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1 Introduction

Latency presents an enduring—and worsening—
challenge to mobile systems designers. With the
increasing adoption of cellular devices as the primary
avenue of network connectivity for many users around
the world, the “reach” of latency as a first-class concern
is extending. Bandwith grows roughly as the square
of latency, while storage capacity is growing faster
still [16].

There are several reasons for this. The instantaneous
nature of latency makes it hard to improve the metric by
simply packing more bits on the wire. To make things
worse, additional devices on the network, such as fire-
walls and switches, add more delay to network packets
while minimally impacting the aggregate bandwidth. Fi-
nally (and perhaps most importantly), bandwidth is sim-
ply easier to sell in the marketplace.

Unfortunately, even in systems with an adequate bal-
ance between latency and bandwidth—and such systems
will become increasingly rare—humans are acutely sen-
sitive to delay and jitter. Performance analyses of in-
teractive applications, ranging from video streaming to
interactive web services, show a modest increase in la-
tency can make a session noticeably annoying or unus-
able [14]. Even at a few hundred milliseconds of latency,
all too common in cellular networks that often power de-
veloping region connectivity, users reported many appli-
cations start to become noticeably annoying [23]. For
highly interactive applications, user experience degrades
significantly much sooner.

The latency problem is even more pronounced in chal-
lenged network environments endemic to developing re-
gions, where resources are limited to begin with. With
cellular links and shared dial up connections in internet
kiosks as the typical ways to connect to the internet [17],
developing countries face significant challenges in net-
work access. This makes even simple network tasks un-
pleasant, and rich media prohibitively difficult. Working

through an interactive session in one of these kiosks can
be charitably described as frustrating [19]. Provisioning
data and computational support as close to demand as
possible is the key to solving this problem [20].

To address this provisioning problem, we propose the
moving cloud, a framework for proactive data delivery.
The moving cloud leverages route fingerprints in individ-
ual mobility and users’ contextualized behavior of data
access for predictive data placement. Essentially, we are
trading bandwidth and storage for latency, exchanging
resources that grow more quickly for the one that grows
most slowly. The moving cloud alleviates the latency
problem by proactively placing content where it needs
to be in the near future, so that resources are closely
and readily available when requested by the user. This
paradigm enables a number of networking scenarios in-
cluding bulk data access, mobile resource augmentation,
on-demand social networks and personal content distri-
bution.

People are creatures of habit, and move in repeated
patterns that can be probabilistically learned. As such,
several models have been suggested for predicting hu-
man mobility [8, 21, 22]. Given the history of locations
visited, these models typically predict the next location
for a user. Our framework employs a new approach for
augmenting these predictions with time bounds, produc-
ing actionable information for data placement. This tem-
poral component of mobility is crucial as data delivery
often has some freshness constraint. Our approach can
be combined with most existing location predictors, and
enhance them with an expected-time dimension. For ex-
ample, coupled with a second order Markov model [22],
our system was able to predict time of arrival within an
hour in more than 90% of the hits in a sample dataset.

Another important observation is the contextual nature
of data use. Not only do people move in repeated pat-
terns, they also access data in a habitual manner. Data
accessed in one context, say during school hours, is of-
ten different from data accessed in another, say while at
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an internet kiosk. As a result, individual mobility can
also provide an informed data selection policy in content
placement. We combine these complementary observa-
tions in building a secure, generic, proactive and predic-
tive data delivery framework.

1.1 Case Study: Cyber Foraging

Cyber foraging [4, 7] is a decade old idea of augment-
ing the computational and storage capacities of mobile
devices, not with remote machines located in the cloud,
but with locally available surrogates. These surrogates
can be commodity computers provided for use in enter-
prises or public locations. Cyber foraging enables mo-
bile devices to perform computationally intensive activi-
ties, while circumventing the latency problem by limiting
their communication to a local computer—often a single
hop away.

