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Abstract
Recently, directed grey-box fuzzing (DGF) becomes popular
in the field of software testing. Different from coverage-based
fuzzing whose goal is to increase code coverage for triggering
more bugs, DGF is designed to check whether a piece of po-
tentially buggy code (e.g., string operations) really contains
a bug. Ideally, all the inputs generated by DGF should reach
the target buggy code until triggering the bug. It is a waste of
time when executing with unreachable inputs. Unfortunately,
in real situations, large numbers of the generated inputs can-
not let a program execute to the target, greatly impacting
the efficiency of fuzzing, especially when the buggy code is
embedded in the code guarded by various constraints.

In this paper, we propose a deep-learning-based approach
to predict the reachability of inputs (i.e., miss the target or not)
before executing the target program, helping DGF filtering out
the unreachable ones to boost the performance of fuzzing. To
apply deep learning with DGF, we design a suite of new tech-
niques (e.g., step-forwarding approach, representative data
selection) to solve the problems of unbalanced labeled data
and insufficient time in the training process. Further, we im-
plement the proposed approach called FuzzGuard and equip it
with the state-of-the-art DGF (e.g., AFLGo). Evaluations on
45 real vulnerabilities show that FuzzGuard boosts the fuzzing
efficiency of the vanilla AFLGo up to 17.1×. Finally, to un-
derstand the key features learned by FuzzGuard, we illustrate
their connection with the constraints in the programs.

1 Introduction
Fuzzing is an automated program testing technique, which is
usually divided into two categories: coverage-based fuzzing
and directed fuzzing. The goal of the former one is to achieve
high code coverage, hoping to trigger more crashes; while di-
rected fuzzing aims to check whether a given potential buggy
code really contains a bug. In real analysis, directed fuzzing
is very popularly used since the buggy code is often specified.
For example, security analysts usually pay more attention

∗Corresponding author

to the buffer-operating code or want to generate a proof-of-
concept (PoC) exploit for a given CVE [3] whose buggy
code is known. There are some directed fuzzing tools such as
AFLGo [9], SemFuzz [35] and Hawkeye [12]. As we know,
a random input is less likely to reach the buggy code, not to
mention triggering the bug. Thus, most of the tools instrument
the target program for observing the run-time information and
leveraging the information to generate the inputs that could
reach the buggy code. Such fuzzing method is also referred
to as Directed Grey-box Fuzzing (DGF for short).

An ideal DGF should generate the inputs which can all
reach the buggy code. Unfortunately, in real situations, a large
number of the generated inputs could miss the target, espe-
cially when the buggy code is embedded in the code guarded
by many (complicated) constraints (e.g., thousands). Fac-
ing this situation, various techniques (e.g., Annealing-based
Power Schedules [9]) are designed to generate reachable in-
puts. However, even for the state-of-the-art DGF tools (e.g.,
AFLGo [9]), the ratio of unreachable inputs is still high. Based
on our evaluation using AFLGo, on average, over 91.7% of
the inputs cannot reach the buggy code (Section 6).

Such a large amount of unreachable inputs waste lots of
time in the fuzzing process. Traditional program analysis ap-
proaches such as symbolic execution [20], theoretically, could
use the constraints of all branches in the target program to
infer the execution result of the input. However, the time spent
on solving constraints will dramatically increase together with
the increase of the constraints’ complexity. In other words,
the constraints in the path from the program’s start point to
the buggy code could be very complex, which makes them
difficult or even not possible to be solved in limited time.

Inspired by the success of pattern recognition [11,19,34,36]
which could accurately classify millions of images even if they
are previously unseen, our idea is to view program inputs as a
kind of pattern and identify those which can reach the buggy
code. Basically, by training a model using a large number of
inputs labeled with the reachability to the target code from
previous executions, we could utilize the model to predict the
reachability of the newly generated inputs without running
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the target program. However, it is challenging to build such
an accurate model for DGF due to the following reasons.
Challenges. C1: Lack of balanced labeled data. It is neces-
sary to acquire enough and balanced labeled data to train a
deep learning model (e.g, classification for cats and dogs). In
other words, the number of one object’s images should be
close to the number of the other object’s. However, in the
process of fuzzing, the (un)reachable inputs are usually unbal-
anced. Especially, in the early stage of fuzzing, there is even
no reachable input (e.g., for the bug #7 in GraphicsMagick,
the first reachable input is generated after more than 22.6
million executions). Without the balanced labeled data, the
trained model will be prone to over-fitting. One may think of
extending the labeled data just like the way of image transfor-
mation (e.g., resizing, distortion, perspective transformation),
which could increase the number of the object’s images to bal-
ance the training data without changing the identified object.
However, such transformation cannot be applied to program
inputs since even one bit flip may change the execution paths
of inputs and further impact the labels (i.e., let a reachable
input become unreachable).

C2: Newly generated reachable inputs could look quite
different from the reachable ones in the training set, making
the trained model fail to predict the reachability of the new
inputs. This is mainly because the new inputs may arrive at
the buggy code through a different execution path never seen
before. So simply using the inputs along one execution path
to train a model may not correctly predict the reachability of a
new input. One may think of generating various inputs along
different execution paths to the buggy code before training.
Unfortunately, such generation process is out of our control.
He may also wait for a long time before training, hoping to
collect enough inputs along different paths. However, this
may waste lots of time since many unreachable inputs have
been executed with.

C3: Efficiency. In the task of training a model for tradi-
tional pattern recognition, the time spent on training is not
strictly limited. However, in the fuzzing process, if the time
spent on training a model and predicting an input’s reacha-
bility is more than the time spent on executing the program
with the input, the prediction is of no use. So the time cost of
training and prediction should be strictly limited.
Our approach. In this paper, we overcome the challenges
mentioned above and design an approach to build a model
for DGF to filter out unreachable inputs, called FuzzGuard.
The basic idea of FuzzGuard is to predict whether a program
can execute to the target buggy code with a newly generated
input by learning from previous executions. If the result of
prediction is unreachable, the directed grey-box fuzzer (we
use “the fuzzer” for short in the rest of the paper) shouldn’t
execute this input anymore, which saves the time spent on
real execution. Note that FuzzGuard is not meant to replace
the fuzzer (e.g., AFLGo), but to work together with the fuzzer
to help it filter out unreachable inputs.

