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Abstract
Distributed snapshots are a classic class of protocols used for
capturing a causally consistent view of states across machines.
Although effective, existing protocols presume an isolated
universe of processes to snapshot and require instrumentation
and coordination of all. This assumption does not match
today’s cloud services—it is not always practical to instrument
all involved processes nor realistic to assume zero interaction
of the machines of interest with the external world.

To bridge this gap, this paper presents Beaver, the first
practical partial snapshot protocol that ensures causal consis-
tency under external traffic interference. Beaver presents a
unique design point that tightly couples its protocol with the
regularities of the underlying data center environment. By
exploiting the placement of software load balancers in public
clouds and their associated communication pattern, Beaver
not only requires minimal changes to today’s data center op-
erations but also eliminates any form of blocking to existing
communication, thus incurring near-zero overhead to user
traffic. We demonstrate the Beaver’s effectiveness through
extensive testbed experiments and novel use cases.

1 Introduction

The ability to capture a consistent, global view of a system is
a powerful tool. For many tasks—deadlock detection, check-
points and failure recovery, network telemetry, debugging of
distributed software, and many others [3–5, 8, 9, 17, 33, 37, 39,
52,54,55,58,60]—a global view, and particularly a consistent
one, is essential for correct operation. Without consistency,
results are unreliable, and the value of associated tools is
questionable.

The classic method for capturing consistent global states
is the Chandy-Lamport snapshot algorithm that was pro-
posed almost four decades ago and its subsequent vari-
ants [11,26,33–35,41,57,60]. At a high level, these protocols
flood snapshot initiation messages throughout the system,
triggering local captures of state at every node they pass in
a manner that guarantees causal consistency of the recorded
values. Some versions (including the original) also include
support of capturing messages that are in-flight at the time of
the snapshot, i.e., channel state.

While these protocols have been simple, effective, and
widely used for decades, they all rely on the fundamental

assumption that the set of participants in the protocol is closed
under causal propagation. In other words, if any node can both
send and receive messages from participants in the protocol,
it can propagate Lamport’s ‘happened-before’ relation [35]
and must also be a participant in the snapshot. For systems
operating in isolation, ensuring full participation is trivial;
however, modern cloud deployments are not so utopian.

Today’s cloud services are often modular, e.g., structured as
microservices, each of which might be developed and main-
tained by a different user, team, or organization or hosted
on otherwise inaccessible infrastructure. Take, for instance,
a managed pub/sub messaging layer like Amazon’s Simple
Notification Service (SNS). As a proprietary and black-box
service, users cannot directly propagate snapshot initiation
markers through the service. Further, while they might be able
to add markers to the application-level content manually, with
concurrency, replication, and reordering (e.g., due to priori-
tization), content-based markers are unlikely to track causal
relationships accurately. Even when developers fully control
all relevant servers, the clients of the service can also intro-
duce hidden causal relationships, for example, when the user
of a generative AI chatbot sends a follow-up message based
on the response to the previous prompt. Ultimately, the nature
of causal consistency means that a single non-participant can
render all snapshots useless.

Observing this gap between classical assumptions and the
practicalities of real-world deployments, we ask the question:
Can we make distributed snapshots practical in modern cloud
data centers, i.e., is it possible to capture a causally consistent
snapshot when only a subset of the broader system partici-
pates? At first glance, this goal seems far-fetched: With par-
tial participation, we cannot control the messaging behaviors
nor instrument any coordination logic for machines external
to those of interest. Complicating the issue is the fact that,
to be practical, the protocol cannot block, e.g., by buffering
or delaying user packets during a snapshot. In essence, this
means that hidden causal relationships between participants
and external communication partners are unavoidable.

This work presents Beaver1, the first ‘partial’ snapshot pro-
tocol that extends the capability of distributed snapshots to
cloud services with external interactions. Beaver provides the
same basic abstraction as other snapshot protocols—for any
event whose effects are observed in the snapshot, all other

1The animal species known for their engineering expertise in constructing
dams using locally available materials such as rocks and tree branches.
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events that ‘happened-before’ are also included. It achieves
this even when the target service communicates with an ar-
bitrary number of external, black-box entities, regardless of
their scale, semantics, or placement, and despite potential
multi-hop propagation of causal dependencies. Beaver does
all of this without blocking or delaying user requests. Beaver
tackles this seemingly impossible problem by:

1. Relying on two features found in all of today’s largest
cloud data centers: (a) Layer-4 Software Load Bal-
ancers (SLBs) that interpose on a subset of inbound traf-
fic [15, 28, 49, 50] and (b) servers with low time strata or
otherwise stable clocks [13, 25, 29, 36, 38, 42, 44, 45].

2. Eschewing the enforcement of causal consistency in favor
of simply detecting when violations may have occurred, a
mechanism we call Optimistic Gateway Marking (OGM).

Note that for (1b), Beaver does not rely on the traditional
notion of clock synchronization that other recent systems [13,
38, 42] are founded upon, which requires that the clocks of
distinct machines have bounded drift. Instead, it uses a much
weaker property [25, 40] over the frequency drift of a single
machine2. Also note that (2) implies a tradeoff: snapshots
are not always successful, but users can be assured of their
correctness when they are and retry when they are not.

At a high level, Beaver’s approach is based on the observa-
tion that when examining the causal consistency of a snapshot,
only inbound traffic is relevant and only a small subset therein.
More specifically, we can divide inbound traffic into messages
that are ‘causally irrelevant’ (e.g., triggered asynchronously
and, thus, are not a part of any transitive causal relationships)
and messages that are ‘causally relevant’ (e.g., triggered by
post-snapshot outbound traffic but may not carry any markers
of that fact). Beaver’s OGM mechanism is an approximate
but full-recall detector of causally relevant traffic.

Our prototype3 of Beaver demonstrates that not only is it
possible to build an OGM mechanism, but by leveraging the
aforementioned features of today’s cloud data centers, we can
render the possibility of rejected snapshots minimal (near-
zero in many cases). To summarize, this paper makes the
following contributions:

• To the best of our knowledge, we are the first to detail the
gap between classical assumptions of distributed snapshots
and the practicalities of real-world clouds.

• We propose Beaver, the first partial distributed snapshot
primitive for modern cloud services. Beaver presents a
unique design point by tightly coupling the protocol with
the regularities of the underlying data center environment.

• We evaluate Beaver through end-to-end implementation
on a real-world testbed aligned with the production data
center settings. We also show that the causally consistent
view provided by Beaver enables a spectrum of use cases.
2Bounded clock drift to a low-stratum reference server is sufficient to

guarantee bounded local frequency drift, but not necessary.
3The prototype is available at https://github.com/eniac/Beaver.
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Figure 1: Today’s public cloud services place SLBs to handle
the external traffic to its VIP in the inbound direction (solid
lines to VIP 1). The response to inbound messages (dotted
lines from VIP 1) typically bypasses its SLB to minimize the
SLB traffic load.

2 Background and Motivation

We begin by describing the structure of today’s cloud services
and the data centers in which they reside before we discuss
the application of distributed snapshots to these services.

2.1 Communication in Public Cloud Data Centers

Today’s cloud data centers are massive collections of servers
connected by a network fabric that host user services of di-
verse sizes and scopes. In this context, we can abstract user
services as a set of virtual or bare metal machines managed
as a single logical entity. Each service is typically assigned a
public Virtual IP (VIP) address, and each physical machine a
private Direct IP (DIP) address [15, 50].

Software Load Balancers (SLBs). A set of dedicated servers
or programmable devices is responsible for translating be-
tween VIPs and DIPs. We refer interested readers to prior
work [15, 50] for full details, but at a high level, these layer-4
devices act similarly to traditional Network Address Trans-
lators (NATs), allocating a new mapping for every new con-
nection and rewriting the headers of every passing packet
according to the mapping. In cloud systems, these devices
are distributed, replicated, and serve an additional purpose as
software load balancers that spread requests over available
backend servers. A single service/VIP typically has a dedi-
cated set of SLBs based on its scale (e.g., ∼7–20, including
replication).