The latest in this line of research is the idea of
cloudlets—‘datacenters in a box’ [20]. Cloudlets could
be deployed alongside wireless access points, and pro-
vide on demand augmentation to mobile devices in the
vicinity. Like most cyber foraging solutions, cloudlets
also use virtual machines for encapsulating and moving
applications between surrogates. While virtual machines
provide an elegant solution to problems like process mi-
gration and configuration in transporting services, their
big size is often problematic. As a result, starting up
a new surrogate with the user’s stateful virtual machine
downloaded on demand incurs a significant delay.

Some solutions have been suggested to this problem,
including splitting virtual machines to a ‘base’ compo-
nent that is common among many users, and an ‘overlay’
for transient customization of the base. Since chances of
finding an exact base VM at all surrogates is slim, users
are expected to maintain multiple overlay VMs. This
introduces a number of problems when it comes to up-
dating components (due to the dependency cycle among
many people) and synchronizing state between multiple
overlays (due to overlay incompatibility).

The moving cloud provides a natural solution to this
problem by leveraging repeated patterns in human mo-
bility, as well as contextual data access, for predictively
placing dynamic content in the wild. Our framework
places personalized cloudlet virtual machines in a user’s
near-future vicinity, allowing their use with minimal ini-
tialization costs. This in turn enables users to almost en-
tirely bypass the latency problem without going through
the messy detail of assembling and disassembling pieces.
The moving cloud approach becomes even more feasible
as the available bandwidth improves, allowing users to
ride on the winning side of the network innovation wave.

Our key contributions in this work are:

• A pluggable framework for predictive data place-
ment

• An algorithm for time prediction in mobility models

• And a method for utilizing mobility for contextual
data selection

2 Design

With strict constraints on energy efficiency, size and us-
ability, mobile devices are at a perpetual disadvantage
to their stationary counterparts in computational power.
Nonetheless, consumers still want to run intensive and
demanding applications on these devices [5, 18]. Luck-
ily, the network can be leveraged to bridge this gap, en-
abling mobile devices to compute in harmony with more
capable machines in the cloud. Yet, this is also difficult
in many scenarios where mobile network connectivity is
limited—which is especially true in developing regions.
Therefore, it would be preferable for mobile devices to
leverage computing resources available on machines in
their vicinity where the access latency is low. To accom-
plish this, however, devices need to quickly initiate and
customize external resources to their preferences. Pre-
dictive placement enables this scenario, realizing the no-
tion of a readily available cloud that moves as the user
moves—keeping the needed resources close, and the la-
tency for reaching them low.

Sensor-rich mobile devices make it easy to garner de-
tailed location and contextual information as the user
moves in the environment. As this information accumu-
lates over time, it often defines a pattern of mobility and
data access behavior that can be probabilistically learned.
Combined with a framework for securely delivering data,
this information can enable many new networking op-
portunities, significantly improving how mobile devices
interact and take advantage of their surrounding.

The key principles in designing this framework were:

• Proactive placement: utilizing individual mobility
history to build a model for placing data where it
needs to be in the near future

• Default security provisions: supporting secure data
distribution out of the box, and allowing developers
to modify it as needed

• Contextual feedback: notifying applications about
contextual patterns in data access for fine tuning fu-
ture requests

• Simple customization: providing a set of program-
ming interfaces for taking advantage of the frame-
work in developing new services.
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The moving cloud is concerned with placing content
in the user’s future vicinity for enabling crisp user ex-
perience by reducing interaction latency. It provides
mechanisms for location based node discovery and se-
cure data delivery, allowing applications to focus on their
business logic. A node is a publicly available com-
putational resource that mobile devices have access to.
Such augmentation nodes could be standalone machines
available in the wild such as at schools or libraries, or
deployed alongside access points, as discussed in sev-
eral projects [7, 20]. The moving cloud has three main
pieces that deal with modeling mobility, establishing ac-
cess context and securely delivering data. Figure 1 shows
the common usage scenario for the moving cloud.