FuzzGuard works in three phases: model initialization,
model prediction, and model updating. (1) In the first phase,
the fuzzer generates various inputs and runs the target pro-
gram with them to check whether a bug is triggered. At the
same time, FuzzGuard saves the inputs and their reachabil-
ity, and trains the initial model using the labeled data, which
may be unbalanced (C1). To solve this problem, we design a
step-forwarding approach: choosing the dominators (referred
to as “pre-dominating nodes” [5]) of the buggy code as the
middle-stage targets, and letting the execution reach the pre-
dominating nodes first. In this way, the balanced data could
be gained earlier for training some models only targeting the
pre-dominating nodes, which minimizes the time of execution.
(2) In the second phase, after the fuzzer generates a number of
new inputs, FuzzGuard utilizes the model to predict the reach-
ability of each input. As mentioned in C2, the trained model
may not work for the newly generated inputs. To solve this
problem, we design a representative data selection approach
to sample training data from each round of mutation, which
minimizes the number of sampled data to increase efficiency.
(3) In the third phase, FuzzGuard updates the model using the
labeled data collected in the second phase to increase its accu-
racy. Note that the time spent on the model updating should
be strictly limited (C3). We tackle this challenge by carefully
choosing the time to update. To the best of our knowledge,
previous studies of fuzzing focus on generating various inputs,
to cover more lines of code (CGF) or to reach buggy code
(DGF). Various mutation strategies on inputs are designed. In
contrast, our study does not directly mutate inputs (we rely on
current mutation strategies, e.g., AFLGo). Instead, we filter
out unreachable inputs. In this way, a DGF does not need
to run the target program with unreachable inputs (which
definitely cannot trigger the target bug), which increases the
overall efficiency.

We implement FuzzGuard on the base of AFLGo [9] (an
open-source state-of-the-art DGF tool), and evaluate the per-
formance using 45 real vulnerabilities on 10 popular programs.
The results show that FuzzGuard boosts the fuzzing perfor-
mance by 1.3× to 17.1×. Interestingly, we find that the more
the unreachable inputs the fuzzer generates, the better Fuzz-
Guard could perform. Also, more time could be saved if the
target node reach a balanced state earlier. At last, we design an
approach to understand the extracted features of FuzzGuard,
and find that the features are correlated with the constraints
in the if-statements in target programs, which indeed impacts
the execution on code level.
Contribution. The contributions of this paper are as follows:
• New technique. We design and implement FuzzGuard which
helps DGF to filter out unreachable inputs and save the time
of unnecessary executions. To the best of our knowledge,
this is the first deep-learning-based solution to identify and
remove unreachable inputs. The core of FuzzGuard is the
step-forwarding approach, and representative data selection.
Evaluation results show that up to 88% of fuzzing time can be
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saved for state-of-the-art tools (e.g., AFLGo). We also release
our FuzzGuard for helping researchers in the community1.
• New understanding. We design an approach to study the
features utilized by the model in FuzzGuard for prediction,
and find them correlated with the branches in target programs.
The understanding of such relationship helps to explain the
deep learning model and further helps to improve FuzzGuard.

2 Background
In this section, we give a brief background of directed grey-
box fuzzing and recent studies utilizing deep learning to im-
prove the fuzzing performance.

2.1 Fuzzing
Fuzzing [27] is one of the classical software testing tech-
niques to expose exceptions of a computer program [32]. The
main idea of fuzzing is to feed a massive number of inputs
(i.e., test cases) to the target program, exposing bugs through
observed exceptions. Among all techniques of fuzzing, grey-
box fuzzing [12] recently becomes quite popular due to its
high efficiency and reasonable performance overhead. With
different goals, grey box fuzzing can usually be divided into
two types as follows.
Coverage-based Grey-box Fuzzing. One main goal of this
type of fuzzing technique is to achieve the high coverage of
code in the target program. Therefore, some fuzzers [2, 10,
15, 16, 24, 25] aim to achieve high code coverage of the target
program, expecting to accidentally trigger the bug, namely
Coverage-based Grey-box Fuzzing (CGF). Typically, CGF
generates the inputs by mutating the seed inputs which could
traverse previous undiscovered program statements in order
to increase the coverage rate of the code. AFL [2], as a repre-
sentative of CGF, employs light-weight compile-time instru-
mentation technique and genetic algorithms to automatically
discover interesting test cases, selects seed inputs that trig-
ger new internal states in the fuzzing process, and mutates
seed inputs in various ways (e.g., bit and byte flips, simple
arithmetics, stacked tweaks and splicing [22]).
Directed Grey-box Fuzzing. Sometimes, the potential buggy
code is known. So there is no need to increase the code cover-
age. In this situation, fuzzers [9, 12, 35] are designed to gener-
ate inputs that reach the buggy code for triggering a specified
bug, which is referred to as Directed Grey-box Fuzzing (DGF).
DGF is commonly used since some kinds of code may be
highly possible to contain a bug (e.g., string copy operations)
which should be emphasized more in the fuzzing. Also, some-
times the buggy code is known (e.g., from CVEs). So those
fuzzers are utilized to generate a proof-of-concept exploit
toward the buggy code [35]. With the different goals from
CGF, current DGF aims to generate the inputs which could
reach the specific potential buggy code, further expecting to

1The release is available at https://github.com/zongpy/FuzzGuard.

trigger the bug. For example, AFLGo [9] calculates the dis-
tance between each basic blocks and the path from the entry
point to the buggy code in the control flow graph; then utilizes
the distance to choose suitable inputs for mutation.

However, even for state-of-the-art fuzzers, still lots of time
is spent on unnecessary executions. In our experiments, we
find that for a typical vulnerability whose location is known,
more than 91.7% of the generated inputs cannot reach the
buggy code (unreachable inputs) on average. Running the
target program with the unreachable inputs is highly time-
consuming. If there is a fuzzer that could judge the reach-
ability of an input without executing the program, a huge
amount of time could be saved. In this paper, we design such
a filter called FuzzGuard, which leverages a deep learning
model to achieve this goal without real execution. Also, it
could be adapted to existing fuzzers (e.g., AFLGo) and work
together with them, without replacing them. To the best of
knowledge, this is the first deep-learning-based solution to
filter out unreachable inputs for DGF.

