
This paper is included in the Proceedings of the
23rd USENIX Security Symposium.

August 20–22, 2014 • San Diego, CA

ISBN 978-1-931971-15-7

Open access to the Proceedings of
the 23rd USENIX Security Symposium

is sponsored by USENIX

The Emperor’s New Password Manager: Security
Analysis of Web-based Password Managers

Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn Song, University of California, Berkeley

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/li_zhiwei

USENIX Association 23rd USENIX Security Symposium 465

The Emperor’s New Password Manager:
Security Analysis of Web-based Password Managers

Zhiwei Li, Warren He, Devdatta Akhawe, Dawn Song
University of California, Berkeley

Abstract
We conduct a security analysis of five popular web-based
password managers. Unlike “local” password managers,
web-based password managers run in the browser. We
identify four key security concerns for web-based pass-
word managers and, for each, identify representative vul-
nerabilities through our case studies. Our attacks are se-
vere: in four out of the five password managers we stud-
ied, an attacker can learn a user’s credentials for arbi-
trary websites. We find vulnerabilities in diverse features
like one-time passwords, bookmarklets, and shared pass-
words. The root-causes of the vulnerabilities are also di-
verse: ranging from logic and authorization mistakes to
misunderstandings about the web security model, in ad-
dition to the typical vulnerabilities like CSRF and XSS.
Our study suggests that it remains to be a challenge for
the password managers to be secure. To guide future de-
velopment of password managers, we provide guidance
for password managers. Given the diversity of vulner-
abilities we identified, we advocate a defense-in-depth
approach to ensure security of password managers.

1 Introduction
It is a truth universally acknowledged, that password-
based authentication on the web is insecure. One pri-
mary, if not the primary, concern with password authen-
tication is the cognitive burden of choosing secure, ran-
dom passwords across all the sites that rely on pass-
word authentication. A large body of evidence suggests
users have—possibly, rationally [20]—given up, choos-
ing simple passwords and reusing them across sites.

Password managers aim to provide a way out of this
dire scenario. A secure password manager could au-
tomatically generate and fill-in passwords on websites,
freeing users from the cognitive burden of remembering
them. Additionally, since password managers automati-
cally fill in passwords based on the current location of the
page, they also provide some protection against phish-
ing attacks. Add cloud-based synchronization across de-

vices, and password managers promise tremendous se-
curity and usability benefits at minimal deployability
costs [10].

Given these advantages, the popular media often ex-
tols the security advantages of modern password man-
agers (e.g., CNET [11], PC Magazine [29], and New
York Times [32]). Even technical publications, from
books [12, 34] to papers [19], recommend password
managers. A recent US-CERT publication [21] notes:

[A Password Manager] is one of the best
ways to keep track of each unique password
or passphrase that you have created for your
various online accounts without writing them
down on a piece of paper and risking that oth-
ers will see them.

Unsurprisingly, users are increasingly looking towards
password managers for relieving password fatigue. Last-
Pass, a web-based password manager that syncs across
devices, claimed to have over a million users in Jan-
uary 2011 [25]. PasswordBox, launched in May 2013,
claims to have over a million users in less than three
months [42].

Our work aims to evaluate the security of popular
password managers in practice. While idealized pass-
word managers provide a lot of advantages, implemen-
tation flaws can negate all the advantages of an idealized
password manager, similar to previous results with other
password replacement schemes such as SSOs [40, 38].
We aim to understand the current state of password man-
agers and identify best practices and anti-patterns to
guide the design of current and future password man-
agers.

Widespread adoption of insecure password managers
could make things worse: adding a new, untested sin-
gle point of failure to the web authentication ecosystem.
After all, a vulnerability in a password manager could
allow an attacker to steal all passwords for a user in a
single swoop. Given the increasing popularity of pass-

1

466 23rd USENIX Security Symposium USENIX Association

word managers, the possibility of vulnerable password
managers is disconcerting and motivates our work.

We conduct a comprehensive security analysis of five
popular, modern web-based password managers. We
identified four key concerns for modern web-based pass-
word managers: bookmarklet vulnerabilities, “classic”
web vulnerabilities, logic vulnerabilities, and UI vulner-
abilities. Using this framework for our analysis, we stud-
ied each password application and found multiple vulner-
abilities of each of the four types.

Our attacks are severe: in four out of the five password
managers we studied, an attacker can learn a user’s cre-
dentials for arbitrary websites. We find vulnerabilities in
diverse features like one-time passwords, bookmarklets,
and shared passwords. The root-causes of the vulnerabil-
ities are also diverse: ranging from logic and authoriza-
tion mistakes to misunderstandings about the web secu-
rity model, in addition to vulnerabilities like CSRF and
XSS.

All the password manager applications we studied are
proprietary and rely on code obfuscation/minification
techniques. In the absence of standard, cross-platform
mechanisms, the password managers we study imple-
ment features like auto-fill, client-side encryption, and
one-time password in diverse ways. The password man-
agers we study also lack a published security architec-
ture. All these issues combine to make analysis difficult.

Our main contribution is systematically identifying the
attack surface, security goals, and vulnerabilities in pop-
ular password managers. Modern web-based password
managers are complex applications and our systematic
approach enables a comprehensive security analysis (in
contrast to typical manual approaches).

Millions of users trust these vulnerable password man-
agers to securely store their secrets. Our study strikes a
note of caution: while in theory password managers pro-
vide a number of advantages, it appears that real-world
password managers are often insecure.

Finally, to guide future development of password man-
agers, we provide guidance for password managers. We
identify anti-patterns that could hide more vulnerabili-
ties; architectural and protocol changes that would fix the
vulnerabilities; as well as identify mitigations (such as
Content Security Policy [14]) that could have mitigated
some vulnerabilities. Our focus is not on finding fixes for
the vulnerabilities we identified; instead, our guidance
is broader and aims to reduce and mitigate any future
vulnerabilities. Given the diversity of vulnerabilities we
identified, we believe a defense-in-depth approach has
the best shot at ensuring the security of password man-
agers.

Ethics and Responsible Disclosure. We experimen-
tally verified all our attacks in an ethical manner. We
reported all the attacks discussed below to the software

Alice a legitimate user
Bob a legitimate collaborator
hunter2 an example password
dropbox.com a benign web application
facebook.com a benign web application
/login entry point (login page) for a web application
Mallory an attacker
Eve an attacker
evil.com a website controlled by an attacker
dropbox.com The dropbox.com JavaScript code

running in the browser

Figure 1: Naming convention used in the paper. URLs
default to https unless otherwise specified.

vendors affected in the last week of August 2013. Four
out of the five vendors responded within a week of our
report, while one (NeedMyPassword) still has not re-
sponded to our report. Aside from linkability vulnera-
bilities and those found in NeedMyPassword, all other
bugs that we describe in the paper have been fixed by
vendors within days after disclosure. None of the pass-
word managers had a bug bounty program.

Organization. We organize the rest of the paper as
follows: Section 2 provides background on modern web-
based password managers and their features. We also ar-
ticulate their security goals and explain our threat model
in Section 2. Next, we present the four key sources of
vulnerabilities we used to guide our analysis (Section 3).
Section 4 presents our study of five representative pass-
word managers, broken down by the source of vulnera-
bilities (per Section 3). We provide guidance to password
managers in Section 5. We present related work in Sec-
tion 6 before concluding (Section 7).

2 Background
To start, we explain the concept of a password manager
and discuss some salient features in modern implemen-
tations. We also briefly list the password managers we
studied, identify the threat model we work with, and the
security goals for web-based password managers. Here
and throughout this paper, we rely on a familiar naming
convention (presented in Figure 1) to identify users, web
applications, and attackers.