A typical application using our framework will have
two components: a server based component where high
fidelity, first level replica of its data lives and a mobile
component that interacts with augmentation nodes and
executes its user-facing operations. An application sim-
ply hands data from its server component to our frame-
work, which selects and places the data predictively at a
destination node in the user’s future vicinity. This is ac-
complished by recording the user’s mobility history over
time, and building a model for data placement. As up-
dates to the data happen in the wild, the changes are
propagated back to the application’s server component,
which merges them and prepares future placement re-
quests. The user’s contextual access patterns that get
established over time are also provided back to the ap-
plication, which can inform these future requests. The
framework supports simple interfaces for pushing data
into the service, providing contextual access feedback,
harvesting state from nodes, as well as versioning multi-
ple transfers.

2.1 Mobility

Various models try to capture patterns in human mobil-
ity [8, 15, 21, 22]. Some of these models are quite suc-
cessful in predicting a user’s next location, sometimes
with accuracies as high as 90%. We take these results fur-
ther by augmenting location predictions with time pre-
dictions, allowing us to produce actionable information
for predictive and proactive data dissemination. We do
this by using fingerprints for identifying distinct routes
in the user’s mobility history, and probabilistically ana-
lyzing associated route times.

A route is defined as a recorded mobility edge between
two locations with an identifying precedent (its finger-
print) and measured route time. This can be easily con-
structed from GPS traces, associate cell towers etc. The
model, M, for each route r consists of:

M[r] = {µr,ψr,σr,e} (1)

Where µr is the average route time, ψris the percentile
distribution of route times, σr is the standard deviation
and e is the error rate in prediction. This model is main-
tained for observed distinct routes over the history of mo-
bility. The statistical information for route times is used
in conjunction with a second order Markov model for
route fingerprints. The error rate is used to capture mis-
predictions over time and adapt accordingly.

The fingerprint for identifying a route is the previ-
ous two locations the user visited. This information is
recorded in a second order Markov chain. However, this
fingerprint is not completely unique, as a preceding con-
text can lead to several routes. We capture this diver-
gence in a fingerprint matrix. This sparse matrix has the
feature that routes with a shared fingerprint have a com-
mon entry that holds row level information such as the
last time the fingerprint was observed and the bias for
route selection. For each route in the matrix, we main-
tain the state given in equation 1. Route time predictions
are then made as follows.

When a user advances to a new location, a fingerprint
is produced by concatenating this location with its pre-
vious location. Meanwhile, this new mobility history is
used to slightly modify the route selection bias for the
previous fingerprint, as well as the statistical model for
the travelled route. The row level storage for the new
fingerprint is updated to reflect the current occurrence of
the context. Then, the route selection bias for this new
fingerprint is consulted for deciding which route to select
for prediction. For the route chosen, the timestamp for its
fingerprint, along with the statistical model of the route,
is used to bound the estimated arrival time at the route’s
end point. Each time prediction is also associated with a
confidence score that measures how well the model did
in the last few predictions. Coupled with a second order
Markov model, our system was able to predict time of
arrival within an hour in more than 90% of the hits in the
CRAWDAD human mobility dataset [22].

2.2 Contextual Access Feedback

Data access patterns have been used to inform system de-
signs. For example, temporal and spacial locality in file
I/O is used to optimize memory and storage devices. On
the other hand, there are several systems that take advan-
tage of clusters that get formed when users often access
some files together [7, 13]. We posit that data access
patterns could also be correlated with the context of ac-
cess, such as location and time, which provides further
guidance in data placement. These contextual patterns
emerge over time, and our framework enables applica-
tions to use this feedback for fine tuning future placement
requests. Applications can combine the contextual feed-
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Figure 1: As the individual (and by extension the mobile device) moves in its environment, the moving cloud captures
and extracts patterns in mobility and contextual data access. This information is used for predictively placing relevant
content in the users future vicinity. When the state of a placed content it altered, the new state is harvested so that
future placements could be up to date.

back with their knowledge of file dependency in leverag-
ing the moving cloud.