2.2 Deep Learning
Security researchers apply deep learning to fuzzing, which
provides new insights for solving difficult problems in previ-
ous research. For example, Godefroid et al. utilize RNNs to
generate program inputs that have higher code coverage [17].
Rajpal et al. [29] utilize RNN-guided mutation filter to locate
which part of an input impacts more on code coverage. In this
way, they could achieve higher code coverage by mutating
the located part. Nichols et al. [28] show that GANs could be
used to predict the executed path of an input to improve the
performance of the AFL [2]. Angora [15] and NEUZZ [31]
adapt the gradient descent algorithm to solve path constraint
and learn a model to improve code coverage respectively. All
these studies concentrate on leveraging the ability of deep
learning to cover more code. Different from them, our goal
is to help directed grey-box fuzzers to filter out the inputs
that cannot hit the buggy code before real execution. In this
way, the time spent on running the program with unreachable
inputs could be saved, which greatly increases the efficiency
of fuzzing. Note that our tool can be adapted to existing DGF
tools (e.g., AFLGo), which means that we could further in-
crease the fuzzing efficiency together with the performance
boosted by other fuzzers.

3 Motivation
As mentioned above, current DGF aims to generate the inputs
which could reach the specific buggy code, further expecting
to trigger the bug. In the fuzzing process, lots of inputs cannot
reach the buggy code in the end (impossible to trigger the
bug). Based on our evaluation, more than 91.7% of the inputs
can’t hit the buggy code on average (see Table 1). Executing
millions of unreachable inputs could cost very long time (e.g.,
76 hours for a million inputs when fuzzing Podofo, a library to
work with the PDF file format with a few tools [1]). Especially,
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Figure 1: An overview of FuzzGuard.

when the execution time of the target program takes part the
most in the whole fuzzing process, the wasted time is even
more. If there exists an approach that is quick enough to
predict the reachability of an input, the fuzzing process does
not need to execute the target program with the unreachable
ones. In this way, the overall performance of fuzzing could
be increased.

Inspired by the recent success of deep learning in pattern
recognition [11, 19, 34, 36], we are wondering whether deep
learning could be applied to identify (un)reachable inputs.
Carefully comparing the processes of pattern recognition and
identification of (un)reachable inputs, we found similarities
between them: they both classify data (a certain objects v.s.
(un)reachable inputs) based on either prior knowledge or sta-
tistical information extracted from the patterns (many labeled
images of the object v.s. many labeled inputs from previous
executions). However, they do have essential differences (e.g.,
the distribution of labeled data, requirements on efficiency,
etc.) which makes the process of unreachable input identifica-
tion very challenging (see Section 1).

Example. List 1 gives an example. The vulnerable code is at
Line 6 (see Section 7). So the goal of DGF (e.g., AFLGo) is
to generate as many as inputs that could reach there and hope
to trigger the bug. The seed input is chosen from AFLGo’s
seed corpus (e.g., not_kitty.png). It takes 13 hours to gen-
erate 16 million inputs and needs to test the program with
them before the bug is triggered. Among these inputs, only
3.5 thousand (0.02%) can reach the buggy code. One may
think of leveraging symbolic execution to generate constraints
from the execution path to the destination. However, the full
constraints are very hard to generate since several paths could
reach the buggy code. Even if the constraints could be gen-
erated, the calculation of reachability using the constraints is
still very time-consuming, which is even similar to the time
spent on running the target program. Our idea is to generate
a deep learning model to automatically extract features of
reachable inputs and to identify future reachable ones. Based
on our evaluation, nearly 14 million inputs (84.1%) are iden-
tified which saves 9 hours of unnecessary executions. Also
note that the false positive rate and false negative rate are only
2.2% and 0.3% for this example, respectively.

Scope and Assumption. Different from previous research
on CGF using deep learning [15, 17, 28, 29], our approach

focuses on filtering out unreachable inputs in DGF. In this
way, lots of necessary time on executing the program with
unreachable inputs could be saved. Note that our approach
is complementary to other DGF tools and can work together
with them, instead of replacing them. Also note that we do not
assume that small mutations in the input will produce similar
or identical behavior. The trained model should characterize
different behaviors of similar-looking inputs.

4 Methodology
We propose the design of FuzzGuard, a deep-learning-based
approach to facilitate DGF to filter out unreachable inputs
without really executing the target program with them. Such a
data-driven approach avoids using traditional time-consuming
approaches such as symbolic execution for better performance.
Below we elaborate the details of FuzzGuard.

4.1 Overview
The overview of FuzzGuard is illustrated in Figure 1, includ-
ing three main phrases: model initialization (MI), model pre-
diction (MP) and model updating (MU). It works together
with a DGF (referred to as “the carrier fuzzer”). As shown in
Figure 1, in the MI phrase, the carrier fuzzer generates a great
number of inputs and observes any exceptions. FuzzGuard
records whether the program can execute the target buggy
code for each input. Then FuzzGuard trains a model using the
inputs and their reachability. In the MP phrase, FuzzGuard uti-
lizes the model to predict the reachability of a newly generated
input. If the input is reachable, it is fed into the program for
real execution. In this process, FuzzGuard observes whether
the input can really reach the target code. In the MU phrase,
FuzzGuard further updates the model with incremental learn-
ing to maintain its efficiency and increase its performance.
The unreachable inputs will be temporarily saved in a data
pool (referred to as “the pool of unreachable inputs (PUI)”)
for further checking by a more accurate model after model up-
dating. As combining deep learning with fuzzing is not trivial,
we face the new challenges (as mentioned in Section 1).