2.1 A Basic Password Manager
At its core, a password manager exists as a database to
store a user’s passwords and usernames on different sites.
The password manager controls access to this database
via a master username/password. A secure password
manager, with a strong master password, ensures that a
user can rely on distinct, unguessable passwords for each
web application without the associated cognitive burden
of memorizing all them. Instead, the user only has to

2

USENIX Association 23rd USENIX Security Symposium 467

remember one strong master password.
A password manager maintains a database of a user’s

credentials on different web applications. A web appli-
cation is a site that authenticates its users by asking for a
username/password combination. The web application’s
“entry point” is the page where the application’s user can
enter her username and password. We call the combina-
tion of an entry point, username, and password a creden-
tial. A user can store multiple credentials for the same
web application, in which case a name distinguishes each
(typically the username).

Figure 2 (a) illustrates the general protocol of how a
user (Alice) uses a password manager (e.g., LastPass) to
log in to a web application (e.g., Dropbox). Alice first
logs in to the password manager using her master user-
name/password (her LastPass username and password),
as shown in Step 1 . Then, in Step 2 , Alice retrieves
her credential for dropbox.com. Finally, Alice uses this
credential to log into dropbox.com in Step 3 and 4 .

Since manually retrieving and sending credentials is
cumbersome, password managers may also automate the
process of selecting the appropriate credential and log-
ging in to the opened web application. This may include
navigating a web browser to the entry point, filling in
some text boxes with the username/password, and sub-
mitting the login form. Since these tasks involve execut-
ing code inside the web application, password managers
often rely on a privileged browser extension or a book-
marklet for the same.

2.2 Features in Modern Password Man-
agers

Modern password managers provide a number of conve-
nience and security features that are relevant to a security
analysis. We briefly elucidate three below.

Manager Application

User
①

②

③

④

Manager

User

②

Collaborator

①

(a). authentication to a web application (b). sharing with a collaborator

Figure 2: Different parties in a password manager
scheme

Collaboration. Modern password managers include
the ability to share passwords with a collaborator. Fig-
ure 2 (b) illustrates the general protocol of how a user Al-
ice shares a credential of hers with a collaborator Bob. In
Step 1 , Alice requests that the password manager share
a specified credential with Bob. In Step 2 , the pass-
word manager forwards the credential to Bob when Bob
requests it. Both Alice and Bob need accounts with the

password manager. My1login even allows the password
owner to set read/write permissions on the shared creden-
tials, but the efficacy of these fine-grained controls is not
clear, since denying write access does not prevent a col-
laborator from going to the web application and changing
the account’s password.

Credential Encryption. Due to the particularly sen-
sitive nature of the data handled by password managers,
password managers aim to minimize the amount of
code and personnel with access to the credentials in the
clear. One common technique is encrypting the creden-
tial database on the user’s computer, thus preventing a
passive attacker at the server-side from accessing the cre-
dentials in plaintext. In web-based password managers,
this corresponds to using JavaScript to encrypt pass-
words on the client side (including pages on the pass-
word manager’s website, browser extensions, and book-
marklets). The password manager encrypts/decrypts the
credential database using a key derivation function start-
ing from a user provided secret. If the password man-
ager supports credential encryption, we call the encryp-
tion key the user’s master key. For example, LastPass
uses JavaScript to decrypt/encrypt the user’s credential
database using a key derived from the user’s master user-
name and password.

Login Bookmarklets. As discussed above, password
managers typically rely on browser extensions to im-
plement auto-fill and auto-login functionality. Unfortu-
nately, users can only install these in a browser that sup-
ports extensions. With the popularity of mobile devices
whose browsers lack support for extension APIs (e.g.,
Mobile Safari or Internet Explorer), password managers
have adopted a more portable solution by providing a
bookmarklet. A bookmarklet is a snippet of JavaScript
code that installs as a bookmark, which, instead of navi-
gating to a URL when activated, runs the JavaScript snip-
pet in the (possibly malicious) context of the current page
(e.g., evil.com). This allows the password manager to
interact with a login form using widely supported book-
marking mechanisms.

2.3 Representative Password Manager Ap-
plications

To evaluate the security of modern password managers,
we studied a representative sample of five modern pass-
word managers supporting a diverse mix of features.
Table 1 provides an overview of their features. The
columns “Extension” and “Bookmarklet” indicate sup-
port for login automation through the particular mecha-
nism; “Website” indicates the presence of a web-based
account management interface; and “Credential Encryp-
tion” and “Collaboration” refer to the features described
in Section 2.2. For password managers supporting cre-
dential encryption, Table 1 also lists their key derivation

3

USENIX Association 23rd USENIX Security Symposium 469

ing to NeedMyPassword servers.

2.4 Threat Model
Our main threat model is the web attacker [2]. Briefly, a
web attacker controls one or more web servers and DNS
domains and can get a victim to visit domains controlled
by the attacker. We believe this is the key threat model
for web-based password managers that often run in the
browser. For our study, we extend this model a bit: the
user may create an account on the attacker’s web appli-
cation and use the password manager for managing the
credentials for the same. Our threat model allows the
victim to rely on the password manager’s extension, the
bookmarklet, and website as she sees fit. The attacker
can also create accounts in the password manager service
and make requests to the password manager directly.

The password manager’s code often runs in a web ap-
plication’s origin (via an extension or a bookmarklet).
We assume that the password manager’s code is not ma-
licious and does not steal sensitive data from web ap-
plications. We also assume that the password manager
does not share Alice’s credentials with user Bob, unless
asked to do so by Alice. Additionally, we assume that
the user uses a unique password for the password man-
ager and does not share it with other applications such as
evil.com.

2.5 Security Goal
At a high level, a password manager only has one key
security invariant: ensure that a stored password is ac-
cessed only by the authorized user(s) and the website the
password is for. We discuss how password managers (at-
tempt to) achieve this invariant by following four security
goals. A related taxonomy appears in Bonneau et al.’s
analysis of general web authentication schemes [10], but
ours is a bit different since we focus exclusively on web-
based password managers. Nonetheless, all our goals
map to goals mentioned in Bonneau et al.’s work. As
we present in Section 4, we found attacks that violate
all of the security goals identified below and range from
complete (password manager) account takeover to pri-
vacy violations.

Master Account Security. The first goal of password
manager application is the integrity of the master ac-
count. It should be impossible for an attacker to authen-
ticate as the user to the password manager. It is crucial
that the password manager maintain the security of the
master account and safeguard credentials such as mas-
ter password and cookies. In case of password managers
that encrypt credentials, the master key/password used to
encrypt the credential database should always remain at
the client-side.

Credential Database Security. The main responsi-
bility of a password manager is securely storing the list

of a user’s credentials. A password manager needs to
ensure the security—including confidentiality, integrity,
and availability—of the credential database. The at-
tacker, Eve, should not be able to learn Alice’s creden-
tials, which would allow Eve to log in as Alice; or modify
credentials, which would allow Eve to carry out a form of
login CSRF attacks; or delete credentials, which would
allow Eve to carry out a denial-of-service attack on Al-
ice.

Collaborator Integrity. The collaboration, or shar-
ing, feature in modern password managers complicates
credential databases. Now, each credential has an access-
control list identifying the list of users allowed to read-
/write the credential. A password manager must ensure
the security of this feature: e.g., flaws in this feature
could allow an attacker to learn a user’s credential. While
we realize that these goals are a subset of the broader
goal of credential database security (above), we sepa-
rated them out to highlight the security concerns of the
sharing credentials feature.

