is small, it shows
a similar performance with kernel network stack, mainly as
a result of wasted CPU cycles on idle polling. When packet
size grows larger, VPP shows a even worse performance than
Linux kernel (possibly due to lro and tso are not enabled in
VPP).

We also evaluate the throughput under different setups of
iodepth as RPCs in datacenters are always concurrent on the
same connection. In this experiment, we dedicate 4 cores for
each candidate (commonly seen in servers of the interface
layer), and set the message size to be 4KB. Figure 10 shows
that the throughput grows with the increasing of iodepth.
Moreover, the zero-copy version of LUNA can saturate the
bandwidth with an iodepth of 16. LUNA provides 2× through-
put than mTCP and kernel network stack.

Latency We then evaluate the latency of the network stacks,
and show the results in Figure 11. In this experiment, we
allocate one core for VPP network worker thread and one
core for knb application thread. Then, we use a single core
when test other network stacks. We set the iodepth as 1 (i.e.,
no backlog blocking latency) and set the message size to be
4KB. The result shows that, LUNA with zero-copy reduces
the 99th percentile latency by 25% than LUNA with copy, and
reduce 70% latency than the kernel network stack.

Multi-core scalability. In Figure 12, we evaluate the multi-
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Figure 13: Performance of distributed-storage service for a public
cloud OLTP service, collecting tracing data within 1 hour.

core scalability of the tested network stacks. In this experi-
ment, we limit the iodepth to be 1, and set the message size to
be 4KB. We can see that LUNA shows a near linear multi-core
scalability, and full-utilize the bandwidth with 8 cores with
zero-copy. mTCP shows relatively good multi-core scalabil-
ity as it also uses the share-nothing architecture. Yet, it still
could not fully saturate the bandwidth due to the performance
limitation. The kernel network stack and VPP show a sim-
ilar multi-core scalability because there are extra inter-core
communication overhead and contention over locks between
different cores.

8.2 LUNA Performance in the Field
In this section, we will introduce the performance of LUNA
with the datacenter storage services in the wild, and make
comparison with the traditional kernel network stack. Since
LUNA has been deployed in Alibaba Cloud storage service for
more than 5 years, most servers that require high-performance
are running on LUNA instead of kernel network stack. There-
for, we only show the performance comparisons in the ser-
vices that still have legacy nodes running the kernel network
stack.

EBS for OLTP. OLTP (On-Line Transaction Processing) ser-
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Figure 14: Performance data of distributed-storage service for a
public cloud video transcoding service, collecting tracing data within
1 hour.

vice generate typical latency-sensitive workloads for the cloud
storage system. Under such workloads, the IO throughput
of the storage are usually not very high, but have rather de-
manding requirements on latency. Here, we show the LUNA
deployment in a storage cluster serving a public cloud OLTP
service. In these clusters, there are several generations of
machines. The LUNA is only deployed to the server nodes
that meet the hardware requirements, and still use the kernel
network stack in the other legacy server nodes. Note that
this cluster uses different network stack IO path only in the
frontend network communicating with the block servers, but
uses the same version of the backend network and the chunk
servers.

In figure 13, we demonstrate the performance of the
distributed-storage IO which is captured by the hypervisor-
level monitoring during 1 hour. We can see that LUNA outper-
forms the kernel network stack with both 50% lower end-to-
end average latency with similar end-to-end throughput. This
gain mainly benefits from the thread model design and zero-
copy support therefor reduces the processing and queueing
delay. Note that the workload over LUNA has larger IO block
sizes as they are from different customers, thereby higher
pressure on the delay.

EBS for video transcoding. Here, we show LUNA perfor-
mance on another EBS cluster which serves a public cloud
video transcoding service. In this scenario, the datacenter
application requires both high throughput and low latency.
This cluster also uses both LUNA and kernel network stacks to
communicate with blockserver agents (BAs) in the frontend
network. Similarly, the backend network shares the same
backend network and chunk server (CS) architecture. all the
server nodes share the same workloads. We also collect and
compare the user-layer performance data at the hypervisor.
Figure 14 indicates that, when the service node with LUNA
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Figure 15: OTS response latency comparison before and after an
architecture upgrade, collected from several typical instances.

and kernel network stack have the similar user-level IO la-
tency, LUNA provide about 50% higher IO throughput than
the kernel network stack.
TABLE STORE. LUNA is deployed in TABLE STORE, a
NoSQL database service of Alibaba Cloud. TABLE STORE
provides storage and real-time access to massive structured
data. Here, we collect and compare the performance data
between two generations of the TABLE STORE architecture,
named V1.0 and V2.0. The workload remains unchanged
after the architecture upgrade. The architecture evolution
mainly includes using LUNA user-space network to replace
the Linux kernel at both the frontend network and the backend
network, and using the user-space file system to replace the
Linux ext4. In our offline estimation, LUNA contributes 30%-
50% to the total performance gain. Figure 15 shows that,
TABLE STORE service instances upgraded to V2.0 reduce the
end-to-end latency by 50% to 68%.