The path of packets in public clouds. In the presence of
SLBs, packets can take different paths depending on the rela-
tionship between their source and destination (Figure 1):

Internet traffic: Incoming packets from the Internet are
always routed through an SLB to translate from the service’s
publicly visible VIP to a relevant internal DIP [15, 21, 22, 43,
50, 63]. Unlike most other NAT-like mechanisms, response
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packets are usually sent back directly, bypassing the SLB
using techniques like Direct Server Return (DSR) [15, 50].

Inter-service traffic: Inbound traffic from other services
within the same provider also passes through SLBs [15, 21,
22, 43, 50, 63], which still need to perform the same VIP-to-
DIP translation. This is true even if the two service’s servers
are physically adjacent. Note that, like with Internet traffic,
outbound traffic can bypass the responder’s SLB; however,
even in this case, the packet will still need to pass through
the SLB responsible for the destination VIP(s), as shown in
Figure 1. Note that while cached DIPs have been suggested to
bypass inbound SLBs on the fast path [50], this optimization
is currently disabled for major classes of production traffic
due to load imbalance and cache management issues. The
implication is that, at least for public clouds, this need to
interpose on all inbound traffic is ubiquitous [10, 15, 63].

Intra-service traffic: Finally, messages between sources
and destinations belonging to the same VIP are sent directly,
bypassing the SLBs entirely.

Typical service communication patterns. In parallel to the
above, we note that modern cloud services rarely operate in
isolation. Frontend services typically rely on a wide array of
backend services, e.g., to handle storage, analytics, and learn-
ing, thus triggering inter-service traffic. The rise of managed
cloud service offerings and microservice design patterns have
further encouraged modularity and the associated growth in
the number of distinct services involved in processing a single
user request. At a more basic level, most cloud services take
requests from and return responses to external clients, each
with its own internal, causality-carrying logic.

2.2 Revisiting the Chandy-Lamport Snapshot

The ability to capture a consistent snapshot of a cloud ser-
vice’s global state is a powerful tool. Indeed, many problems
in distributed systems boil down to determining the global
state across machines, including distributed logging and de-
bugging, network telemetry, checkpointing and recovery, and
deadlock detection [3, 11, 17, 33, 56, 60].

Intuitively, a snapshot is a collection of local states captured
from the processes of a system. For simplicity, we omit
channel states in our definitions, but the analysis is similar.
The snapshot is deemed consistent if the captured states at
each process ‘cut’ the timeline of events in a way that respects
the following definition:

DEFINITION 1. (Consistent Snapshot [11, 56]). For a
snapshot, let C be the set of events on every process that
occurs before the ‘cut’. C is causally consistent iff ∀e ∈C, if
e′→ e, then e′ ∈C, where x→ y denotes that x ‘happened
before’ y.

The seminal Chandy-Lamport algorithm was the first to
present a solution for this problem. We refer the interested
readers to the original paper [11] or a distributed systems

Universe of all processes

p0

p1

e0 e1 e2

e3

e4
e5

Figure 2: A minimal example of a consistent cut for 2 pro-
cesses p0, p1 and 6 events e0,1,...,5. The global snapshot
formed from the collection of and is a ‘causal cut’ of
the event timelines for all processes, where and indi-
cate snapshot initiations triggered out-of-band or by receiving
marker messages, respectively.

textbook [33,56] for complete details, but we give a simplified
description of the model and the protocol below:

• Model: A system involves a set of asynchronous processes
P = {p0, p1, . . . , pN−1} that interconnect with each other
through FIFO message channels. Each process pi holds
state of interest, si, that may change in response to local
events (e.g., local computation, message sends or receives,
etc.). A global snapshot involves a union of states {si}
recorded at different times for all processes.

• Protocol state machine: The protocol requires coordina-
tion in all processes p ∈ P. An initiator process first
records its local state and then sends a marker message
to all others. The captured state is application-dependent
and can range from a single bit representing the state of
a lock to all of local memory. When any other process pi
receives a marker message for the first time, it records its
state si and, to ensure consistency, sends marker messages
immediately through all other channels.

Later variants refine the basic algorithm to generalize chan-
nel assumptions, allow for concurrent initiation, or reduce
message complexity [26, 33, 34, 41, 57, 60]. In particular, the
Lai-Yang algorithm permits non-FIFO and lossy channels
by having processes piggyback a single marker bit in every
sending message [34] rather than sending separate marker
messages as in the original protocol. Upon receiving a mes-
sage with a marker bit set, the receiving process first records
the local state, processes the payload, and sets the bit for fu-
ture sending messages. Additional bits can be used to support
concurrent snapshots. Figure 2 shows a consistent cut with
the Lai-Yang algorithm.

2.3 A Case for Partial Snapshots

The above snapshot algorithm makes a fundamental and im-
plicit assumption that all processes that can communicate
with processes in P are themselves in P. Unfortunately, as
previously mentioned, today’s cloud services are frequently
interconnected, with efforts toward modular design and man-
aged solutions promoting increasing complexity in the de-
pendency graph over time. As a rough indication of severity,
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In-group processes

pout0
e′0

e′1
e′2

e′3 e′4

e′5

Out-group processes

pin0

pin1

Figure 3: An application where a distributed serving system
is accessed by an external user (e.g., an Apache Airflow work-
flow). The out-group process pout

0 imposes a hidden causal
relationship e′4→ e′5 between events e′4 and e′5, rendering a
traditional snapshot of only the serving system inconsistent.

previous studies have shown that inter-service traffic com-
prises 10–50% of total traffic in the data center, and Internet
traffic accounts for 5–25% [21, 22, 50].

Consider, for instance, a HuggingFace-like ML inference
service [2] that hosts a collection of models that can be ac-
cessed from external clients. As they are externally visible,
the models are frequently used in larger jobs, e.g., as part of
an interactive chatbot (where clients submit requests based on
prior responses) or more complex Apache Airflow workflows.

The inference service might want to capture a service-wide
statistic (e.g., tracking the maximum number of in-flight re-
quests) to decide on the number of servers to provision. Any
analysis of the developer’s application that does not consider
the potential dependencies introduced by external services or
clients will miss important causal dependencies.

Figure 3 shows a simple example of this, where a single ex-
ternal Airflow job makes requests to multiple models hosted
by the inference service such that only one request is outstand-
ing at any given time. Occasional internal messages are for
monitoring and coordination. Although there is at most one
outstanding request at any given time, a traditional distributed
snapshot that only considers the inference service will not
respect that bound.

For example, in Figure 3, the depicted cut ‘observes’ two
inflight messages because it fails to capture the external in-
teractions (e′5 ∈ C, yet e′4 /∈ C). In fact, for a single client
that issues a single request at a time, an n-server snapshot
can ‘observe’ any number of in-flight requests [0, n]. These
arbitrary results can cause the developer to waste money and
resources on redundant provisioning. More broadly, while
the frequency and consequences of consistency violations are
application-dependent, there is often a meaningful difference
between ‘correct’ and ‘incorrect’.

Although converting all cloud services into participants
of the snapshot protocol might be possible given either (a)
a well-resourced developer who can implement and man-
age everything (even if machines are geo-distributed or on
the broader Internet) in-house or (b) support from the cloud
provider to propagate snapshot markers on all packets, these
approaches are not always feasible. For (a), the popularity of

In-group processes

pout0 e′0

e′1
e′2

e′3
e′4

Out-group processes

e′6
e′7

e′8
e′9

Monolithic gateway overlay

G

e′5

pin0

pin1

Figure 4: With the gateway indirection, Beaver’s MGM re-
sults in a new frontier at the in-group process pin

1 that precedes
rather than succeeds the event e′5 (as in the scenario of Fig-
ure 3), converging to a consistent partial snapshot.

managed services demonstrates their importance to low-cost
and agile development. For (b), forced instrumentation can
lead to overhead and fragmentation for users not involved in
the snapshot. Even worse, if the external source of depen-
dencies is a human (e.g., accessing your service through a
browser), incorporating her into the snapshot is impractical.