Unlinkability. The use of a password manager should
not allow colluding web applications to track a single
user across websites, possibly due to leaked identifiers.
We use the Bonneau et al.’s definition of unlinkabil-
ity [10]: a password manager violates unlinkability if
it allows tracking a user across web applications even
in the absence of other techniques like web fingerprint-
ing [16]. For example, a privacy-minded user could rely
on different browsers or computers to foil web browser
fingerprinting; a password manager should not add a re-
liable fingerprinting mechanism that makes that effort
moot. Such a fingerprinting mechanism would violate
the user’s privacy expectations. Equivalently, relying on
a password manager should not allow a web application
to link two accounts owned by the user with the (same)
web application.

3 Attack Surface

The key difference between web-based password man-
agers and “local” password managers is their need to
work in web browsers. Web-based password managers
store credentials in the cloud and a user logs on to the
manager to retrieve his/her credentials. Access to the
stored credentials is via extensions, a website, or even
bookmarklets—all of which run in the browser.

To guide our investigation, we identified four key con-
cerns for modern web-based password managers: book-
marklet vulnerabilities, classic web vulnerabilities, au-
thorization vulnerabilities, and UI vulnerabilities. We
discuss each in turn below. In the next section, we will
present representative vulnerabilities of each type.

5

470 23rd USENIX Security Symposium USENIX Association

3.1 Bookmarklet Vulnerabilities
JavaScript is a dynamic, extensible language with deep
support for meta-programming. The bookmarklet code,
running in the context of the attacker’s JavaScript con-
text cannot trust any of the APIs available to typical web
applications—an attacker could have replaced them with
malicious code. Relying too much on these APIs has cre-
ated a class of vulnerabilities unique to web-based pass-
word managers.

To fill in a password on (say) dropbox.com, a pass-
word manager needs to successfully authenticate a user,
download the (possibly encrypted) credential, decrypt it
(if necessary), authenticate the web application, and, fi-
nally, perform the login. Doing all this in an untrusted
website’s scripting environment (as a bookmarklet does)
is tricky. In fact, three of the five password managers we
studied (Table 1) provide full-fledged bookmarklet sup-
port, and all of them were vulnerable to attacks ranging
from credential theft to linkability attacks (Section 4).

Browser extensions, which modified the webpage,
faced a similar problem in the past. Currently, both Fire-
fox and Chrome instead provide native or isolated APIs
for browser extensions. Unfortunately, popular mobile
browsers, including Safari on iOS, Chrome on Android/i-
Phone, and the stock Android Browser, do not support
extensions. As a result, web-based password managers
often rely on bookmarklets instead.

3.2 Web Vulnerabilities
A password manager runs in a web browser, where
it must coexist with the web applications whose pass-
words it manages as well as other untrusted sites. Un-
fortunately, relying on the web platform for a security-
sensitive application such as password managers is
fraught with challenges.

Web-based password manager developers need to un-
derstand the security model of the web. For exam-
ple, browsers share authentication tokens such as cook-
ies across applications (including across applications and
extensions), leading to attacks such as cross-site request
forgery (CSRF). Applications running in the browser
runtime also need to sanitize all untrusted input before
inserting it into the document; insufficient sanitization
could lead to cross-site scripting attacks, which in the
web security model implies a complete compromise.

3.3 Authorization Vulnerabilities
Sharing credentials increases the complexity of securing
password managers. While previously, each credential
was only accessible by its owner, now each credential
needs an access control list. Any user could potentially
access a credential belonging to Alice, if Alice has autho-
rized it. A password manager needs to ensure that all ac-
tions related to sharing/updating credentials are fully au-

thorized. Confusing authentication for authorization is a
classic security vulnerability, one that we find even pass-
word managers make (Section 4). We separate out au-
thorization vulnerabilities from web vulnerabilities since
they are often due to a missing check at the server-side.
For example, all our authorization vulnerabilities involve
requests made by an attacker from his own browser, not
via Alice’s browser (when Alice visits evil.com).

3.4 User Interface Vulnerabilities
A major benefit of password managers is their ability to
mitigate phishing attacks. Users do not actually mem-
orize the password for a web application; instead, they
rely on the password manager to detect which applica-
tion is open and fill in the right password. The logic that
performs this is impervious to phishing attacks: it will
only look at the URL to determine which credential to
use.

These advantages are moot if the password manager
itself is vulnerable to phishing attacks. Even worse, in
the case of password managers, a single phishing attack
can expose all of a user’s credentials. Thus, we believe
it behooves password managers to take extra precau-
tions against phishing attacks. While it is possible that
password managers are susceptible to classic phishing
attacks, we focus on anti-patterns that make password
managers more vulnerable than the typical website.

For example, consider what happens when a user
clicks on a password manager’s bookmarklet while not
logged in to the password manager. A simple option
is asking the user to login in an iframe. Unfortunately,
this is trivial for the attacker to intercept and replace the
iframe with a fake dialog. Since users cannot see the
URL of an iframe, there is no way for a user to identify
whether a particular iframe actually belongs to the pass-
word manager and is not spoofed. We argue that this is
an anti-pattern that password managers should avoid.

4 Security Analysis of Web-based Pass-
word Managers

Next, we report the results of our security analysis of five
popular password managers. We organize our results per
the discussion in Section 3. Table 2 summarizes the vul-
nerabilities we found. Our discussion below highlights
the presence of different types of security vulnerabili-
ties in web-based password managers. We do not present
complete architectural details of each password manager;
instead, we only provide enough technical details to un-
derstand each vulnerability.

4.1 Bookmarklet Vulnerabilities
As discussed earlier, a bookmarklet allows a user of a
password manager to log in to web applications with-
out needing to install any extension, a particularly useful

6

USENIX Association 23rd USENIX Security Symposium 471

Bookmarklet Web Authorization User Interface
Vulnerabilities Vulnerabilities Vulnerabilities Vulnerabilities

LastPass ✓(§ 4.1.1) ✓(§ 4.2.1) ✓([27])
RoboForm ✓([27]) ✓([27]) NA ✓(§ 4.4)
My1login ✓([27]) ✓(§ 4.3.1)

PasswordBox NA ✓(§ 4.3.2) NA
NeedMyPassword NA ✓([27]) NA NA

Table 2: Summary of Vulnerabilities Discovered. NA identifies vulnerabilities not applicable to the particular password
manager because it does not provide the relevant functionality.

feature with mobile browsers that lack extension support.
Three of the password managers we studied—LastPass,
RoboForm, and My1login—provide access to creden-
tials and auto-fill functionality using bookmarklets. In
fact, My1login only provides bookmarklet for auto-fill
support, advertising it as a feature (“No install needed”).

We found critical vulnerabilities in all three book-
marklets we studied. If a user clicks on the bookmarklet
on an attacker’s site, the attacker, in all three cases, learns
credentials for arbitrary websites. We only discuss one
representative vulnerability here and provide details of
the other two vulnerabilities in our extended technical
report [27].

While in 2009 Adida et al. identified attacks on pass-
word manager bookmarklets [1], our study indicates that
these issues still plague password managers. This is par-
ticularly a cause of concern given the popularity of mo-
bile devices that lack full-fledged support for extensions.

4.1.1 Case Study: LastPass Bookmarklet

LastPass stores the credential database on the
lastpass.com servers encrypted with a master_key,
which is a 256-bit symmetric key derived from the user’s
master username and master password. The LastPass
client-side code never sends the master password or
master key to the LastPass servers.

Recall that a bookmarklet runs in the context of the
(possibly malicious) web application. At the same time,
due to LastPass’s credential encryption, the bookmarklet
needs to include the secret master_key (or a way to
get to it), to decrypt the credential database. Including
this secret in the bookmarklet, while still keeping it se-
cret from the web application, is tricky. LastPass also
provides the ability to revoke a previously created book-
marklet, further complicating this feature.