2.3 Data delivery
With actionable mobility prediction at hand, our frame-
work provides a secure infrastructure for disseminating
data from the data source to destination nodes. Since
most nodes are shared by multiple users, some possibly
malicious, the moving cloud uses end-to-end encryption
by default. Encryption keys and hash values for content
verification can be directly retrieved from the data source
when the user arrives and after proper authentication.
Applications can tighten or loosen these security provi-
sions based on their expected operating environment.

In the common use case for the moving cloud, it is
often necessary to harvest any residual state at nodes
once the user has processed delivered content. This al-
lows future placements to be up-to-date with the most
recent state generated by the user. Our framework pro-
vides the necessary primitives for harvesting state, and
moving data around in the system. Since the platform is
content agnostic, applications are responsible for manag-
ing the internal semantics of their data.

3 Applications in Challenged Networks

The serious lack of network resources in many devel-
oping countries makes accessing data significantly dif-
ficult. With very low bandwidth and extremely high la-
tency [17], even simple network tasks become unpleas-

ant. Various forms of caching and prefetching have been
suggested to help with this situation [3, 19]. These solu-
tions allow users to cache commonly requested data, or
prefetch content for future access upon request.

The nature of these solutions makes them ideal can-
didates for adopting the moving cloud. Since humans
are habitual, and have repeated patterns in their day to
day mobility, we can use this behavior in automating
data distribution in challenged environments. Even in
the absence of widely available GPS capable devices, we
can use location information at the granularity of internet
kiosks or libraries visited by the user for predictive deliv-
ery, thereby eliminating most of the user wait time during
data access. For a kiosk operator, predictive placement
can allow for better scheduling and resource utilization,
as kiosk capacity often varies throughout the day. Lets
consider how such a service can be built.

As the user moves around her environment, accessing
data from various locations, the moving cloud could cap-
ture and extract repeated patterns. Rather than reactively
waiting for the users request, often leading to long access
delays while data is downloaded over a slow link, future
data access can be automated through the moving cloud.
We have modified Sulula [19], a data prefetching solu-
tion for challenged environments, to take advantage of
the moving cloud for predictively placing content. In the
modified system, data in no longer requested on-demand,
but predictively placed using our framework, realizing
users significant time savings in a typical email and news
reading session. For rich media content, the savings can
be upwards of an order of magnitude.
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4 Applications for Augmented Computa-
tion

As briefly discussed in the section 1.1, augmenting the
storage and computational capacity of mobile devices
with surrogates in the vicinity holds a viable promise for
overcoming the latency problem [4, 7, 20]. A predictive
moving cloud helps in these cloudlet implementations
by making customized virtual environments, needed for
resource augmentation, available ahead of request time.
The benefits of this approach are three fold. First, the de-
lay in transferring (or assembling) these computational
and storage environments is eliminated, allowing users
on the go to have access to readily waiting resources.
Second, it avoids the difficulty of synchronizing state be-
tween various incompatible copies of an otherwise func-
tionally similar environment. Finally, these computa-
tional environments could easily be upgraded to their lat-
est versions without causing a brittle dependency cycle
among multiple building pieces.

5 Challenges

A complete implementation of the moving cloud will re-
quire overcoming a number of technical as well as ser-
vice model challenges. We will elaborate on some of
these challenges in this section, and provide our thoughts
on addressing them.

Phase changes in human mobility: a key element in
human mobility is eventual divergence from the estab-
lished mobility pattern. For example, people take vaca-
tions, or change cities altogether. Mobility models need
to cope with these changes in order to provide a rea-
sonable performance in transition, as well as in the new
phase. One approach for tackling this challenge is im-
plementing a quick learning scheme based on prediction
error rates. A sudden increase in mispredictions can of-
ten be a good clue for identifying a new phase. In these
situations, past mobility history becomes less relevant in
making future predictions. As a result, avoiding to use
this outdated history is just as important as learning the
new pattern. On the other hand, the mobility model needs
to have enough “memory” for it to recognize only tem-
porary shifts in phase.