A formal definition of partial snapshots. We seek the design
and implementation of a partial snapshot. In a partial snapshot,
processes are divided into two groups. The first, in-group
processes Pin, are the machines of the VIP(s) of interest. The
second, out-group processes Pout , includes all other machines,
whether in the same data center or the broader Internet.

Given these sets, we refine Definition 1 to obtain a defini-
tion of consistent partial snapshots:

DEFINITION 2. (Consistent Partial Snapshot). Consider
a universe of processes P = Pin ∪Pout , Pin ∩Pout = /0. Let
Cpart be the set of pre-snapshot events for Pin. Cpart is causally
consistent iff ∀e ∈Cpart, if e′.p ∈ Pin∧ e′→ e, then e′ ∈Cpart.

Similar to traditional snapshots, for a set of in-group pro-
cesses Pin, if a consistent partial snapshot includes the effect
of an event e, it must include any event e′ at p ∈ Pin that
leads to it. Like traditional snapshots, the ‘happened before’
relation, → is transitive and defined over events in the uni-
verse of processes. Unlike traditional snapshots, however, the
included events only account for in-group events.

3 Gateway Marking

This paper introduces Beaver, a partial snapshot primitive that
captures a causally consistent collection of state for cloud
services sitting behind one or more operator-specified VIPs.

Fundamentally, the nodes in Pout are uncontrollable and,
as a result, can introduce arbitrary hidden causal relation-
ships, disrupting the consistency of traditional snapshots. At
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Symbol Description

P Set of all processes.
Pin Set of in-group processes with states of interest.
Pout Set of out-group processes without any control.
G Set of gateways handling inbound traffic for Pin.

C Set of pre-snapshot events for a snapshot ‘cut’.
e Event tuple e = (p,m, t).

e.p The process at which an event e occurs.
e.m The message involved in an event e, if any.
e.t Global wall clock time, for ease of discussion.

ess
gmax The event when the last gateway is in a new snapshot.

ess
gmin The event when the first gateway is in a new snapshot.
ess

g The event when g ∈ G enters a new snapshot.
ess

p The event triggering p ∈ Pin to enter a new snapshot.

d(p,q;V ) One way delay from p to q with intermediate nodes
v ∈V (p,q ∈ (P∪G), V ⊆ (P∪G)) in sequence.

τmin Min time for an external causal chain to occur.

Table 1: Summary of notations in Beaver.

the core of Beaver is a primitive called Optimistic Gateway
Marking (OGM), which allows Beaver to detect when such
causality violations may have occurred. As we show later in
§5, by combining this primitive with common-case features
of today’s cloud data centers, Beaver can provide:
• Partial deployability where only the in-group machines

for the target VIP(s) participate while ensuring high-rate,
consistent partial snapshots for the target service(s).

• Minimal cost for data center infrastructure, for example,
without switch reconfiguration or additional SLB replicas.

• Near-zero impact on existing data center service traffic.
In this section, we first introduce a strawman version of

the primitive before discussing practicalities and how Beaver
addresses them with OGM in §4.

Strawman: Monolithic Gateway Marking (MGM). Beaver
starts with a simple idea: for all packets originating from
out-group nodes and destined for in-group nodes, route them
through a gateway. The gateway is responsible for two tasks:
1. Tagging incoming packets to in-group nodes with snap-

shot markers.
2. Initiating snapshots by tagging all subsequent inbound

messages accordingly.
After the gateway initiates a snapshot, the protocol pro-

ceeds as a traditional snapshot among the in-group nodes. For
the strawman, assume that the gateway is implemented by a
single monolithic node. Figure 4 shows an example execu-
tion using the above protocol and the same application-level
communication pattern as Figure 3. In contrast to Figure 3,
indirection and marking via a gateway cause pin

1 to take the
snapshot at the correct time. In a way, the gateway node in this
protocol can be seen as a stand-in for all nodes in Pout . We
can prove that MGM produces a consistent partial snapshot.

THEOREM 1. With MGM, a partial snapshot Cpart for
Pin ⊆ P is causally consistent, that is, ∀e ∈ Cpart , if e′.p ∈
Pin∧ e′→ e, then e′ ∈Cpart .

PROOF. Let e.p = pin
i and e′.p = pin

j . There are 3 cases:

1. Both events occur in the same process, i.e., i = j.
2. i ̸= j and the causality relationship e′ → e is imposed

purely by in-group messages.
3. Otherwise, the causality relationship e′→ e involves at

least one p ∈ Pout .

In cases (1) and (2), the theorem is trivially true using
identical logic to proofs of traditional distributed snapshot
protocols. We prove (3) by contradiction.

Assume (e ∈Cpart)∧ (∃e′→ e) but (e′ /∈Cpart). With (3),
e′→ e means that there must exist some eout (at an out-group
process) satisfying e′→ eout → e. Now, because e′ /∈Cpart ,
we know ess

pin
j
→ e′ or ess

pin
j
= e′, that is, pin

j ’s local snapshot

happened before or during e′. Combined with the fact that
the gateway is the original initiator of the snapshot protocol,
we know that ess

g → e′→ eout → e.
We can focus on a subset of the above causality chain:

ess
g → e. From the properties of the in-group snapshot proto-

col, ess
g → e implies e /∈Cpart .

This contradicts our original assumption that e ∈ Cpart!

Theorem 1 implications: Beyond correctness, the strawman
exhibits several valuable properties:

1. Obliviousness to out-group semantics: The proof treats
the internals of the out-group processes as a black box.
In fact, the protocol remains correct, even if the causal
dependency results from multiple network hops through
distinct out-group nodes or if an element of the out-group
chain is a human.

2. Obliviousness to outbound messages: The gateway only
needs to observe messages inbound to in-group processes
without requiring any visibility or tagging of outbound
messages. MGMs achieve this by initiating the snapshot
at the gateway, which—as a stand-in for Pout—obviates
the need to track dependencies carried to the out-group.

SLBs as a candidate for gateway marking. The SLBs de-
scribed in §2.1 are a convenient candidate for implementing
gateway marking as VIPs are a natural granularity for service-
specific partial snapshots, and SLBs already interpose on all
incoming traffic to a VIP—regardless of whether it is from
the Internet or a different service. MGM’s obliviousness to
outbound messages helps here as well, making the system
amenable to DSR.

Of course, assuming that a single server can handle all
incoming traffic to a service is not feasible. The scale of
modern SLBs serves as proof that even for simple gateway
processing incoming requests for a single service, multiple
servers are necessary to handle typical data volumes, load
balance among SLBs, and provide fault tolerance.
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Figure 5: An inconsistent partial snapshot using two asyn-
chronous SLBs g0,g1. When e′8.m arrives at g1, g1 has not
initiated the new snapshot mode to mark the message, thus
triggering the violation.

4 Optimistic Gateway Marking (OGM)

Beaver extends gateway marking to practical, distributed envi-
ronments using OGM. First, to see why asynchronous SLBs
could break the consistency guarantee, consider a simple sce-
nario in Figure 5 where two SLBs, signaled by an out-of-band
controller, initiate a new snapshot. When g0 initiates snapshot
mode and marks e′6.m, it triggers a snapshot at pin

0 . However,
a new message e′2.m from pout

0 is routed to a different gateway
g1

4, which has not yet entered snapshot mode. This leads to
inconsistency: while e′5 ∈C and e′4→ e′5, e′4 /∈C.