Installing a Bookmarklet. A user, Alice, wish-
ing to install a bookmarklet needs to create a special
link through her LastPass settings page. On Alice’s re-
quest, the LastPass page code creates a new random
value _LASTPASS_RAND and encrypts the master_key

with it, all within Alice’s browser. The LastPass
servers then store this encrypted master key (called
key_rand_encrypted) and an identifier h along with

_LASTPASS_RAND

2
h|u

GET bml.php?v

3

4

ref|rh|h|u

ref|rh|h|u
GET bml.php?iframe

ref|rh|h|u

6
GET bml.php?payload

alice|d|
key_rand_encrypted

7

8
getrand

PostMessage

10
credential

iframe

u = dropbox.com

5

ref|rh|h|u

1. check cookies and h
2. extract d and
 key_rand_encrypted

extract the credential for u from d, alice,
_LASTPASS_RAND, and key_rand_encrypted

Alice
lastpass.com (iframe)

PostMessage

PostMessage

_LASTPASS_RAND|h
1

Bookmarklet Click

Alice dropbox.com

LastPass

9

Figure 3: LastPass: Automatic login using bookmarklet.
u is the domain on which Alice clicked on the book-
marklet.

Alice’s credential database. The page then creates a
JavaScript snippet containing _LASTPASS_RAND and h,
which Alice can save as a bookmark. This design al-
lows Alice to revoke this bookmarklet in the future by
just deleting the corresponding h and encrypted master
key from the LastPass servers.

Using the Bookmarklet. Figure 3 illustrates how
Alice uses her LastPass bookmarklet to log in to
dropbox.com. At the Dropbox entry point, Alice clicks
on her LastPass bookmarklet, which includes the token
_LASTPASS_RAND and h. The bookmarklet code first
checks the current page’s domain and adds a script el-
ement to the page sourced from lastpass.com. The
request for the script element (Step 2 in Figure 3) sends

7

472 23rd USENIX Security Symposium USENIX Association

2

alice|d|key_rand_encrypted
3

u = dropbox.com
ref = u

ref|rh|h|u
GET bml.php?payload

1. check cookies and h
2. extract d and
 key_rand_encrypted

extract the credential for u from d, alice,
_LASTPASS_RAND, and key_rand_encrypted

_LASTPASS_RAND|h
1

Bookmarklet Click

Alice

LastPass

evil.com
Mallory

Figure 4: Attack on LastPass bookmarklet based auto-
login. The rh,h values are random; u and ref identify
the Malloy’s target website.

h and the web application domain dropbox.com as pa-
rameters h and u. LastPass checks h and if the parameter
is valid (i.e., Alice has not revoked the bookmarklet), re-
sponds with a JavaScript file containing the additional
parameters ref and rh.

Next, the newly fetched JavaScript file creates
an iframe to lastpass.com using four parame-
ters: ref,rh,h,u. This iframe includes a script
located at lastpass.com/bml.php?u=dropbox.com

that, when downloaded, includes the encrypted mas-
ter key key_rand_encrypted and the credential for
dropbox.com encrypted with the master key. The iframe
then receives the bookmarklet’s _LASTPASS_RAND value
via a postMessage call, decrypts the dropbox.com cre-
dential and sends them back.

Vulnerability. The resource at
bml.php?u=dropbox.com (Step 6 Figure 3) is at a pre-
dictable URI and contains sensitive information. It pro-
vides the encrypted master key key_rand_encrypted

and the credential for dropbox.com. The same-origin
policy allows an attacker to include a script from any
origin and execute it in the attacker’s webpage.

LastPass Bookmarklet Attack. Figure 4 illustrates
how a malicious web application evil.com can steal
Alice’s credential for dropbox.com. When Alice vis-
its the attacker’s site evil.com and clicks her LastPass
bookmarklet, the attacker uses any of a number of hijack
techniques [1, 8] (e.g., Function.toSource) and ex-
tracts both h and _LASTPASS_RAND. Then, the attacker
imitates Step 6 from Figure 3 (as Step 2 here) by writ-
ing a <script> tag with src set to lastpass.com/

bml.php?u=dropbox.com and adding the parameters
rh (any string of length 64), r (any number), and h (from
the bookmarklet).

The downloaded script, which runs on the at-
tacker’s page, includes all the information needed
to decrypt credential for dropbox.com (notably,
key_rand_encrypted). Again, the attacker uses the
JavaScript hijack technique to extract out the encrypted
credential and decrypts them with the _LASTPASS_RAND

value stolen earlier. The attacker can repeat the attack to
steal all of Alice’s credentials, violating the confidential-
ity of the credential database.

LastPass Linkability Attack. Finally, we note that
the h and _LASTPASS_RAND remain the same across
browsers but differ by user. As discussed above, any
website where the user clicks the bookmarklet can learn
these pseudo-identifiers h and _LASTPASS_RAND [1].
This allows colluding websites to track a user, violating
the user’s privacy expectations [10]. Additionally, this
also allows a single website to identify and link multiple
accounts belonging to the same user, which violates the
unlinkability goal.

4.2 Web Vulnerabilities
Next, we study vulnerabilities in password managers
caused due to subtleties of the web platform. We focus
on CSRF and XSS vulnerabilities, which are common in
web applications. We find CSRF vulnerabilities in Last-
Pass, RoboForm, and NeedMyPassword as well as XSS
vulnerabilities in NeedMyPassword.

Our attacks are severe: XSS vulnerabilities in Need-
MyPassword allow for complete account takeover, while
the CSRF vulnerabilities in RoboForm allow an attacker
to update, delete, and add arbitrary credentials to a user’s
credential database. We only discuss the CSRF vul-
nerability in LastPass here and discuss the remaining
CSRF and XSS vulnerabilities in our extended technical
report[27].

4.2.1 Case Study: LastPass One Time Password

One-Time password (OTP) is a feature of LastPass that
allows a user to generate an authentication code for the
master account that is only valid for one use. A user can
use a one-time password to prevent a physical observer
from gaining access to her LastPass account [10].

Generating an OTP. Before getting into the details,
we point out that Alice’s LastPass OTP must be able to
authenticate Alice to LastPass and allow Alice to recover
her master key; all without revealing anything extra (in-
cluding the OTP itself) to LastPass servers (since that
would defeat the credential encryption feature).

Figure 5 illustrates how Alice creates an OTP
otp. This starts with Alice creating a string otp

locally in her browser. Next, Alice computes
h = hash(hash(alice|otp)|otp) with her LastPass
username alice. LastPass will use h to authenti-
cate Alice, without having to know the exact value
of otp. Then, Alice encrypts her master key with
hash(alice|otp). Alice sends h and the encrypted
master key (rand_encrypted_key) to LastPass. No-
tice that the LastPass servers never see the generated
one-time password or Alice’s master key in the clear.
LastPass saves a record associating the values h and

8

USENIX Association 23rd USENIX Security Symposium 473

1
h|rand_encrypted_key

lastpass.com/otp.php

LastPass

save (email,h,rand_encrypted_key)
to the backend storage

validate user by checking cookies

ok 2

POST otp.php

locally generate an OTP otp

Alice

(a). OTP creation

(b). using OTP to login

1
email|h

lastpass.com/otp.php?forcelogin=1

rand_encrypted_key 2

type email and OTP otp

compute h = hash(hash(email|otp)|otp)

check if (email,h,rand_encrypted_key)
exists in the backend storage
for some rand_encrypted_key

Alice

extract local_key by decrypting rand_encrypted_key
using hash(email|otp)

POST otp.php

LastPass

Figure 5: LastPass OTP Creation. Note the absence of
any CSRF token in the request in Step 1.