Data consistency: like most distributed systems, the
moving cloud faces the challenge of providing a consis-
tent view to data that flows through it. The problem is
even more interesting in the moving cloud because its
consistency model needs to consider data access in pre-
dictively delivered content. Data that was consistent at
time of delivery is not necessarily consistent at the time
of access. In addition, when considering delivery nodes
distributed in the wild with numerous administrative do-
mains, network partition is a given. The moving cloud

needs to have a robust versioning mechanism coupled
with an appropriate consistency model to enforce hori-
zontal as well as vertical integrity. By facilitating version
updating among delivery nodes, as well as with the cloud
data store, the moving cloud can provide some consis-
tency guarantees.

Degree of certainty in data delivery: at the core
of probabilistic mobility models is some level of uncer-
tainty about the future. These models in general try to
manage this uncertainty by using some confidence score
based on established patterns, past prediction hits and
surrounding contexts. Still, acting upon these predic-
tions needs to be informed by the resources utilized in
doing so. This is especially important in environments
where resources are limited to begin with. As a result, it
becomes necessary to define some threshold for predic-
tive delivery based on our confidence on mobility pre-
dictions. Setting this threshold requires understanding
the operating environment and the available resources.
The moving cloud will need to tailor this decision, often
on the fly, based on active or passive observations of the
environment.

While we have focused on some of the technical chal-
lenges for implementing the moving cloud, a practi-
cal deployment also involves several interesting service
model challenges. These include node availability, ad-
ministration and maintenance, revenue models and ap-
plication availability.

6 Related Work

Deeper analysis of individual mobility records reveals
that patterns emerge over time. Several approaches
have been suggested for capturing these patterns, ranging
from Levy flights [11] to Markov [6, 22] and Lempel-
Ziv [25] parsing models. A levy flight is a type of random
walk such that the step size of a walk follows a power law
distribution. Markov model based algorithms assume the
probability of an individual visiting a particular location
only depends on the most recent locations visited, and
this probability is the same anywhere the context is the
same. On the other hand, Lempel-Ziv based approaches
use Markov like models whose historical length of a con-
text is variable, and is allowed to grow without a limit as
needed. These models have the common goal of pre-
dicting future locations for an individual based on his-
tory. Our approach improves these models by adding
time bounds to their location prediction.

Automatic placement of application data has been sug-
gested in various contexts. Systems such as Emerald [10]
and Globe [24] focused on providing programming ab-
stractions and migration mechanisms for moving data
and computation. LAN level data placement was tackled
in several systems [2, 9] that facilitate application par-
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titioning among a set of machines. Volley [1] is a data
center level solution that analyzes logs of datacenter re-
quests by users and recommends data placement among a
set of geographically distributed datacenters, so that user
access time can be reduced. The moving cloud shares
the goal of reducing latency, but its approach is much
more fine grained. We analyze personal mobility pat-
terns and contextual data access behavior for predictive
data placement. This allows mobile devices to access
data from nearby machines where the roundtrip latency
is much lower.

7 Conclusion

As available bandwidth increases, the role of latency
as the system bottleneck becomes even more pro-
nounced [12]. This is particularly concerning as perva-
sive computing becomes the norm, and cellular networks
provide the first order of connectivity for devices on the
go. In challenged networks where resources are limited,
the situation is even worse. This paper presented the
moving cloud, a proactive data delivery framework that
leverages route fingerprints in individual mobility with
users’ contextualized behavior of data access. The mov-
ing cloud trades bandwidth and storage for latency by
predictively placing content where it needs to be in the
near future. This paradigm enables a number of network-
ing scenarios ranging from on-demand social networks
to mobile resource augmentation and personalized con-
tent distribution networks.
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