To block or not to block? An obvious solution would be to
block inbound packets at SLBs during a snapshot and only
resume forwarding them after all SLBs have ‘committed’
to the new snapshot. Unfortunately, this method introduces
large overheads—not only to the applications, whose response
times will spike while the SLB is blocking requests but also
to the cloud providers, where the SLB would require large
buffers and overprovisioned capacity to drain said buffers
after a snapshot.

Rather than trying to enforce consistency, Beaver seeks
a method to (a) detect inconsistency, (b) reject snapshots
when they are potentially inconsistent, and (c) minimize the
rejection rate. It seeks to do this with near-zero overhead for
applications and cloud infrastructure.

4.1 Causal Relevance and Irrelevance

A key idea in Beaver is that, even among the incoming traffic
to the in-group, only a subset of that traffic is causally relevant.
Using Figure 5 to illustrate, an incoming message, m, is
causally relevant only when (1) an initiated SLB (g0) sends
a marked message to an in-group node (e.g., pin

0 ), (2) that
node interacts directly or indirectly with an out-group node

4This is typical in ECMP routing, where connections even from the same
source may reach different SLBs.

(e.g., pout
0 ), and (3) that out-group node sends m back to

a different in-group node via an uninitiated SLB (e.g., g1).
Other communication patterns, e.g., an m triggered by an
uninitiated process, are causally irrelevant.

In essence, causally relevant messages are only produced
if the message loop: GWA → INA → OUT → GWB all oc-
curs within the window of time in which the gateways are
propagating snapshot initiation. More formally:

THEOREM 2. In a system with multiple asynchronous
gateways, let the wall-clock time of the first and last
gateway initiating snapshots be ess

gmin.t = miness
g (e

ss
g .t) and

ess
gmax.t = maxess

g (e
ss
g .t), ∀g ∈ G, respectively. Also let τmin =

min(d(g,g′;{p,q})), ∀g,g′ ∈ G, p ∈ Pin, and q ∈ Pout . If
ess

gmax.t− ess
gmin.t < τmin, then the partial snapshot is causally

consistent.

PROOF. We extend the proof of Theorem 1 to a distributed
setting. Similar to Theorem 1, there are three cases, with (3)
being the one that differs. We again prove it by contradiction.

Assume (e ∈Cpart)∧ (∃e′→ e) but (e′ /∈Cpart). As before,
there must be some chain e′→ eout → eg→ e. Because e′ /∈
Cpart , we have ess

pin
j
→ e′ or ess

pin
j
= e′, that is, pin

j must have

been triggered directly or indirectly by an inbound message.
Denote the arrival of this inbound message at its marking
gateway as eg′ . By the definition of τmin, we have eg.t−eg′ .t ≥
τmin > ess

gmax.t− ess
gmin.t. Thus, at event eg, the gateway must

have already initiated the snapshot and will mark eg.m before
forwarding. This results in e /∈Cpart , a contradiction!

Theorem 2 implications: Informally, this theorem suggests
that if the time gap between the first and last SLB snapshot
initiations (ess

gmax.t− ess
gmin.t) is sufficiently small, or the min-

imum time for a message to revisit a gateway (τmin) is long
enough, causally relevant messages are impossible and the
concerned partial snapshot is provably consistent5.

Causally relevant messages are rare in the real world. In-
tuitively and with anecdotal evidence, the inequality ess

gmax.t−
ess

gmin.t < τmin can be satisfied with an exceedingly high prob-
ability in real-world contexts:

For the LHS (ess
gmax.t−ess

gmin.t): This time gap is essentially
the difference in one-way delays between the controller and
each of the SLBs. As SLBs share a region with the target
service, a well-placed initiator (e.g., equidistant from all target
SLBs or one whose messages are forced to travel to the root
of the data center fabric) can simultaneously ensure reactive
snapshot initiation and ess

gmax.t− ess
gmin.t of near zero.

For the RHS (τmin): This value includes multiple network
hops, extending from an SLB to in-group nodes, then to
out-group nodes, and back to an SLB. Particularly when out-
group nodes are in other data centers or are end-host clients,

5In principle, another sufficient condition is when the in-group snapshot
completes quickly enough. We do not rely on this because it has worse scaling
properties than SLB convergence, but it can be added as an optimization.
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Figure 6: The time difference t1− t0 as a safe upper bound for
ess

gmax.t− ess
gmin.t by querying a single hardware clock source

with bounded frequency drift.

this value can be orders of magnitude higher than typical
values for the LHS—on the order of milliseconds or tens of
milliseconds. However, even when the out-group nodes are
in the same region or data center as the in-group, we can
still expect that this value is higher than any observed delta
between initiator-to-SLB one-way delays as it includes at
least three trips through the data center fabric in addition to
processing time at the in/out-group network stacks6.

4.2 Efficiently Verifying Causal Irrelevance
The primary technical challenge of OGM is minimizing the
LHS of the above inequality and efficiently/confidently verify-
ing that the resulting inequality held for a given snapshot, even
in the presence of message drops, delays, and other sources
of unexpected latency. The cloud provider can compute the
two sides of the inequality separately.

4.2.1 Computing a Lower Bound for the RHS

For the RHS, the value can be determined statically, as dy-
namic network conditions like failures and congestion can
only add to the latency of the message sequence. The la-
tency is then equivalent to the sum of each hop’s minimum
propagation, transmission, and processing delays. These val-
ues depend on the relative placements of the in-group nodes,
SLBs, and out-group communication partners, but all of those
are known at runtime. To ensure a conservative lower bound,
operators can and should assume that application-level pro-
cessing and transmission delays are zero (Figure 13).

4.2.2 Determining an Upper Bound for the LHS

The LHS is harder to compute statically as failures and con-
gestion mean a true upper bound may not exist7. Instead,
we need to measure an upper bound online for the observed
difference between gateway timestamps (ess

gmax.t−ess
gmin.t) for

the snapshot in question.
6Even with the detection criteria later described in §4.2, LHS entails only

2 trips and encompasses a simpler data path with SLB stacks that are heavily
optimized for minimal processing latency and jittering [15, 18, 22, 63].

7Beyond the heat death of the universe or at least the life of a data center.

Rubidium JILA Sr Quartz Quartz (calibrated)

∆ f ±0.05 ppb ±2.1×10−18 ±100 ppm ±100 ppb

Table 2: Frequency drift (∆ f ) uncertainty range of today’s
clocks, ppb (parts per billion) = 10−9, ppm (parts per million)
= 10−6.

The typical method of measuring time gaps on different ma-
chines is via clock synchronization. Although today’s clock
synchronization techniques can achieve microsecond or sub-
microsecond precision, fundamentally, they rely on frequent
cross-machine messaging to correct the offset, which is sensi-
tive to congestion and failures, thus impacting the bound on
clock drift in the worst case [23,62]. Data center services like
TrueTime provide a reliable interface to query time points and
calculate their differences. However, a general timing service
incurs higher overhead and a typical clock uncertainty range
of 1–7 ms [13], much greater than the timescales relevant for
Beaver detection.

Synchronization-free approach. Beaver adopts an alterna-
tive, customized approach using a single hardware clock to
calculate the elapsed time. As depicted in Figure 6, the con-
troller queries the start time at t0 from this clock source with a
read tr

0 before initiating a new snapshot. Once the final ACK
from the SLBs arrives, it reads the end time tr

1 at t1 from the
source, where t0, t1 represents the global wall clock time, and
tr
0, t

r
1 the actual clock reads. This hardware clock can be a local

hardware clock from either a COTS PCIe NIC [46] or from
one equipped with an atomic clock, which are increasingly
deployed in production data centers [42, 48].

Note that t1− t0 is an upper bound on the LHS as t1 >
ess

gmax.t and t0 < ess
gmin.t. Thus, if t1− t0 < τmin, the partial

snapshot under examination is consistent. In practice, the time
difference tr

1− tr
0 is adjusted to account for the maximum fre-

quency drift ∆ f according to the clock data sheet, to determine
an upper bound estimate for the corresponding elapsed time
t1− t0, thus the detection criteria (tr

1− tr
0)× (1+∆ f )< τmin.