1
h|rand_encrypted_key

lastpass.com/otp.php

LastPass

save (email,h,rand_encrypted_key)
to the backend storage

validate user by checking cookies

ok 2

POST otp.php

locally generate an OTP otp

Alice

(a). OTP creation

(b). using OTP to login

1
email|h

lastpass.com/otp.php?forcelogin=1

rand_encrypted_key 2

type email and OTP otp

compute h = hash(hash(email|otp)|otp)

check if (email,h,rand_encrypted_key)
exists in the backend storage
for some rand_encrypted_key

Alice

extract local_key by decrypting rand_encrypted_key
using hash(email|otp)

POST otp.php

LastPass

Figure 6: Using the LastPass
OTP.rand encrypted key is the master key encrypted
with hash(alice|otp),

rand_encrypted_key with Alice’s LastPass username.
Using the OTP. To sign in with her OTP (Fig-

ure 6), Alice recomputes h from her knowledge of
otp, and sends it to LastPass along with her LastPass
username. LastPass checks its records for a matching
username and h. It starts an authenticated session for
(i.e., sets session cookies identifying) Alice and sends
back her rand_encrypted_key. Alice then decrypts
rand_encrypted_key to recover her master key.

Vulnerability. We found that the request used to set
up the OTP (Step 1 Figure 5) is vulnerable to a classic
CSRF attack. The LastPass server authenticates Alice
(in Step 1) only with her cookies. Since LastPass does
not know the OTP or the master key, it cannot validate
that rand_encrypted_key actually corresponds to an
encrypted value of the master key. Fixing this vulnera-
bility involves adding a CSRF token to the OTP creation
form.

OTP Attack on LastPass. An attacker, Mallory, who
knows Alice’s LastPass username, can come up with
a string otp’ and using the same algorithm as above,
generate a forged value h’ and rand_fake_key with a
made-up master key. On submitting the CSRF POST re-
quest, LastPass will store h’ as authenticating Alice.

Mallory can then use otp’ to log-in to LastPass us-
ing otp’. Of course, decrypting the rand_fake_key

will not give Mallory Alice’s real master key. Nonethe-
less, using this CSRF attack, Mallory obtains Alice’s en-
crypted password database. We find this leads to three
attacks.

First, LastPass stores the list of web application en-
try points unencrypted, and Mallory can now read this
list. This is a breach of privacy: starting with just Al-
ice’s LastPass username, Mallory now knows all the web
applications Alice has accounts on.

Secondly, the encrypted password database is now
available to Mallory for offline guessing. Recall that the
LastPass uses a key derived from Alice’s master pass-
word, which Alice has to memorize. Unlike the pass-
words randomly generated by LastPass, this master pass-
word is likely vulnerable to guessing. It is instructive to
consider that, after a server breach, LastPass requires all
its users to reset their passwords [41].

Finally, we also find that this attack leads to a denial
of service attack. Mallory, logged in as Alice, can delete
any credential in Alice’s database, despite being unable
to decrypt the database. Since the username is part of
the credential, recovering all these credentials would be
tedious, or in some cases impossible.

4.3 Authorization Vulnerabilities
Looking beyond vulnerabilities stemming from the na-
ture of the web platform, we now discuss some vulnera-
bilities that come from logic errors in the password man-
ager. We found that two of the three password managers
that support credential sharing both mistake authentica-
tion for authorization. An attacker can create two fake
accounts, Eve and Mallory, in the password manager and
share Alice’s credentials with Mallory by sending a cor-
rectly crafted message from Eve’s account. Importantly,
the actual errors do not ever involve Alice or her browser
and thus the attacks work in the absence of Alice visiting
the attacker’s website.

4.3.1 Case Study: My1login Sharing Credentials

My1login relies on client-side encryption of the creden-
tial database. This complicates sharing: Alice and Bob
need to share credentials, through My1login as an un-
trusted channel. My1login relies on public-keys for both
Alice and Bob to share credentials: when Alice shares
a credential with Bob, My1login first encrypts it with
Bob’s public-key before sending it to Bob. This ensures
that only Bob can see the shared credentials.

Sharing My1login Credentials. Figure 7 illustrates
how Alice shares a credential with Bob in My1login.
In the first two steps, Alice obtains Bob’s public key
kb. Then, in Step 3, Alice (i.e., Alice’s My1login in-
stance) encrypts the credential with kb and sends the
encrypted username alice.dropbox@gmail.com and
password hunter2 to My1login.

9

474 23rd USENIX Security Symposium USENIX Association

1 Get_Public_Key|email|wcid

publickey|userid 2

3

wcid|send_to|username|
password|publickey

wcid|shareId|email|userid 4

1
POST checkSession.php

Bob

shareId|createdby|
username|password|url

send_to = Bob

Alice
My1loginmy1login.com/index-in.php

POST my1Login_REST_service.php

check cookies

check cookies

POST my1Login_REST_service.php

2

check cookies

my1login.com/index-in.php

(a). Sharing a web card

(b). Accessing a shared web card

My1loginFigure 7: Sharing Credentials on My1login

Using the Shared Credential. Bob’s My1login in-
stance polls the My1login server for any updates. The
My1login server notifies Bob of the newly shared cre-
dential, sending him the information that Alice encrypted
with his public key. Bob decrypts the shared credentials
(username and password) for website url with his pri-
vate key. Once Alice shares a credential with Bob, he can
also update it. In such cases, My1login automatically up-
dates the credential globally by sharing the update with
collaborators on the web card (Alice, in this case). This
occurs through essentially the same request as Step 3 in
Figure 7, but this time Bob encrypts the credential with
Alice’s public-key.

Vulnerability. Our analysis revealed that My1login
only authenticates Alice before sharing a web card; it
does not check whether Alice owns or has the authority
to share the web card identified in the wcid (Step 3, Fig-
ure 7).

My1login Share Attack. Since My1login does not
check wcid in Figure 7 Step 3, an attacker Mallory can
share any web card (given its id) to a collaborator Eve.
This vulnerability allows Mallory to steal any credential
whose ID she knows (perhaps because Eve shared it in
the past but revoked it later).

Worse, further analysis revealed that web card ids are
globally unique, auto-incrementing numbers. In Step 3,
Figure 7, Mallory can even use numbers referring to
cards not yet created.

Suppose that wcid refers to a web card that belongs
to (or will belong to) Alice. Mallory generates a dummy
username and password like “userabc” and “pwdabcm,”
encrypts it and shares it with Eve. Eve receives the
dummy credentials. While these credentials are useless,
notice that this registered Eve as a collaborator on this
web card, even if it belongs to Alice.

In the future, whenever Alice or any other collaborator
updates the web card, the My1login client automatically
re-encrypts the real credential and sends it to each col-

{ ” id ” : 4097211,
”member id”: 3751238,
”name”: ”Dropbox”,
” url ” : ”https :// www.dropbox.com/login”,
” login ” : ” alice .dropbox@gmail.com”,
”note”: {},
”created at” : ”2013−07−18T13:50:18−04:00”,
”updated at”: ”2013−07−18T13:50:18−04:00”,
”password k”: ”AAQsrfjgfcWj/4FsP64BTYTJpbgpBK4+yltal”,
” settings ” : ”{\”autologin\”:\”1\”, ...} ” ,
”member fullname”: ”Alice Gordon”,

}

Listing 1: Example PasswordBox asset

laborator, including Eve. It is trivial for Mallory to share
all web cards, current and future, to Eve, who awaits up-
dates to steal real credentials.