9 Lessons From Deployment
Portability. We believe there are four levels of portability.
• Kernel-based applications do not need any code changes to

use the new stack (e.g., LOS [17]).
• The application needs to replace the APIs while keeping

the same API formats and semantics.
• The API formats are different but the programming model

and the API logic stay the same (e.g., change malloc/free
to create/destroy).

• Redesign the entire programming model and the API logic.
Our lesson is that, to achieve extremely high performance,

refactoring legacy application (i.e., programed with the kernel
network stack) is inevitable. However, as a fundamental com-
ponent of datacenter software codebase, the network stack is
often widely used and serves various kinds of applications.
Hence, changing the programming model is unacceptable. In
this case, we would recommend a user-space network stack
to obtain portability between 2) and 3).

In Alibaba Cloud storage, the applications attach to the
network through an RPC framework which is also supported
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Figure 16: Performance microbenchmark of different congestion
control algorithms tested in Alibaba Cloud cloud storage network.

by the network group, and programed in a libevent-like model,
so adapting to the batch-r2c and inline-r2c does not require
any change to the programming model. However, in order
to achieve zero-copy at both receive and send side, LUNA
provides io-vector-oriented receive/send APIs which directly
describe the addresses and lengths of the readable/writable
buffers of each RPC call. Therefore, the applications with
zero-copy have to change the receive/send API formats.
Nonetheless, the data buffers can be allocated or freed as
if they are allocated from the heap through the Zbuf APIs
with the same formats.

TCP tailoring. With a relatively simple environment as the
datacenter network, we can tailor the implementation of TCP
to achieve better performance. For example, LUNA imple-
ments a straightforward yet high-performance TCP fast path
for the packets arriving in order. Note that out-of-order pack-
ets are not common in the datacenter. In our practice, we
found that simply using NewReno [12] could deliver satisfy-
ing congestion controlling in many services and does not rely
on any novel hardware features (Figure 16). Additionally, we
also use HPCC [26] for the communication between VMs in
the computing cluster to improve tail latency.

Fast recovery from the failures. For high availability, the
network stack should fast recover from the failures such as
switch flips and black holes. In our services, applications
use LUNA via an RPC framework, which detects connection
failure and tries to reconnect the peer node through different
network links, e.g., another NIC port, or ToR switch. Further,
LUNA also improves the failure recovery procedures based
on the characteristics of the datacenter environment. For
example, the network distance of every two nodes in our
cluster is no more than 4 switch hops. As a result, LUNA
could set a tighter timeout threshold, e.g. 4 milliseconds.
Currently, the longest recover time for LUNA is guaranteed to
be less than 2 seconds.

Alibaba Cloud storage network evolution. The evolution
of LUNA is driven by service. Back in 2017, Alibaba Cloud
planned to launch a high-performance ESSD service—the
first elastic block storage service achieving both 1M IOPS
and 100µs latency—around early 2018. With the release date
within a year ahead, we therefore chose user-space TCP stack
solution to avoid designing/debugging the protocol and hack-

ing support for legacy hardware. It only takes us 9 months to
build LUNA from scratch to deployment.

In the initial release, LUNA still uses socket-like APIs and
requires data copy from the application to the network stack
on the send path. Later, to support the bare-metal servers,
LUNA needs to run on a Data Processing Unit (DPU) which
has rather limited resources. Therefore, we designed a new
RPC framework which removes the RPC serialization stage,
supports the inline-r2c thread model (§ 5) and the zero-copy
IO on both ends (§ 6). Note that this also requires the EBS
to change the programming model to use io-vector-oriented
APIs with Zbuf for zero-copy, and co-design with LUNA’s
flow control to adopt the inlined-r2c thread model.
The upper bound of LUNA. In this paper, we discussed
that LUNA can efficiently utilize 50Gpbs NICs. However, for
even higher bandwidth (e.g., 200 to 400Gbps), the LUNA’s
run-to-completion with a shallow buffer may lead to NIC
queue overflow and packets dropping. Moreover, when the
message size is 4KB, LUNA needs at least 8 cores to saturate
the 100Gbps network bandwidth. Therefore, for adopting
a high linkspeed network, we believe leveraging hardware
acceleration becomes necessary. Additionally, while TCP
can use multi-path transmission with Multipath TCP, the
head-of-line blocking problem in TCP and its limitations
in failure-recovery have still led us to design a new protocol
specifically for high-performance cloud storage. Our recent
effort, called Solar [29], which involves using a new transport
layer protocol co-designed with the DPU exemplifies this
point.

10 Conclusion
In this paper, we describe LUNA, a user-space TCP stack at
Alibaba Cloud storage network. We discuss our efforts in
building LUNA with a focus on the thread, memory and traffic
model. Apart from introducing LUNA, we have also covered
various design tradeoffs and lessons from the last five years
of development. We hope the experiences shared in this paper
shall benefit practitioners from both academia and industry.
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