Figure 2 shows a concrete example of FuzzGuard. Firstly,
the carrier fuzzer generates a number of inputs (referred to
as “data”) and runs the target program with them to get
the reachability (referred to as “label”) in the MI phrase
(the step 1© and step 2© in the figure). During this process,
an ideal situation is to train a deep learning model using
balanced data. That is, about half of the inputs could reach
the buggy code while the other cannot. Unfortunately, in real
situation, the carrier fuzzer hardly generates the inputs that
reach the buggy code in the initial phrase of fuzzing. As a
result, the labeled data are usually extremely unbalanced at
this stage. For example, only one input can actually reach
the buggy code after over 22 million inputs generated (#7 in
Table 1). To solve this problem, we design the step-forwarding
approach for MI (step 2©), which lets the inputs reach the pre-
dominating nodes (we use “node” to refer to “basic blocks”
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Figure 2: An example of filtering unreachable inputs by FuzzGuard.

in the rest of the paper) of the buggy code (i.e., B0, B1 and
B2 in Figure 2) step-by-step to the destination (i.e., B3 in
Figure 2). Particularly, FuzzGuard chooses a pre-dominating
node (e.g., B1) as a middle-stage destination (i.e., referred to
as “mid-target”) and generates a model to filter out the inputs
that cannot reach B1 (step 3©). Usually, compared with B3,
more balanced labeled data could be gained when the program
runs to B1. So the model can be trained earlier and also starts
to work earlier. Then MP judges whether a newly generated
input (in step 4©) could reach B1 using the model (step 5©).
For reachable inputs (e.g., with label < 0,1,0,0 > in step 6©),
FuzzGuard runs the program with it and records whether it
can really reach the buggy code (step 7©). Such information
is further leveraged to continuously update the model by MU
(step 8©). The unreachable inputs are put into PUI (step 9©).
After more inputs are tested, a closer pre-dominating node
(to the buggy code) having the balanced labeled data will
appear (e.g., B2 in this case). Such a process will continue
until the buggy code is arrived at, and finally triggered. Below
we provide the details of the three modules.

4.2 Model Initialization
As mentioned previously, one main challenge of applying
deep learning on fuzzing is the unbalanced data for training.
Usually, the number of reachable inputs is far less than that of
unreachable ones. In order to tackle this challenge, we present
a step-forwarding approach. The basic idea is based on the
observation: the pre-dominating nodes of the buggy code are
earlier to be reached, which should gain balanced data earlier.
Note that the pre-dominating nodes of the buggy code are the
nodes that dominate the buggy code: every execution path
towards the buggy code will pass through the pre-dominating
nodes [5]. So the reachability of the marked pre-dominating
nodes is guaranteed. Therefore, we could train a model to
filter out those inputs that cannot reach the pre-dominating
node (neither can they reach the buggy code). In this way,
we gradually get balanced data of the pre-dominating nodes,
toward the buggy code in the end. For example, as to the
control flow graph shown in Figure 2, the nodes represent

basic blocks in the program in List 1. B0 is the entry point and
the buggy code is in B3. B1 and B2 are the pre-dominating
nodes of B3. At the beginning of fuzzing, no input reaches
B3, while half of the inputs could reach B1. Now B1 is the
closest balanced pre-dominating node to the buggy code. So
we view B1 as the target, and train the model using these
inputs. In this way, the unreachable inputs to B1 are filtered
out, saving the time spent on executing the target program
with them. When the fuzzing process goes further, B2 or B3
will get balanced data for training. Note that, different from
CGF whose goal is to achieve high coverage, DGF aims to
generate inputs to trigger a given (potential) bug at a certain
place. So it does not care about whether new bugs are found in
other paths. Interestingly, we did see that FuzzGuard+AFLGo
still discovers undisclosed bugs (see Section 6) which are
located deeply in a program (also near the target buggy code).
An ordinary CGF is hard to trigger them in a limited time.

However, it takes too long to train a single model for each
pre-dominating node. This is mainly because the model needs
to be retrained when FuzzGuard steps forward to the next
pre-dominating node. Our idea is to only train one model for
all the pre-dominating nodes including the buggy code itself.
To achieve this goal, formally, we label the reachability of the
nodes (i.e., B= {B1,B2, ...,Bn}) in the vector y. For each label,
it is represented as a unit vector ŷ, i.e., ŷ =< y1,y2, . . . ,ym >,
where m is the number of the pre-dominating nodes of the
buggy code, yi represents whether the i-th node is the last one
could be reached by the program fed with x, yi ∈ {0,1}, i ∈
{1,2, . . . ,m}. As shown in Figure 2, for the input a, the label
is represented as ya =< 1,0,0,0 >, which means that B0 is
reached but others are not. Similarly, yb =< 0,1,0,0 > means
that the input b can let the execution reach B0 and B1, but
neither B2 nor B3. yd =< 0,0,0,1 > means that the buggy
code is finally reached. For simplicity, we directly map each
byte of the input to an element in the feature vector. This
approach makes FuzzGuard handle different programs with
various formats of inputs in a unified way. For each data, it
can be represented as a vector x =< x1,x2, . . . ,xn >, where
n is the max length of the input. And xi = bytei + 1 (xi ∈
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{0,1, . . . ,256}), where xi = 0 means that i-th byte of the input
does not exist (i.e., the length of the input is less than n).

After designing the representation of data and label, we
carefully choose a deep learning model. Such a model should
be good at extracting features from inputs and making the cor-
rect classification. Recall the problem of image recognition:
features of an object in an image are expressed by combina-
tions of several pixels (i.e., elements in the input vector, as
shown in Figure 2), which could be well extracted by the CNN
models [11, 19, 34, 36]. Similarly, the features of inputs that
impact their reachability could be expressed by combinations
of several bytes in program inputs. Actually, the constraints in
if-statements in target programs use these bytes for deciding
execution directions. Thus, our idea is to make use of CNN
to accomplish the classification task. On one hand, compared
with RNN which is more suitable for training with the byte
sequence, CNN is good at dealing with long data. The longer
the inputs, the faster the RNN model forgets the former fea-
tures. On the other hand, the time for training a CNN model
is much less than the time for training an RNN model, which
is suitable for our problem (the time spent on training and
prediction should be less than the time on real execution).

Thus, we choose to use a 3-layer CNN model (detailed
implementation is shown in Section 5). In this way, the first
layer could learn the relationship between each byte, and
the other two layers could learn high dimensional features
(e.g., combining several bytes to form a field in an input,
and combining several fields to impact program execution).
Interestingly, we find that such extracted high dimensional
features are correlated with the constraints in the if-statements
in target programs (see Section 7). We also discuss other
machine learning models in Section 8. Note that, the model
needs to be trained for each program from scratch due to
different implementations (which parse inputs in different
ways). It is also an interesting topic to explore the similarity
between different programs and leverage such similarity to
increase the efficiency of training.