In the attack above, Eve learns Alice’s credentials only
if Alice updates them after the attack. Alternatively, Eve
can install new credentials to Alice’s database without
authorization from Alice. This allows Eve to execute a
form of login CSRF attack [5]. Alternatively, Eve can in-
stall wrong credentials to Alice’s database, which would
cause an error when Alice attempts to use them. It is
likely that Alice, in response, would update the web card
with her correct credentials and unknowingly share them
with Eve.

One concern is how to ethically verify the My1login
authorization flaw without sharing another user’s creden-
tial by mistake. We observed over multiple days that it is
rare that any other user creates a new web card between
2am - 3am PST. We then verified this vulnerability one
day between 2am and 3am without sharing another user’s
credential by mistake.

4.3.2 Case Study: PasswordBox Sharing Creden-
tials

PasswordBox stores a user’s credential for a web appli-
cation in a JSON-encoded asset file. Listing 1 presents
an example asset for Dropbox. We focus on two
salient properties: first, password_k is the encrypted
value of Alice’s password for dropbox.com and is the
only encrypted field in the asset. Other details such
as entry point URL, the name Alice used to register
(member_fullname) and so on, are all in cleartext.

Second, our analysis revealed that asset_id is an
auto-incrementing, unique (across all users) id for each
asset. Assuming asset_id started at 1, we can infer that
PasswordBox manages over 4 million assets, an assump-
tion anyone can verify with the flaw we discuss next. (We
did not, because of the obvious ethical concerns.)

Sharing Credentials. Figure 8 shows how a user Al-
ice shares one of her assets identified by asset_id to
a collaborator Bob. On clicking share, the Password-
Box extension on Alice’s browser makes a POST re-
quest to the passwordbox.com servers that includes the

10

USENIX Association 23rd USENIX Security Symposium 475

1

asset_id|contact_id|created_at|... 2

1
GET /api/0/assets

Bob

[assets]

Alice
PasswordBoxpasswordbox.com

POST /api/0/secrets

check cookies

2

check cookies

passwordbox.com

(a). Sharing an asset

(b). Accessing a shared asset

shared|crypted_key|contact_id|asset_id

PasswordBox

Figure 8: PasswordBox: Sharing an asset. The under-
lined passwordbox.com on the left indicates that the
code making the request runs in the passwordbox.com

origin.

contact_id, the contact to share credentials with (in
this case, Bob’s id); and asset_id, the id of the cre-
dential to share (as in Listing 1). In the future, whenever
Bob downloads the list of assets accessible to him, Pass-
wordBox includes Alice’s shared credential.

Vulnerability. The absence of a CSRF token sug-
gested the possibility of a CSRF flaw in the protocol.
Fortunately (or, unfortunately), we found that Password-
Box implemented a strong defense against CSRF at-
tacks: it checks the Referer header as well as includes
a special X-CSRF-Token in the headers of the HTTP
request. Instead, we found a far more serious logic
bug in the sharing assets functionality. In its sharing
logic, PasswordBox never checks whether Alice owns
the asset_id she is sharing. This allows Mallory to
share assets she does not own with Eve, similar to the
My1login attack (Section 4.3.1).

PasswordBox Share Attack. Similar to the “share-
and-update” attack on My1login, Mallory and Eve run
through the protocol in Figure 8. Mallory can share
any asset to Eve by simply setting asset_id. Since
asset_id is an auto increment number, Mallory can it-
erate through all possible asset_id and share all exist-
ing 4 million assets with Eve. Listing 2 is the JavaScript
snippet that Mallory used to share an arbitrary asset to
Eve, whose contact_id is assumed to be 123.

As we noted above, PasswordBox only encrypts the
password field in an asset; disclosure of every user’s full
name, usernames, web application URLs, and creation
times is a severe privacy breach.

function share(asset id){
var xmlhttp = new XMLHttpRequest();
var jsn = ’{”shared”:true, ”crypted key:” ”ABC”, ”contact id ”: 123,

”asset id ”: ’ + asset id + ’}’ ;
xmlhttp.open(”POST”,”https://api0.passwordbox.com/api/0/secrets”,true);
xmlhttp.setRequestHeader(”Content−type”, ”application/json”);
xmlhttp.send(jsn);

}

Listing 2: JavaScript snippet to share a asset with Eve

4.4 User Interface Vulnerabilities

Earlier, discussing bookmarklet vulnerabilities (Sec-
tion 4.1), we focused on the behavior of a password man-
ager when the user is already authenticated to the pass-
word manager. If the user is not authenticated to the pass-
word manager, then the user needs to log in to her mas-
ter account. This provides a potential avenue for phish-
ing vulnerabilities and the password manager should not
train bookmarklet users towards insecure practices. The
ideal secure option in such a scenario is asking the user
open a new tab (manually) and logging in to the pass-
word manager.

We find that only the My1login bookmarklet defaults
to this secure behavior. Clicking on the My1login book-
marklet, when not logged in, results in a message asking
the user to open a new window and log in. We found that
both RoboForm and LastPass bookmarklets were vulner-
able to phishing attacks. Below, we discuss the Robo-
Form vulnerability and present the LastPass vulnerabil-
ity in our technical report [27]. We also have recorded
video demonstrations of these attacks online [4].

Case Study: RoboForm. Recall that when Alice
clicks her RoboForm bookmarklet, the bookmarklet cre-
ates an iframe in the current web application. If Alice has
not logged in to RoboForm, the iframe request redirects
to the RoboForm login page, displaying a login form in
the iframe. This design is insecure: it trains Alice to
fill in her RoboForm password even when the URL bar
(belonging to the surrounding web application) does not
point to roboform.com. An attacker can trivially block
the RoboForm iframe load and spoof an authentication
dialog that steals Alice’s RoboForm credentials. A se-
cure design would ask Alice to open a new tab to Robo-
Form and log in.

One concern with successfully carrying out this attack
is detecting whether Alice is already logged in to Robo-
Form. We found that the height of the RoboForm iframe
(the dialog) is greater than 200px if and only if Alice is
already logged-in. Using this side-channel, the attacker
can modify the spoofed iframe to make the attack con-
vincing.

11

476 23rd USENIX Security Symposium USENIX Association

5 Lessons and Mitigations
We now attempt to distill the lessons learnt from our
study and provide guidance to password managers on
closing the vulnerabilities we found and mitigating fu-
ture ones. Our focus here is on concrete guidance and
defense-in-depth. We identify improvements in architec-
tures and protocols to mitigate vulnerabilities as well as
the use of browser mitigations like CSP. We also iden-
tify anti-patterns that developers of password managers
should avoid. Security reviewers and users can also rely
on the patterns and (absence of) the mitigations we dis-
cuss as indicators of the security of a password manager.

5.1 Bookmarklet Vulnerabilities
All the bookmarklets we studied were vulnerable. The
root cause of these vulnerabilities is that the bookmarklet
code executes in the untrusted context of the webpage.
The web browser guarantees a secure, isolated execu-
tion environment for iframes and we advocate an iframe-
based architecture for securing password manager book-
marklets. Modern features such as credential encryption,
which requires secure client-side code execution, makes
the use of defenses proposed in previous work impracti-
cal [1].

Recommendation. We recommend password-
managers rely on a design similar to proposed by Bhar-
gavan et al. [8]. When the user clicks the bookmarklet,
the bookmarklet code loads the password manager code
in an iframe, running in the password manager’s origin.
The browser’s same-origin policy isolates code executing
in the iframe from the web application page and guaran-
tees integrity of DOM APIs.