This method, which relies solely on a single hardware clock
to calculate time differences, eliminates issues common in
traditional clock synchronization approaches, such as cross-
machine message congestion and errors stemming from de-
lays in clock readings due to software interrupts. The fre-
quency drift of a single clock is relatively low and is mainly
deterministically affected by temperature, which has low vari-
ance in modern data centers [38, 44, 59]. Standard quartz
crystal oscillators in production data centers typically drift by
±100 ppm, or 0.01% error [13, 25, 36, 38, 44]; recent studies
are able to reduce this drift of quartz clocks in commodity
data center servers to ±100 ppb (10−7 error) by calibrating
the offset due to temperature variations. More advanced os-
cillators (e.g., atomic clocks) can reduce this frequency drift
by further orders of magnitude [29, 45] (Table 2).

Snapshot invalidation. While ensuring correctness (i.e., no
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false negatives), our proposed upper bound adds an additional
margin to the original time gap. This margin comprises the
clock query latency and the RTT between the controller and
the SLBs, which may lead to false positives. In practice,
however, we note that many devices support precise hard-
ware timestamping along with the packet data path (i.e., when
sending the first notification and when receiving the last noti-
fication). Our evaluations on a cloud data center in §7 reveal
that the resulting snapshot invalidation rate is < 5% for typ-
ical SLB scales today, even in worst-case scenarios when
the out-group nodes are in the same data center and under
stressed snapshot operation frequencies.

In the end, false positives—while leading to the invalida-
tion of potentially consistent snapshots—are of little concern
due to our system’s efficient snapshot operations and its ability
to achieve a high snapshot rate.

5 Beaver’s Partial Snapshot Protocol

As mentioned previously, Beaver’s snapshot ‘quantum’ is a
single VIP—Beaver can provide snapshots for one or more
such VIPs within a single region.

Operation. At a high level, Beaver’s partial snapshot protocol
distinguishes itself from traditional snapshots in two aspects:
(1) its lightweight SLB marking logic for inbound traffic and
(2) the snapshot verification process at the controller.

In-group processes: Among in-group processes, Beaver
inherits its coordination logic (and the omitted, optional
recording of in-flight messages) from prior snapshot algo-
rithms [34, 60] that piggyback ‘marker’ information per mes-
sage to handle non-FIFO and lossy channels8. Figure 7 de-
picts the core logic: upon receiving a packet, either from an
SLB or another in-group process, the current in-group process
evaluates if pkt.sid > csid. If true, it signals a new snapshot
operation: it records the relevant state, updates the local csid,
and asynchronously notifies the controller of completion. For
outgoing packets, if the destination address falls within the
scope of in-group processes, the process updates pkt.sid to
its current csid.

SLBs: As discussed in §4, Beaver instantiates the gateway
overlay with the SLBs. For the set of SLBs handling the
target in-group process traffic, Beaver embeds logic for mark-
ing inbound messages. On receiving an inbound packet, an
SLB first checks if the destination VIP is for the in-group
[line 16]—since operators may multiplex a single SLB server
for multiple VIPs—and modifies the snapshot ID field ac-
cordingly. On the control path, the SLB initializes a new
snapshot upon receiving an ‘INIT’ notification from the con-
troller and subsequently sends the acknowledgment to the
controller. This process happens out-of-band to avoid biases
in the snapshot verification process. Combined, Beaver’s

8Optional broadcast of marker messages from SLBs to in-group processes
may accelerate the snapshot convergence when service traffic is infrequent.

• csid: Current snapshot ID state for p ∈ Pin or g ∈ G.
− pkt.sid: Snapshot ID (Nb) in SLB encapsulation header.
− pkt.dst: Destination address of a user packet.
− pkt.src: Source address of a user packet.

1 function IN-OnReceive (pkt):
2 /* Signaled a new snapshot */
3 if pkt.sid > csid then
4 Record the state of interest;
5 Send FIN for csid +1, . . ., pkt.sid to the controller;
6 csid← pkt.sid;

7 function IN-OnSend (pkt):
8 if pkt.dst ∈ Pin then
9 pkt.sid← csid;

10 function SLB-OnReceive (INIT):
11 if INIT.sid > csid then
12 csid← INIT.sid;
13 ACK for csid +1, . . . , pkt.sid to the controller;

14 function SLB-OnReceive (pkt):
15 /* Mark inbound packet from out-group */
16 if (pkt.dst ∈ Pin)∧ (pkt.src /∈ Pin) then
17 pkt.sid← csid;
18 Forward packet to pkt.dst;

Figure 7: Logic for partial snapshots at in-group processes
and SLBs. All control plane operations are asynchronous.

gateway logic requires minimal processing and can be incor-
porated into existing SLB data planes at line rate, including
hardware-accelerated ones.

Controller: With Beaver, operators can designate any
server with direct or indirect access to a stable clock source,
preferably located near the pertinent SLBs, as the controller.
The core logic to initiate snapshots, shown in Figure 8, in-
volves continuously sending INIT commands to SLBs to
initiate new snapshots. The protocol maintains the number
of snapshots in flight and controls the snapshot frequency.
The detection of invalid snapshots follows the methodology
outlined in §4.2: The controller queries the clock read for
t0 before sending notifications [line 5] and uses the clock
reads upon receiving the last ACK to determine the snap-
shot’s validity [line 20]. It the local NIC supports hardware
time-stamping capabilities, queryClock() can occur along
the data path during the send of the first INIT notification and
the receive of the last ACK response.

Handling packet loss, delay, and reordering. Beaver is
robust to faults in data- and control-plane communications.

Data plane: Unlike the original Chandy-Lamport protocol,
which relies on separate marker messages, Beaver draws inspi-
ration from subsequent variants [34,60] to incorporate marker
information by piggybacking it into existing traffic. This
piggybacking makes Beaver inherently resilient to ‘marker’
losses and reordering on the data path, whether these occur
within the network core or the host networking stacks.

Control plane: Although timely and reliable delivery of
control messages can be beneficial (e.g., through an alternate
port that is dedicated to control tasks) Beaver does not de-
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• csid: The next snapshot ID to initiate at the controller.
• receivedFIN[sid][p]: If received FIN from p ∈ Pin for sid.
• receivedACK[sid][g]: If received FIN from g ∈ G for sid.
• t0[sid]: Timestamp t0 for sid.
− FIN.p: The source process sending the FIN.
− FIN.sids: The associated sid(s) of the FIN.
− ACK.g: The source SLB sending the FIN.
− ACK.sids: The associated sid(s) of the ACK.

1 function Controller-OnSnapshot():
2 num_inflight_ss = 0, csid = 0;
3 while num_inflight_ss < 2N−1−1 do
4 /* Optional rate-limiting for less greedy snapshots */
5 t0[csid] = queryClock();
6 Send INIT s (INIT.sid = csid) to all g ∈ G;
7 num_inflight_ss += 1, csid += 1;

8 function Controller-OnReceive(FIN):
9 for sid ∈ FIN.sids do

10 receivedFIN[sid][FIN.p] = 1;
11 /* Check all FINs received with bitwise negation */
12 if ∼ receivedFIN[sid][·] == 0 then
13 num_inflight_ss−= 1;
14 receivedFIN[sid][·] = 0;

15 function Controller-OnReceive(ACK):
16 for sid ∈ ACK.sids do
17 receivedACK[sid][ACK.g] = 1;
18 /* If all ACKs received */
19 if ∼ receivedACK[sid][·] == 0 then
20 if (queryClock()− t0[sid])(1+∆ f )< τmin then
21 /* Accept the snapshot */
22 else
23 /* Invalidate the snapshot */
24 receivedACK[sid][·] = 0;

Figure 8: Main controller logic for continuous snapshots.

pend on it for its core functionality. It operates effectively
even with unreliable transport protocols such as UDP and it
requires only a negligible number of control messages: |Pin|
FIN messages (or less as members of the in-group, Pin, can
batch updates in a single ACK on the increments in prior
snapshots), |G| INIT commands, and |G| ACK responses for
each snapshot.