In this way, we can let the carrier fuzzer run for a while
to collect an initial training data set. After the initial training
data set reaches balanced, the model can learn the reachability
to all nodes of the inputs. The goal of the model is to learn a
target function f (i.e., y = f (x)), which consists of a number
of convolution operations. The convolution operation uses a
number of filters to extract the features from the data:

yi = wT xi = ∑
i−k< j<i+k

w j · x j, i ∈ {1,2, . . . ,n− k}

where k is the width of the convolution kernel of the filter
w. Gradient descent algorithm will update weights of each
filter w to decrease the loss value to achieve a more accurate
prediction. For classification tasks, compared to Cross En-
tropy [18] loss, the Mean Square Error (MSE) [23] loss could
balance the error rate for each category, avoiding a particu-

larly high error rate for a single category. Considering the
step-forwarding approach needs the trained model to predict
the reachability of each pre-dominating node as accurate as
possible, we choose to use MSE. So when the value of the
loss = 1

m ∑
m
i=1(yi− yp

i )
2 is close to 0, we believe that the tar-

get function in the classification model has been converged
and the model is ready to predict the newly generated inputs.

4.3 Prediction
After the model is initialized, FuzzGuard utilizes the model to
predict the label of each input and filters out those unreachable
ones. For the reachable ones, they will be executed by the
target program and further be collected as new labeled data
for model updating. In particular, for an input x, we assume
that the model can only predict the pre-dominating nodes
before Bt (i.e., the mid-target), and the prediction result is yp.
The following function f ′ is used to check whether the input
x is reachable to the target node.

f ′(yp, t) =

{
reachable yp

i = 1∧ i≥ t
unreachable yp

i = 1∧ i < t

However, in real situation, we find the prediction results
are not accurate enough, even after many labeled data are
produced. The main reason is that even if the newly generated
inputs could reach the target, they may look quite different
from the reachable ones in the training set. This is understand-
able: these inputs could be generated from different seeds.
Most of the inputs mutated from the same seed are slightly
different with each other, while many differences could be
found between the inputs mutated from different seeds. Thus,
using the inputs totally from previous executions may not be
able to train a very accurate model to predict the reachability
of newly generated inputs. For example, a model trained with
the data in set S1 mutated from the seed s1 may fail to predict
the labels of the data in S2 mutated from the seed s2.

To solve this problem, we propose a representative data
selection approach, which selects a number of representative
inputs from each round of mutation for executing and training.
We consider a fixed number of inputs (e.g., 5%) that randomly
sampled from a round of mutation as the representative data
for this mutation. In this way, within a limited time, inputs
generated from more seeds can be utilized for training, which
increases the model’s accuracy. However, in real execution,
even 5% of the inputs constitute a big number (e.g., over
20 thousand), and execution using these inputs cost lots of
time. Our idea is to sample even fewer inputs. Suppose in two
different mutations, two sets of inputs S1 and S2 are generated
from the two seeds s1 and s2, respectively. If the distribution
of S1 is similar to that of S2, we can select even fewer inputs.
However, we cannot directly assume that the distributions of
the two sets are similar only through the similarity of the two
seeds. This is mainly because different strategies of mutation
(e.g., bit and byte flips, simple arithmetics, stacked tweaks
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and splicing) could greatly change the seeds and make the
descendants look quite different. So our idea is to compare the
seeds together with the corresponding strategies of mutations.
If the two seeds are similar and the strategies are identical,
we consider to select fewer inputs from the combined set. We
define the seed similarity degree (SSD) between the two seeds
s1 and s2 as follows:

ds1,s2 = 1−∑
8n
i=1 s1

i ⊕ s2
i /8n

where n is the max byte length of the inputs, and si means the
i-th bit of the seed s. Note that different choices of embedding
do not affect the definition of SSD, since SSD is defined
using the seeds, not the vectors after embedding. In this way,
we could measure the similarity between two sets of inputs
through their predecessor seeds. When SSD is over a threshold
(θs), we consider that the seed s2 is similar to the seed s1,
and less data from the inputs mutated from s2 should be
selected. For example, in Figure 2, we select less data (e.g.,
2%) from the inputs set that generated by seed the e, because e
is similar to the seed b (e.g., SSD=90%). In this way, we could
select fewer inputs for real execution and training without
impacting the model’s accuracy. Based on our evaluation, on
average, half of the time spent on fuzzing could be saved
when applying this technique (Section 6).

4.4 Model Updating
To realize online model updating, we utilize incremental learn-
ing [26] to train a dynamic model by feeding a set of data
each time rather than feeding all data at once. In this case, new
incoming data are continuously used to extend the existing
model’s knowledge. Incremental learning aims to adapt to
new data without forgetting its existing knowledge for the
learning model, and it does not require retraining the model.
It can be applied when the training data set becomes avail-
able gradually over time as the carrier fuzzer generates and
exercises new inputs continuously. Also incremental learning
decreases the time of waiting for data collecting, and filters
out more unreachable test cases.

The online deep learning model should be updated to keep
its accuracy. Whenever a new set of labeled data is collected,
there could be an opportunity for model updating. However, if
the model is updated too frequently, the time spent on training
will be long, which will impact the efficiency of fuzzing. In
contrast, if less frequent updating is performed, the model
may not be accurate. So in this process, we should carefully
choose when to perform model updating. Also we should let
the updating be quick enough. Below we elaborate the details.

We perform model updating when the model is getting
“outdated”. The outdated model is not accurate enough when
a new pre-dominating node is reached. In the first situation,
we update the model when the false positive rate γ of the
model exceeds a threshold θ f . To achieve this, we continu-
ously record false positive rates of the model whenever the

execution results are different from the predictions, and keep
watching γ. After the model is updated, we reset the false
positive rate to zero and record it again. Another situation
is that when there is a new pre-dominating node Bi (i > t)
containing the balanced labeled data, it is the time to update
the model with the new data (see Section 4.3). In this way, the
model could learn new features from the inputs which let the
program execute to new code that has never been touched. Us-
ing this approach, we could ensure the accuracy of the model
while keeping the model updating at a reasonable frequency.

To avoid missing a PoC (i.e., to avoid filtering out any PoC),
we temporarily store unreachable inputs in the PUI. When the
model is updated, we use the new model to check the inputs in
the PUI again, and pick out the reachable ones for execution.
Based on our evaluation, the model is accurate enough that
no PoC is missed.

5 Implementation
In this section, we describe the implementation of FuzzGuard,
including model initialization, model prediction, model up-
dating and the details of the deployment of FuzzGuard.