The password manager’s iframe uses postMessage

for communicating with the application page and main-
tains a simple invariant: a message carrying a creden-
tial for dropbox.com has a target origin of https://

www.dropbox.com. The browser guarantees that only
the Dropbox page receives the message. The only se-
cret in the bookmarklet code is an HMAC function (pro-
tected by DJS [8]) that the password manager iframe can
use to provide click authentication (i.e., the user actually
clicked the bookmarklet). Unfortunately, the presence of
the secret in the bookmarklet allows linkability attacks.

For unlinkability, we recommend password managers
do not rely on such a secret and HMAC function. Dis-
abling this secret loses the “click authentication” prop-
erty. Since password manager browser extensions typi-
cally include “auto fill” functionality, we believe the loss
of click authentication is acceptable. If needed, the code
in the password manager iframe could draw a dialog to
ask for user confirmation before sharing credentials with
the website. Such a design is vulnerable to clickjacking
and we also recommend the use of upcoming mitigations
for UI security [39].

Instead, password managers could rely on asking the
user for permission to share credentials in the iframe cre-
ated.

The core issue behind bookmarklet vulnerabilities is
the absence of secure (or “isolated”) DOM APIs for
bookmarklets. An alternative possibility is for browser
vendors to provide bookmarklets with secure access
to these DOM APIs, similar to the access granted to
Chrome/Firefox extensions.

5.2 Web Vulnerabilities
We found a number of “classic” web application vulner-
abilities in password managers. Based on the critical and
sensitive nature of data handled by password managers,
we recommend defense-in-depth features such as CSP
and identify anti-patterns that developers should beware
of.

XSS. XSS is a well-studied problem and we will not
recapitulate all the defenses for the same here. We rec-
ommend that web applications, in addition to validating
input and sanitizing outputs, should also turn on Con-
tent Security Policy to provide a second layer of defense
against XSS. The absence of a strong CSP policy in a
password manager should raise red flags for users and
reviewers. In the applications we studied, only Last-
Pass shipped with a Content-Security-Policy header, al-
beit with an unsafe policy that allows eval and inline
scripts.

CSRF. The prevalence of CSRF vulnerabilities in
password managers surprised us. We recommend pass-
word managers should include CSRF protection (via to-
kens) for all their pages and forms. For defense in depth,
these applications should also check the Referer and Ori-
gin headers for all requests. While not a reliable de-
fense, these headers provide a useful secondary layer of
defense.

One concern with CSRF tokens is the need to create
and maintain state at the server-side. This could be cum-
bersome for password managers that provide an interface
through a browser extension: it is infeasible to request a
new token before rendering every form. Instead, these
applications can rely on special headers (e.g., X-CSRF-
Token) for CSRF defense. The web security model dis-
allows evil.com from setting headers for a cross-origin
request.2

Secrets in JavaScript files. An anti-pattern we no-
ticed was the presence of secret values—based off of
tokens in the request URI or cookies in the request—
in script files. Unfortunately, the web platform does
not provide strong isolation guarantees for scripts: any
(untrusted) origin can include scripts from the password
manager’s website. We recommend password managers

2Unless explicitly whitelisted by the receiving server via Access-
Control-* headers.

12

USENIX Association 23rd USENIX Security Symposium 477

serve all secret values in HTML or separate JSON files.
This requirement is easy to check: the scripts used by the
password managers should be the same across all users of
the password manager. Serving user-specific JavaScript
files based on tokens in the URI is a clear anti-pattern.
An alternative is Defensive JavaScript [8], which pro-
vides a principled defense to ensure secrecy of values in
JavaScript code.

5.3 Authorization Vulnerabilities
The web application vulnerabilities discussed above
stemmed from quirks of the web platform (e.g., ambi-
ent authentication with cookies). Worryingly, we found
a number of logic flaws in password managers classified
under two broad categories. The first category, insuf-
ficient authorization, creates vulnerabilities exacerbated
by the second category, predictable identifiers. We iden-
tify an anti-pattern, predictable identifiers, and the core
security vulnerability, insufficient authorization, below
and discuss mitigations.

Insufficient Authorization. Confusing authentication
with authorization is a classic security vulnerability. Out
of the three password managers that support collabora-
tion, we found insufficient authorization vulnerabilities
in two of them. Unfortunately, these are logic flaws,
and a simple mitigation is difficult. One possibility is
for password managers to use a simpler sharing model.
For example, let each credential have only one owner—
only the credential’s owner can change it or its collabo-
rator list. A simple model eases authorization checks and
could make insufficient authorization stand out.

Predictable Identifier. Both our attacks on logic
vulnerabilities rely on predictable identifiers (e.g., con-
secutive integers). We recommend password managers
switch to cryptographically secure random numbers for
identifiers—this adds defense in depth, even if the server
is careful to check authorization. The use of predictable
identifiers should be rare and any use should be a cause
for a security review. As we discussed earlier, the nature
of the data handled by password managers warrants such
a default-secure posture.

5.4 User Interface Vulnerabilities
Our proposed solution of relying on iframes and storing
tokens in localStorage/cookies works seamlessly only if
the user is already logged in. If this is not true, the iframe
needs to ask the user to log in. As our attacks demon-
strated, the only secure way to do this is asking the user
to manually open a new tab and login. My1login is the
only password manager relying on this design and we
recommend other password managers adopt a similar de-
sign. Cautious users can protect themselves against such
an attack by always logging in using a new tab instead of
trusting a popup or iframe.

6 Related Work

A number of researchers have investigated security of
web-based password managers. Bhargavan et al. did a
study on five password managers, along with a num-
ber of other web services that provide encrypted stor-
age of data in the cloud, and presented a number of
web attacks that could violate the intended security of
the products [7]. This work inspired a redesign of the
LastPass bookmarklet to decrypt a user’s credentials in-
side LastPass’s iframe, making it harder for an attacker
to steal the master key. Adida et al. provide a compre-
hensive overview of a number of attacks on password
manager bookmarklets; we reuse some of the ideas but
find that, with modern password managers relying on
encrypted credentials, a new defense based on iframes
is needed [1]. Belenko et al. studied the cryptographic
properties of password managers for mobile devices and
their vulnerability to brute force attacks [6].

In concurrent work, Blanchou and Youn [9] as well as
Silver et al. [35] found a number of serious flaws in the
auto-fill functionality in password managers. In contrast,
we analyze a broader range of functionality but focus on
third-party web-based password managers only.

Bonneau et al. [10] presented a framework for eval-
uating alternatives to passwords in terms of usability,
deployability, and security. This framework highlights
advantages of an idealized password manager, but our
work demonstrates that, in practice, password managers
have flaws in their implementations that critically under-
mine their security. Similarly, recent work found imple-
mentation flaws in other password alternatives such as
SSOs [40, 38].

The common web attack vectors we considered, such
as CSRF and XSS, have seen a lot of work in the past
decade. For attacks and defenses, we defer to prior litera-
ture for comprehensive surveys on CSRF [43], XSS [18],
and server-side defenses for both [26]. Recent work also
focused on logic flaws and insufficient authorization in
web applications [17, 37, 36].

The security of mutually distrusting JavaScript run-
ning in the same origin (an important consideration in
bookmarklet code) has not been a concern in the design
of the web platform. Bhargavan et al. identified a number
of flaws in bookmarklets and proposed a new subset of
JavaScript called Defensive JavaScript to mitigate them,
which we discussed in depth in Section 5.1. Defensive
JavaScript [8] is the only work we are aware of that aims
to protect a JavaScript gadget from the host webpage. A
large body of work exists for the converse goal of pro-
tecting a host webpage from third party JavaScript code
(such as code that draws a gadget) [22, 3, 13, 28]; a sur-
vey compares these approaches [15].