While delays or losses of the above messages might slow
down the snapshot rate—a minimal impact as observed in
our evaluation—they do not compromise the correctness of
Beaver. The controller, in response to any delays or losses,
simply invalidates the affected snapshot.

Handling failures. One important problem is how to han-
dle failures of the SLBs and backend servers. Fortunately,
most public clouds today already apply central management
mechanisms that ensure fault tolerance and state consistency
during changes in membership of machines for each VIP9

[10, 15, 22, 50]. Operating on top of the abstraction, Beaver’s
controller coordinates with the SLBs and backend servers
belonging to the requested VIP (as indicated by the current
central state), incurring minimal additional costs and deploy-

9Unlike the DIP caching feature in §2.1, the consistency mechanism was
originally absent in [50], but later incorporated as an essential component.

Layer-3 switches

Internet

SLBs Controller Backend servers
(w/ in-group VIP)

Client

Data center A

1

Backend servers

Data center B

2

3

Figure 9: Evaluation setup considering three different out-
group locations: within the same data center, data center of a
different region, or on the Internet (from a local laptop).

ment complexity. To handle failure events during a snapshot,
Beaver incorporates a single ACK mechanism (Figure 8): if
the controller does not receive the ACK from an SLB or an
in-group process, Beaver simply invalidates the snapshot or
drops affected states while guaranteeing correctness.

Supporting parallel snapshots. Many cases, such as event-
driven or telemetry tasks, require higher-frequency state cap-
ture [60, 61]. Rather than waiting for the completion of one
snapshot before initiating another, limiting the snapshot rate to
the slowest component in the snapshot convergence process,
Beaver can initiate snapshots concurrently. The controller
ensures that the number of packets in flight remains within
2N − 1 [line 3 in Figure 8], the maximum concurrent snap-
shots supported by the header field sid. The extra −1 in the
exponent is to eliminate ambiguities in comparator operations
at in-group processes [line 3 in Figure 7] under worst-case
wrap-around conditions.

Beaver also supports parallel snapshots for distinct groups
of VIPs without needing extra metadata. This is facilitated by
the SLBs’ ability to naturally segregate operations based on
VIP information. Consequently, the same sid header space
can be utilized for simultaneous snapshots across groups with
non-overlapping VIPs.

6 Implementation

We implement a Beaver prototype on a cloud data center [14]
(Figure 9) that aligns with a production setup [15, 28, 50].

Supporting SLB-associated functionalities. We implement
an end-to-end workflow to mirror the behaviors associated
with SLBs in production data centers [15, 28, 50]. Addi-
tionally, our system facilitates automated service discovery
operations through an out-of-band controller server.

SLB implementation: Our setup configures DELL EMC
PowerSwitch S4048-ON [1] for layer-3 ECMP forwarding
based on service VIPs to SLBs. Emulating prior work [15,28],
we implement the core SLB functions with DPDK [19], in-
volving around 1860 lines of C/C++ code. Each SLB main-
tains an in-memory connection flow state, employs consistent
hashing on the 5-tuple of each packet to determine the ap-
propriate backend server, and caches the decision for future

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    241



decisions. Then, the SLBs encapsulate the inbound packet’s
header and forward it to the backend server with the destina-
tion DIP. To maximize utilization of SLB servers, we perform
load balancing across different CPU cores using RSS.

Backend servers: To maintain transparency for the upper-
layer applications, we implement the re-computation of
checksums, NAT caching in a shared eBPF map, and the
de-encapsulation of incoming packets from the SLB via
XDP [27]. For outbound packets, we instrument the Linux
tc to look up the NAT entries and perform the header trans-
formations to replicate Direct Server Return (DSR). In total,
they involve 1040 lines of C/C++ code.

Topology. Our testbed supports typical communication pat-
terns, encompassing a variety of out-group positions, includ-
ing other VIPs within the same data center, VIPs in other data
centers, and Internet clients—all through the layer-3 switches
and SLBs, along with DSR on the return path. We scale up
to 16 SLB servers, each capable of supporting 64 in-group
processes, due to limits in resource availability. Our cur-
rent testbed servers are equipped with Intel(R) Xeon(R) CPU
E5-2640 v4 @ 2.40GHz and dual-port ConnectX-4 Lx NICs.

Integrating the Beaver protocol. We implement Beaver’s
partial snapshot protocol from §5. The SLBs append a snap-
shot ID to inbound packet headers that encapsulate the destina-
tion DIP and the source SLB IP. The in-group processes and
SLBs embed Beaver’s snapshot logic from Figure 7 through
XDP and DPDK. The additional logic involves 68 lines of C++
for SLB data-path logic and 102 lines of C codes for eBPF at
in-group processes. The controller server, following Figure 8,
automates the initiation, control, collection, and verification
of snapshots. We use UDP for bi-directional control messages
with SLBs and unidirectional messages from in-group servers.
The controller currently exploits local NIC hardware times-
tamping (SOF_TIMESTAMPING_RAW_HARDWARE) for precise
timing of INIT and ACK messages on their data path [47].

7 Evaluation

Our evaluation focuses on exploring the following questions.

• Can Beaver sustain fast snapshot rates? How does the
scale of the in-group nodes and SLBs affect? (§7.1)

• What about effective snapshot rates? How often do Beaver
invalidate snapshots in cloud data centers? (§7.2)

• Does Beaver’s distributed coordination affect the existing
service traffic? (§7.3)

• How does Beaver help real-world services? (§7.4)

7.1 Beaver Supports Fast Snapshot Rates

To stress-test Beaver, unless otherwise specified, our evalua-
tion runs Beaver at very high snapshot frequencies. To further
ensure that our performance/overhead results are conservative,
state capture in the snapshots are NOPs. Real local record
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Figure 10: Beaver’s sustained snapshot frequency versus a
strawman approach with blocking operations at varying scales
of SLBs and backend processes.
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Figure 11: Beaver’s effective snapshot rates under varying
snapshot frequencies and in-group process scale.

operations (which are application-dependent and orthogonal
to the study of distributed snapshot protocols) will only result
in less contention and overhead.

As a measure of Beaver’s efficiency and scalability, even at
these high rates, Beaver exhibits good performance. Figure 10
shows the maximum snapshot rate compared to a strawman
approach, which waits for completion before initiating an-
other. The maximum rate is determined by increasing the
snapshot frequency until we observe backlogs in the ACK
and INIT message notification queue. We vary the number
of gateways (|G|) up to 16, aligning with typical values for
SLBs assigned to a VIP.

The baseline is limited by the snapshot convergence time,
which depends on factors such as scale, traffic pattern, and
topology. In contrast, Beaver’s parallel snapshot capability
significantly enhances the rate and shifts the bottlenecks to
the processing power of the controller’s CPU. Even at the
maximum scale, Beaver reaches a snapshot rate of > 77000
Hz, > 18× that of the strawman. In practical applications,
leveraging a more powerful processor or scaling the controller
server could further improve its speed.