Model Initialization. At the initial stage, FuzzGuard starts
to train the model only after enough data are collected; and
continues to update the model after another set of data (not a
single input) are collected. Such data should be balanced (i.e.,
the number of reachable inputs is similar to the number of
unreachable ones). Particularly, before the model is trained,
all the inputs should be fed into the target program for real
execution. FuzzGuard records the reachability of the inputs.
Once enough2 balanced data are gained, FuzzGuard starts to
train the model. Then it utilizes the trained model to predict
the reachability of a newly generated input, executes the tar-
get program if it is reachable, and records the reachability in
real execution. Such data are collected to update the model
for better performance. As mentioned before, DGF requires
a target (potential) buggy code whose location is known for
fuzzing. To set the pre-dominating nodes of the buggy node,
we generate Call Graph (CG) and Control Flow Graph (CFG)
of the target program and set the pre-dominating node ac-
cording to the definition as mentioned in Section 4. In our
implementation, we use NetworkX [6] to automatically find
the pre-dominating nodes from the CG and CFG generated
by LLVM.

Model Prediction and Updating. To further collect data for
updating the model, we set the θs for SSD to 0.85 and the
default sampling rate is 5% in each round of mutation. When
SSD exceeds the threshold, the sampling rate will decrease
to (1− θs)/5 (i.e., less than 3%). Based on our evaluation,
setting the threshold using this value has the best performance.
Considering that models’ accuracy varies a lot for different

2In our implementation, FuzzGuard starts to train the model after 50
thousand balanced inputs are gained. The number is far less than the number
of the inputs generated by AFLGo in a testing task (usually 30 million).
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Algorithm 1 Function Checker()

Input: argv, timeout and input
1: f ault← 0
2: if check(input) is reachable then
3: f ault← run_target(argv, timeout)
4: label← check_trace(input)
5: send(label)
6: end if
7: return f ault

programs, we dynamically change θ f according to the previ-
ous executions: θ f = 1−accavg, where accavg represents the
average accuracy of the models updated previously.

Model Implementation. For the training model, we imple-
ment a CNN model using PyTorch [7]. It contains three 1-
dimensional convolution layers (k = 3, stride = 1). Note that
the 1-dimensional convolution layer takes each input as a row
sequence; and each row has 1024 bytes. Each convolution
layer is followed by a pooling layer and a ReLU [4] as the ac-
tivation function. We also have Dropout layers (disabling rate
= 20%) to avoid over-fitting of the neural networks. There is a
fully-connected layer at the end of the neural networks, which
is used to score the reachabilities of each node in the target
path to the buggy code. Also we use the Adam optimizer [21]
to help the learning function converge to the optimal solution
rapidly and stably. The training process ends when the loss
value of the learning function becomes stable.

Deployment of FuzzGuard. To achieve the data sharing, we
add a function Checker() to afl-fuzz.c in AFLGo. Algorithm 1
shows the details of Checker(). The function Checker() han-
dles all parameters in run_target() (i.e., argv, timeout in Al-
gorithm 1) and receive an input which is saved in a piece of
memory. Before the input is fed into the target program, it is
sent to FuzzGuard (i.e., check(input) at line 2 in Algorithm 1).
Only when FuzzGuard returns with the result showing that
the execution path is reachable, the target program is exe-
cuted with the input (line 3 in Algorithm 1). After executing
the target program, Checker() reads the reachability of the
input from the function check_trace() (Line 4 in Algorithm 1)
and sends it to FuzzGuard for further learning (line 5 in Al-
gorithm 1). We plan to release our FuzzGuard for helping
researchers in the community.

6 Evaluation

In this section, we evaluate the effectiveness of FuzzGuard
with 45 vulnerabilities. The results are compared with a
vanilla AFLGo. According to the experiment results, Fuz-
zGuard boosts the performance of fuzzing up to 17.1 times
faster than that of AFLGo. Then we provide an understanding
of the performance boost and break down the performance
overhead of FuzzGuard. We also analyze the accuracy of
FuzzGuard and show our findings.

6.1 Settings
We first selected 15 real-world programs handling 10 common
file formats, including network packages (e.g., PCAP), videos
(e.g., MP4, SWF), texts (e.g., PDF, XML), images (e.g., PNG,
WEBP, JP2, TIFF) and compressed files (e.g., ZIP). Unfor-
tunately, three programs (i.e., mupdf, rzip, zziplib) cannot
be compiled3, and two programs (i.e., apache, nginx) do not
give the details of vulnerabilities. So we chose the rest 10 as
the target programs and the corresponding bugs in the past 3
years4. Table 1 shows the details of each vulnerability, includ-
ing program names and line numbers of the vulnerable code
(the column Vuln. Code). For different input formats, we use
the test cases provided by AFLGo as the initial seed files to
start fuzzing (we believe that AFLGo will perform well using
the initial seed files chosen by itself). All the experiments and
measurements are performed on two 64-bit servers running
Ubuntu 16.04 with 16 cores (Intel(R) Xeon(R) CPU E5-2609
v4 @ 1.70GHz), 64GB memory and 3TB hard drive and 2
GPUs (12GB Nvidia GPU TiTan X) with CUDA 8.0.

6.2 Effectiveness
To show the effectiveness of FuzzGuard, we evaluate AFLGo
equipped with FuzzGuard and the original one using 45 vul-
nerabilities in 10 real programs (as demonstrated in Table 1).
The ideal comparison for the AFLGo equipped with Fuz-
zGuard and the vanilla AFLGo is to compare the time of
fuzzing using AFLGo (TAFLGo) and the corresponding time
when equipping AFLGo with FuzzGuard (T+FG). However,
we cannot directly use the same seed input to compare the
fuzzing process of AFLGo and that of AFLGo+FuzzGuard.
This is because the mutation is random, and the generated
sequence of inputs (even if from the same seed input) could
be quite different in the two fuzzing processes, which further
makes the time spent on execution quite different. So our idea
is to make the generated sequence of inputs be the same in
the two different fuzzing processes. Particularly, for a vul-
nerability of a target program, we use a vanilla AFLGo to
perform fuzzing and record the sequence of all the mutated
inputs IAFLGo in order (the number of the inputs NInputs is
shown in Table 1) until the target vulnerability is triggered
(e.g., a crash) or timeout (200 hours in our evaluation). In
this process, the fuzzing time TAFLGo (as shown in Table 1) is
also recorded. Then we utilize the same sequence of inputs
IAFLGo to test AFLGo equipped with FuzzGuard, recording
the filtered inputs I f iltered (the number of the filtered inputs
is N f iltered , and the ratio of filtered inputs to all the generated
inputs f iltered = N f iltered/NInputs are shown in Table 1). We
also record the time cost of FuzzGuard (TFG) including the
time of training and prediction. In this way, we are able to
know the time when FuzzGuard is equipped, and compare the

3We tried to fix the compile errors (e.g., missing libraries). However, due
to too many errors, it is very hard to fix all the errors.