13

478 23rd USENIX Security Symposium USENIX Association

7 Conclusions
We presented a systematic security analysis of five web-
based password managers. We found critical vulnerabil-
ities in all the password managers and in four password
managers, an attacker could steal arbitrary credentials
from a user’s account. Our work is a wake-up call for
developers of web-based password managers. The wide
spectrum of discovered vulnerabilities, however, makes
a single solution unlikely. Instead, we believe devel-
oping a secure web-based password manager entails a
systematic, defense-in-depth approach. To help such an
effort, we provided guidance and mitigations based on
our analysis. Since our analysis was manual, it is pos-
sible that other vulnerabilities lie undiscovered. Future
work includes creating tools to automatically identify
such vulnerabilities and developing a principled, secure-
by-construction password manager.

Acknowledgements
We thank the anonymous reviews for their valuable
feedback. We also thank Karthikeyan Bhargavan,
David Wagner, Weichao Wang, Paul Youn, Chris Grier,
Kurt Thomas, Matthew Finifter, Joel Weinberger, Chris
Thompson, Suman Jana, and Nicholas Carlini for their
valuable feedback and comments. This research was
supported by Intel through the ISTC for Secure Com-
puting; by the Air Force Office of Scientific Research
(AFOSR) under MURI award FA9550-09-1-0539; by
the Office of Naval Research (ONR) under MURI Grant
N000140911081; and by the National Science Foun-
dation (NSF) under grants 0831501CT-L and CCF-
0424422. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of
the NSF, the AFOSR, the ONR, or Intel.

References
[1] B. Adida, A. Barth, and C. Jackson. Rootkits for javascript envi-

ronments. In Proc. of WOOT 2009, 2009.
[2] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song. To-

wards a formal foundation of web security. In Proceedings of the
23rd IEEE Computer Security Foundations Symposium, 2010.

[3] D. Akhawe, P. Saxena, and D. Song. Privilege separation in
html5 applications. In Proc. the 21st USENIX Security sympo-
sium, 2012.

[4] Ui attacks demos, 2013. https://sites.google.com/site/
webpwdmgr/.

[5] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for
cross-site request forgery. In Proc. of ACM Conference on Com-
puter and Communications Security, 2008.

[6] A. Belenko and D. Sklyarov. “secure password managers” and
“military-grade encryption” on smartphones: Oh, really?, 2012.

[7] K. Bhargavan and A. Delignat-Lavaud. Web-based attacks on
host-proof encrypted storage. In Proc. of WOOT, 2012.

[8] K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis. Language-
based defenses against untrusted browser origins. In USENIX
Security Symp., 2013.

[9] M. Blanchou and P. Youn. Password managers: Exposing pass-
words everywhere, Nov 2013. https://www.isecpartners.

com/media/106983/password_managers_nov13.pdf.

[10] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano. The quest
to replace passwords: A framework for comparative evaluation of
web authentication schemes. In Proc. of IEEE Symp. on Security
and Privacy, 2012.

[11] CNET. Editor’s rating of password managers. http:

//download.cnet.com/windows/password-managers/

?&sort=editorsRating+asc.

[12] O. Connelly. WordPress 3 Ultimate Security. Packt Publishing
Ltd, 2011.

[13] D. Crockford. Adsafe. adsafe.org, 2011.

[14] Content security policy: W3c editor’s draft, 2013.
https://dvcs.w3.org/hg/content-security-policy/

raw-file/tip/csp-specification.dev.html.

[15] P. De Ryck, M. Decat, L. Desmet, F. Piessens, and W. Joosen.
Security of web mashups: a survey, 2011.

[16] P. Eckersley. How unique is your web browser? In Privacy
Enhancing Technologies, pages 1–18. Springer, 2010.

[17] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. Toward
automated detection of logic vulnerabilities in web applications.
In USENIX Security Symposium, 2010.

[18] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P. D. Petkov.
XSS Attacks: Cross Site Scripting Exploits and Defense. Syn-
gress, 2011.

[19] E. Grosse and M. Upadhyay. Authentication at scale. Security
Privacy, IEEE, 11(1):15–22, Jan 2013.

[20] C. Herley. So long, and no thanks for the externalities: the ra-
tional rejection of security advice by users. In Proc. of NSPW,
2009.

[21] A. Huth, M. Orlando, and L. Pesante. Password security, pro-
tection, and management. United States Computer Emergency
Readiness Team, 2012.

[22] G. Inc. Google caja—google developers. https://

developers.google.com/caja/.

[23] B. Kaliski. PKCS #5: Password-Based Cryptography Specifica-
tion Version 2.0. RFC 2898 (Informational).

[24] Lastpass. https://lastpass.com.

[25] LastPass. Lastpass one million user give-
away. http://blog.lastpass.com/2011/01/

lastpass-one-million-user-giveaway.html.

[26] X. Li and Y. Xue. A survey on server-side approaches to securing
web applications. ACM Computing Surveys, 46(4), 2014.

[27] Z. Li, W. He, D. Akhawe, and D. Song. The emperor?s new pass-
word manager: Security analysis of web-based password man-
agers. Technical Report UCB/EECS-2014-138, EECS Depart-
ment, University of California, Berkeley, Jul 2014.

[28] S. Maffeis, J. Mitchell, and A. Taly. Object capabilities and isola-
tion of untrusted web applications. In Security and Privacy (SP),
2010 IEEE Symposium on, pages 125–140, 2010.

[29] P. Magazine”. Editor’s rating of password managers. http://

www.pcmag.com/products/28042?sort=er+desc.

[30] Needmypassword. http://www.needmypassword.com.

[31] Passwordbox. https://www.passwordbox.com.

[32] D. Pogue. Remember all those passwords? no need. http:

//nyti.ms/10ZhXgq, 2013.

[33] Roboform everywhere. http://www.roboform.com/

everywhere.

14

USENIX Association 23rd USENIX Security Symposium 479

[34] M. Rochkind. Security, forms, and error handling. In Expert PHP
and MySQL, pages 191–247. Springer, 2013.

[35] D. Silver, S. Jana, E. Chen, C. Jackson, and D. Boneh. Pass-
word managers: Attacks and defenses. In Proceedings of the
23rd Usenix Security Symposium, 2014.

[36] S. Son, K. S. McKinley, and V. Shmatikov. Rolecast: finding
missing security checks when you do not know what checks are.
In ACM SIGPLAN Notices, volume 46, pages 1069–1084. ACM,
2011.

[37] F. Sun, L. Xu, and Z. Su. Static detection of access control vul-
nerabilities in web applications. In USENIX Security Symposium,
2011.

[38] S.-T. Sun and K. Beznosov. The devil is in the (implementation)
details: an empirical analysis of oauth sso systems. In Proceed-
ings of ACM conference on Computer and communications secu-
rity, 2012.

[39] W3C. User interface safety directives for content security policy,
2012. http://www.w3.org/TR/UISafety/.

[40] R. Wang, S. Chen, and X. Wang. Signing me onto your accounts
through facebook and google: A traffic-guided security study of
commercially deployed single-sign-on web services. In Security
and Privacy (SP), 2012 IEEE Symposium on, pages 365–379,
2012.

[41] C. Warren. Master passwords at risk in lastpass security breach.
http://mashable.com/2011/05/05/last-pass-breach/.

[42] R. Woodbridge. ”how passwordbox passed gmail as the
#1 productivity app on their way to over 1m downloads”.
http://untether.tv/2013/episode-467, 2013.

[43] W. Zeller and E. W. Felten. Cross-site request forgeries: Ex-
ploitation and prevention. Technical report, Princeton University,
2008.

15