7.2 Beaver Invalidates Snapshots Infrequently

With a high snapshot frequency, how does Beaver perform
in terms of effective snapshot rates? Recall in §4.2, Beaver
uses an upper bound t1− t0 for the time gap between SLB ini-
tiations (ess

gmax.t− ess
gmin.t) to eliminate the need for time syn-

chronization, it invalidates a snapshot if the bound is greater
than τmin, the minimum time to for an external causal chain
to occur. While this upper bound ensures correctness, it may
reject snapshots and reduces the effective snapshot rate.
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(b) |G|= 4, |Pin|= 256

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

C
D

F

Time difference [µs]

t1-t0

e
ss
gmax.t - e

ss
gmin.t

(t1-t0)-(e
ss
gmax.t - e

ss
gmin.t)

10
0

10
1

10
2

10
3

 0  200  400  600  800  1000

T
im

e
 d

if
fe

re
n
c
e
 [

µ
s
]

Snapshot ID

(c) |G|= 8, |Pin|= 514

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

C
D

F

Time difference [µs]

t1-t0

e
ss
gmax.t - e

ss
gmin.t

(t1-t0)-(e
ss
gmax.t - e

ss
gmin.t)

10
0

10
1

10
2

 0  200  400  600  800  1000

T
im

e
 d

if
fe

re
n
c
e
 [

µ
s
]

Snapshot ID

(d) |G|= 16, |Pin|= 1024

Figure 12: CDF of Beaver’s upper bound t1− t0 with the ground truth (ess
gmax.t− ess

gmin.t) for > 10M snapshots and a zoom in to
its snapshot series, under stressed scenario with 65536 Hz snapshot frequency and varying number of SLBs/processes.

 0

 0.2

 0.4

 0.6

 0.8

 1

10
1

10
2

10
3

10
4

10
5

10
6

τmin

Time window [µs]

Intra-DC
Inter-DC
Internet

Figure 13: Measurement of the minimum time window for a
external causal chain to occur under worst case conditions.

To measure the time for an external causal chain to occur,
we consider three distinct scenarios for out-group process
locations in Figure 9. In each scenario, we set up a worst-case
condition where, immediately following an SLB’s snapshot
initiation, the SLB forwards an inbound packet to the closest
in-group node. The in-group node then loopbacks an immedi-
ate message to out-group node with the shortest path, which
bounces the packet back to any SLB. Figure 13 shows that
the intra-DC scenario results in the shortest time window,
resulting in τmin as 33µs. This value is robust because, even
though varying cloud conditions often cause latency spikes,
they primarily affect the tail rather than the minimum.

To stress test Beaver’s performance, we focus on the worst-
case scenarios with out-group processs located within the
same data center. For other scenarios, τmin is significantly
greater, leading to 100% effective snapshot rates across 10M
snapshot operations. We execute Beaver in various exper-
imental settings, including scale and snapshot frequencies.
For each configuration, we calculate the effective rate based
on more than 10 million snapshots. The results, as in Fig-
ure 11, reveal that the proportion of snapshots invalidated by
Beaver is remarkably low even under the maximum operating
frequencies and scales of our testbed.

To better understand the results, we compare the recorded
upper bound estimation of t1− t0 with the true ground truth
ess

gmax.t − ess
gmin.t. As the two events ess

gmax and ess
gmin occur

on separate SLB machines, we synchronize the clocks of
all SLBs to controller’s PTP master clock over symmetric
paths without contending traffic, which reports maximum
50 ns offsets during the ground truth measurement. This
step, meant solely to understand the behavior, should not be
confused with Beaver’s clock-synchronization-free approach.
Figure 12 shows the comparison over > 10M snapshots when
Beaver operates at a frequency of 65536 Hz. Overlapping tails
of ess

gmax.t− ess
gmin.t and the heads of t1− t0 are expected—the

cdf of the pairwise calculation of (t1− t0)−(ess
gmax.t−ess

gmin.t)
for each snapshot clearly demonstrates that the upper bound
is strictly higher than the ground truth SLB initiation time
gap. The observed outliers in t1 − t0 are typically due to
queueing in our manager’s processing queue at high rates
or asynchrony in SLB initiations. Furthermore, the margin
introduced by t1− t0 over ess

gmax.t− ess
gmin.t is due to the RTT

between the controller and the SLBs, which is used to ensure
the theoretical upper bound without clock synchronization.

7.3 Beaver Incurs Near-zero Impact

We also stress test the overhead of Beaver on user traffic.
Figure 14a compares throughput with and without Beaver
under the 65536 Hz snapshot frequency and the max scale of
our testbed. iperf clients send traffic with varying degree of
the total consumed bandwidth capacity of the 16 SLBs. We
also run YCSB benchmark workloads [12] with varying mix
of read, update, and scan operations, as shown in Figure 14
for backend servers running CassandraDB [6]. The requests
follow zipfian distributions, and the scan length adheres to
the uniform distribution.
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Figure 14: Performances with and without Beaver’s overhead,
normalized to the value without Beaver.
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Figure 15: Example benign and bot access patterns.

The results of various performance metrics are almost iden-
tical, confirming that Beaver has a near-zero effect on service
traffic. This is because Beaver, by design, eliminates any
delay or blocking operations on the data path for distributed
coordination, and the lightweight control path messages are
orthogonal.

7.4 Use Cases

We also examine several use cases of Beaver. These examples
are intended as instruments through which we can understand
its potential utility, differences versus traditional snapshots,
and the semantics of its causal consistency guarantee under
partial deployments that were previously impossible.

7.4.1 Detecting Anomalous Access

Web applications often feature a JavaScript browser fron-
tend for user interaction and a backend providing service
APIs. Consider a legitimate user access in an e-commerce
application (Figure 15a). The frontend calls a Search API
fetch(“example.com/api/v1/search”), followed by a
Stock API fetch(“example.com/api/v1/get_stock”)
for product details. However, malicious traffic, such as web
scrapers, might bypass the initial search stage and directly
query the stock backend, potentially overwhelming the server.
This type of traffic can be challenging to detect as it differs
from legitimate traffic in intent rather than content [16, 31].

Beaver can help detect such anomaly patterns, as its par-
tial snapshot can capture the external dependency of these
requests, even though it occurs through communication with
the Internet. To illustrate, we run a varying mixture of benign
and illegal bot clients on our testbed. The backend servers

Bot ratio = 0% Bot ratio = 5% Bot ratio = 10%
Method TP, FP, TN, FN TP, FP, TN, FN TP, FP, TN, FN

Polling 0, 0.005, 0.995, 0 0.005, 0.062, 0.874, 0.059 0.069, 0.136, 0.666, 0.129
L-Y 0, 0.005, 0.995, 0 0.001, 0.058, 0.886, 0.055 0.011, 0.105, 0.783, 0.101

Beaver 0, 0, 1, 0 0.053, 0, 0.947, 0 0.113, 0, 0.887, 0.001

Table 3: Beaver’s detection accuracy versus (1) polling-based
approach using time synchronization, and (2) Lai-Yang algo-
rithm, a state-of-the-art global snapshot protocol.

Storage A
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put(k) get(k) deref(k) deref(k)

In-group

Beaver 

partial 

snapshot
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traditional 

snapshot

Lambda 

life time

Invoke

Figure 16: Garbage collection for the ephemeral storage for
serverless analytics.

maintain per-client request count in a BPF map through dou-
ble buffering, so as to ‘freeze’ the current state through a sin-
gle switch of the pointer and minimize the impact of blocking
local record calls. Table 3 shows detection results calculated
against the ground truth. We find that Beaver can accurately
recognize the interdependence between the accesses. For ex-
ample, when all clients are benign, Beaver consistently results
in true negatives, aligning with the ground truth. However, a
polling-based approach and traditional snapshots (L-Y) can
result in false positives due to interpretations of erroneous
capture of higher counts at the Search backend than at the
Stock backend.

7.4.2 Serverless Garbage Collection

Backend services that support serverless applications are also
a natural fit, as requests to serverless functions rely on sched-
ulers and logic that are not visible to the backend services or
the serverless functions themselves. Consider an application
that provides storage for a serverless analytics job and uses
reference counting for garbage collection [32]. The storage
service deploys multiple servers for scalability and supports
three primary APIs: get()/put(), which fetch/upload the
object and increment the reference counter, and deref(),
which indicates that the previously fetched object is no longer
in use and decrements the reference counter.