4We excluded 5 vulnerabilities (out of 50) triggered in minitues by
AFLGo. Obviously, there is no need to utilize FuzzGuard to speedup.
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Table 1: Effectiveness of FuzzGuard.

No. Program Vuln. Code NFunctions NConstraints NInputs UR. Filtered TAFLGo T+FG
Speedup

FG FG1 FG2
1 Bento4 v1.5.1.0 Ap4AvccAtom.cpp:83 676 1.8 K 1.8 M 38.1% 32.3% 44 h 29.9 h 1.5 1.3 1.4
2 Ettercap v0.8.2 ec_strings.c:182 420 41.5 K 49.2 M 99.0% 93.9% 80.5 h 6.1 h 13.3 1.1 8.3
3 GraphicsMagick v1.3.31 tiff.c:2375 3.3 K 170.3 K 32.1 M 95.9% 90.5% 94.8 h 11.1 h 8.6 5.9 7.5
4 GraphicsMagick v1.3.31 png.c:6945 4.9 K 319.8 K 30 M 96.6% 88.8% 200 h 23.4 h 8.5 2.0 8.2
5 GraphicsMagick v1.3.31 png.c:7503 1.5 K 21.9 K 16.4 M 99.9% 84.1% 13.2 h 3.9 h 3.4 1.0 3.1
6 GraphicsMagick v1.3.31 png.c:5007 4.4 K 317.1 K 16 M 99.9% 34.3% 200 h 132.3 h 1.5 1.0 1.5
7 GraphicsMagick v1.3.30 png.c:3810 3.1 K 168.4 K 22.6 M 99.9% 32.8% 31.9 h 22.4 h 1.4 1.0 1.4
8 GraphicsMagick v1.3.27 webp.c:716 10.7 K 749.3 K 67.5 M 99.5% 93.4% 200 h 15.2 h 13.2 9.7 9.7
9 GraphicsMagick v1.3.26 png.c:7061 4.9 K 320 K 56.9 M 98.4% 93.3% 200 h 16.2 h 12.3 8.4 9.4
10 GraphicsMagick v1.3.26 tiff.c:2433 4.4 K 316.4 K 78.4 M 75.3% 69.5% 200 h 66.7 h 3.0 2.4 2.7
11 GraphicsMagick v1.3.26 rle.c:753 9.2 K 379.3 K 17.7 M 99.4% 70.5% 30.8 h 10.4 h 3.0 1.5 2.6
12 GraphicsMagick v1.3.26 list.c:232 3.6 K 172.1 K 73 M 37.2% 28.4% 200 h 146.4 h 1.4 1.6 1.4
13 ImageMagick v7.0.8-13 msl.c:8353 85.5 K 5.4 M 7.3 M 99.2% 92.4% 200 h 15.4 h 13.0 3.3 12.9
14 ImageMagick v7.0.8-3 dib.c:1306 117.1 K 7, 883.1 M 3.2 M 99.9% 54.4% 200 h 91.4 h 2.2 1.0 1.6
15 ImageMagick v7.0.8-3 bmp.c:2062 117.3 K 6, 306.9 M 3 M 99.9% 52.3% 200 h 95.6 h 2.1 1.0 2.0
16 ImageMagick v7.0.7-16 webp.c:769 23.9 K 145.7 K 11.5 M 99.1% 93.9% 200 h 12.6 h 15.9 15.5 14.7
17 ImageMagick v7.0.7-16 webp.c:403 14.8 K 116.1 K 19.1 M 96.0% 90.7% 200 h 19.8 h 10.1 9.4 10.7
18 ImageMagick v7.0.7-1 tiff.c:1934 149.1 K 1.2 M 9.4 M 98.5% 92.5% 200 h 15.2 h 13.1 1.6 8.7
19 ImageMagick v7.0.5-5 bmp.c:894 102.4 K 926.5 K 12.9 M 64.3% 59.9% 200 h 80.5 h 2.5 1.7 2.5
20 Jasper v2.0.14 jp2_enc.c:309 13.9 K 17.7 M 28 M 99.4% 50.9% 200 h 99 h 2.0 1.7 1.9
21 Jasper v2.0.10 jpc_dec.c:1700 740 9.7 K 11.3 M 99.7% 94.3% 46.9 h 3.7 h 12.7 1.4 11.1
22 Jasper v2.0.10 jpc_dec.c:1881 1.7 K 36.8 K 6.1 M 99.9% 94.0% 19.7 h 1.6 h 12.0 1.0 10.0
23 Jasper v2.0.10 jas_seq.c:254 1.1 K 11.8 K 22.3 M 62.4% 56.0% 200 h 89 h 2.2 2.0 2.2
24 Libming v0.4.8 decompile.c:1930 104 5.3 K 38.6 M 99.9% 70.2% 200 h 63 h 3.2 1.0 3.1
25 Libming v0.4.7 parser.c:1645 75 4.7 K 32.3 M 99.8% 94.7% 200 h 11.7 h 17.1 8.5 14.1
26 Libming v0.4.7 parser.c:64 170 2.7 K 16.1 M 91.9% 86.6% 200 h 27.2 h 7.3 1.7 6.2
27 Libming v0.4.7 parser.c:3381 79 790 38.4 M 99.7% 69.9% 200 h 61.3 h 3.3 2.0 3.2
28 Libming v0.4.7 parser.c:3095 25 217 46.8 M 92.9% 65.7% 200 h 70 h 2.9 1.9 2.8
29 Libming v0.4.7 parser.c:2993 22 386 45.9 M 97.2% 64.8% 200 h 71.8 h 2.8 1.7 2.7
30 Libming v0.4.7 parser.c:3126 24 294 77 M 92.9% 63.6% 200 h 75.3 h 2.7 2.0 2.5
31 Libming v0.4.7 parser.c:3232 55 423 12.6 M 99.8% 61.3% 6.1 h 2.8 h 2.2 2.0 1.8
32 Libming v0.4.7 parser.c:3221 38 308 13 M 99.9% 43.2% 14 h 8.2 h 1.7 1.0 1.6
33 Libming v0.4.7 parser.c:3250 32 340 16.6 M 99.9% 46.0% 7.3 h 4.4 h 1.7 1.0 1.4
34 Libming v0.4.7 parser.c:3089 36 396 19.6 M 99.9% 43.3% 5.2 h 3.4 h 1.5 1.0 1.1
35 Libming v0.4.7 parser.c:3061 37 637 18.9 M 99.8% 37.2% 3.4 h 2.5 h 1.4 1.0 1.1
36 Libming v0.4.7 parser.c:3071 34 1.1 K 17.6 M 99.9% 33.6% 3.8 h 2.9 h 1.3 1.0 1.1
37 Libming v0.4.7 parser.c:3209 34 402 30.7 M 99.9% 27.7% 8.9 h 6.9 h 1.3 1.0 1.2
38 Libming v0.4.7 outputtxt.c:143 64 2.2 K 27.3 M 65.5% 24.6% 7.7 h 6.1 h 1.3 1.1 1.1
39 Libtiff v4.0.9 tif_dirwrite.c:1901 728 14.4 K 8.6 M 99.9% 91.4% 9.6 h 1.3 h 7.4 1.0 4.8
40 Libtiff v4.0.7 tif_swab.c:289 631 13.1 K 44.7 M 99.7% 52.8% 29.6 h 15 h 2.0 1.1 1.3
41 Libtiff v4.0.7 tiffcp.c:1386 728 13.3 K 15.6 M 99.9% 51.7% 8.9 h 4.6 h 1.9 1.0 1.7
42 Libtiff v4.0.7 tif_read.c:346 416 11.6 K 60.6 M 79.5% 36.3% 77.9 h 49.8 h 1.6 1.4 1.5
43 Libxml2 v2.9.4 SAX2.c:2035 418 15.7 K 92.6 M 99.9% 94.4% 200 h 17.6 h 11.3 1.0 5.2
44 Podofo v0.9.5 PdfPainter.cpp:1945 19.8 K 44.1 K 2.6 M 99.3% 79.7% 200 h 40.7 h 4.9 4.8 1.8
45 Tcpreplay v4.3.0-beta1 get.c:174 23 1.1 K 203.3 M 53.2% 49.5% 200 h 105.4 h 1.9 1.7 1.9
Avg. 15.5K 315.9 M 91.7% 65.1% 5.4 2.6 4.4