Beaver’s consistent partial snapshots can support safe
garbage collection decisions. To illustrate, we instantiate two
serverless functions through [30] that follow the workflow
of Figure 16 on our testbed. The backend storage maintains
an in-memory state of reference counters for each KV ob-
ject. When a reference counter reaches 0 in a snapshot, the
controller informs the backends to recycle the correspond-
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Figure 17: A simplified example of geo-distributed social
media application [17] which includes distinct services such
as post-upload, post-storage, and notifier.

ing object. During invocations, we also record the incident
counts of invalid get() access or deref() calls. We find
that, across invocations, the Lai-Yang algorithm may produce
inconsistent snapshots (shown in Figure 16) that indicate no
open references to the object—however, λ1 is still keeping a
reference to it. This leads to unsafe decisions to recycle the
object associated with the key and results in an observed in-
valid call percentage of 23–29%. In contrast, Beaver’s partial
snapshots guarantee causal consistency even in the presence
of external communication that ensures safe reclamation of
the object and consistently results in 0 invalid calls.

7.4.3 Integration Testing

Integration testing, commonly used in CI/CD pipelines [24],
extends the coverage of testing to inter-service logic. Unfortu-
nately, applying it to distributed applications can be challeng-
ing. Consider the example shown in Figure 17, a violation
of the application specification occurs when followers in a
region receive a notification and request the storage DB (case
1) before the cross-region protocol actually replicates the post
data. Recent solutions [17, 53] address the inconsistencies by
forming explicit dependencies (case 2). However, the involve-
ment of auxiliary services and additional dependencies make
it difficult to capture a holistic snapshot.

Beaver offers a practical abstraction to test distributed appli-
cations by enabling partial deployment and capturing causal
dependencies relevant to the local service. By snapshotting
states in post-storage and notifier services, developers can
write test cases to verify the crucial invariant above: the
presence of a post in the storage must always precede its
corresponding notification in the notifier service. In partic-
ular, Beaver’s guarantee of causal consistency means that if
a canary solution is correct, a partial snapshot observing a
log in the notifier must have captured the data entry of the
corresponding version in post-storage. Therefore, a single
violating test case will suggest the presence of bugs.

7.4.4 In-flight Message Tracking

We also revisit the example in Figure 3. As mentioned in
§2.2, a useful query is to estimate the number of concurrent
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Figure 18: (a) Example snapshots for in-flight message track-
ing. (b) Comparison of estimated number of in-flight requests
with and without Beaver.
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Figure 19: An example of deadlock detection using dis-
tributed snapshots.

requests, which can inform resource provision decisions. Fig-
ure 18a illustrates a scenario with only one active request.
In theory, traditional snapshots, which fail to capture the
causality between the client’s follow-up request and the prior
response, can give an overestimation of 2 in-flight messages
(indicated by the cut in red). Beaver, in contrast, can capture
the external causality and results in an estimation of no more
than 1 message in flight (indicated by the cut in green).

To validate the behavior in practice, we run 100 clients
concurrently that conform to the poisson arrival pattern on our
testbed. Each backend process maintains a total request and
response count value using a BPF map. Thus, the difference
between the two counters indicates the number of messages
in flight. The controller then collects the snapshot of counter
values and then obtains the aggregate estimate. Figure 18b
shows that traditional snapshots can overestimate the number
of concurrent requests by more than 30%, while Beaver’s
result consistently matches the ground truth. Worse, a higher
number of backends will lead to an overestimation further
divorced from reality.

7.4.5 Distributed Deadlock Detection

A classic use of distributed snapshots is deadlock detection, a
fundamental problem in distributed systems. Consider the sce-
nario in Figure 19, where the machines of a frontend service
interact with a reservation microservice to book flights and
hotels on behalf of its clients. Here, a frontend server acquires
a lock from the backend server for a target resource ID and
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Figure 20: (a) Comparison of transaction throughput (nor-
malized to Beaver). (b) WFG for the inconsistent snapshot in
Figure 19.

releases it after completing its transaction. A deadlock may
occur when a client requests resources that are held by others,
forming a directed cycle in the resource dependency graph
(known as Wait-For Graphs or WFGs). As these systems
(such as those used by Airbnb and Uber) encompass thou-
sands of microservices, each with its own sovereignty [20,64],
global snapshots are challenging and expensive to enforce.

Beaver, however, is amenable to only taking partial snap-
shots of the reservation service. To illustrate, we run backend
processes that maintain the ID list of client(s) currently own-
ing/waiting for the local resources in memory. When the
controller detects a deadlock based on a snapshot, it informs
backend processes to abort the current transaction. We em-
ulate clients that request backend resources in random order
and measure the resulting transaction throughput. Figure 20a
shows that the traditional snapshot algorithm can suffer from
more than 20% throughput drops compared to Beaver. This
is because, without accounting for the external message de-
pendencies, it can render a snapshot that is inconsistent (Fig-
ure 19), which leads to false deadlocks (Figure 20b) and the
unnecessary costs of deadlock resolution operations. Beaver,
on the other hand, guarantees safe detection.

8 Discussion

Instantiating Beaver gateways. Beaver focuses on pub-
lic clouds, which already contain SLBs, imposing minimal
changes and costs to integrate its functionality. We argue
that these are where partial snapshots are most important as
smaller private clouds are easier to modify wholesale [51].
Without cloud providers’ support, cloud tenants could also
deploy their own Beaver-compatible gateways on virtual ma-
chines (e.g., Network Virtual Appliances (NVAs) [7]) to en-
sure consistency under external communication with clients
and human users. This involves additional costs and complex-
ities and can be suitable if NVAs are already in use, e.g., to
provide firewall functionality.

Optimizing local record operations. Similar to classic dis-
tributed snapshot protocols (§2.2), Beaver is agnostic to the
semantics of local record operations. An interesting problem—

orthogonal to the core mechanism of Beaver—is to enable
efficient local-state capturing mechanisms, especially when
the user desires a large target state or a high snapshot fre-
quency. Besides application-specific practices in §7.4, we
postulate that a more generic and opportunistic approach may
minimize their online impacts by focusing on state changes
during IDLE times of the application. We leave a complete
exploration for future work.

9 Related Work

Distributed snapshots. This work builds on the large array
of classic distributed snapshot algorithms [11, 26, 33, 34, 41,
56, 57, 60]. To the best of our knowledge, Beaver formalizes,
designs, and implements the first partial snapshot primitive
that extends their capabilities for practical usage.

Cloud data centers. Beaver is also related to works on vari-
ous facets of cloud data centers, including layer-4 load bal-
ancers [10, 15, 22, 43, 50, 63] and its clock services [13, 23, 25,
36, 38, 42, 44, 48, 59, 62]. For the former, Beaver integrates
its gateway marking logic based on the behaviors of SLBs
fundamental to cloud data center services and implements a
practical prototype aligned with today’s setups. Meanwhile,
Beaver builds on extensive measurement studies that high-
light the reliable properties of frequency drifts of a single
clock. Combined, Beaver presents a unique design without
making any assumptions about clock synchronization that
ensures consistent, high-rate partial snapshots under external
interactions while incurring minimal changes and impacts to
current operations and service traffic.

10 Conclusion

This paper rethinks the classic distributed snapshots and ob-
serves the mismatch of their assumptions with today’s cloud
services. With it, we present Beaver, the first partial snapshot
primitive that advances the capabilities of existing snapshots
for practical usage in distributed cloud services. Central to
Beaver is the design and instantiation of a novel optimistic
gateway marking primitive. Beaver presents a unique design
point by tightly integrating the protocol with the regularities
of data center networks. Our evaluation demonstrates that
Beaver not only can capture partial snapshots at high speed,
but it also incurs near-zero costs to existing service traffic.
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