time with TAFLGo. T+FG can be calculated as follows:

T+FG = TAFLGo−∑i∈I f iltered
ti +TFG

where I f iltered is the inputs filtered out by FuzzGuard and ti
stands for the time spent on executing the target program with
the input i.

Note that, the last input in IAFLGo is the first PoC generated
by AFLGo (if the target program crashes, e.g., #1 and #2 in
Table 1) or the last input generated by AFLGo before timeout
(no crash happens, e.g., #8 and #9 in Table 1). We emphasize
that FuzzGuard does not know whether a given input is the last
one or not. In the fuzzing process, FuzzGuard treats the last

input in the same way as the previous inputs. Comparing to
FuzzGuard, a method randomly dropping inputs in IAFLGo will
randomly decide to drop the last input or not. From Table 1
we can see that FuzzGuard drops 65.1% inputs on average. If
the same number of inputs (65.1%) is dropped by the random
method, the last input (a possible PoC, e.g., #1 and #2 in
Table 1) could also be dropped with the possibility of 65.1%.
In contrast, the false negative rate of FuzzGuard is 0.02%
(see Section 6.3), which means that even if 65.1% inputs are
dropped by FuzzGuard, the possibility of dropping the PoC
is only 0.02%.

Landscape. The results are shown in Table 1. Those 45 bugs
in Table 1 include 27 CVEs found in the last 3 years and
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18 newly undisclosed bugs (see Section 6.5). In our evalu-
ation, the undisclosed bugs (e.g., Line 6 in Table 1) were
found when FuzzGuard performing target fuzzing on other
vulnerabilities (e.g., CVE-2017-17501, Line 4 in Table 1).
Note that the buggy code of this undisclosed bug is actually
not our target in this process. Then, we set the newly found
buggy code as the target and tried to utilize AFLGo to repro-
duce it. Unfortunately, in the time limit (200 hours), AFLGo
failed to trigger the bug. Neither could AFLGo+FuzzGuard
trigger the bug. However, AFLGo+FuzzGuard did save the
time from 200 hours to 23.4 hours (8.5 times speedup).
From the table, we find that for all the bugs, FuzzGuard
can increase the runtime performance of AFLGo from 1.3×
to 17.1× (see the “Speedup” column in Table 1, where
Speedup = TAFLGo/T+FG). The average performance is in-
creased by 5.4×. Note that such performance boost is added
to a DGF (i.e., AFLGo) which has already been optimized.

Understanding the performance boost. To understand the
performance of FuzzGuard for different programs and bugs,
we further study the relationship among the speedup, the time
that the model starts to train and the ratio of unreachable
inputs, etc.

Figure 3: Start time of the first training in FuzzGuard.

• The earlier the model is trained, the more time could be
saved. Figure 3 shows the time that each model starts to be
trained for the bugs in Table 1 (the red bar). We can see that
the model trained later (e.g., #20, #24, #27) achieved no more
than 3.3× speedup, while the model trained earlier could
achieve over 17× speedup. This is mainly because the earlier
the buggy node gains balanced labeled data, the earlier the
model can be trained for filtering out unreachable inputs to
the buggy code. As a result, more inputs could be filtered out
for saving the time on unnecessary executions.
• The more reachable inputs generated by the carrier fuzzer,
the less effective FuzzGuard is. For example, as shown in
Table 1, when more than 40% of the inputs are reachable (the
column “UR." is the ratio of unreachable inputs), the speedup
gained by FuzzGuard is less than 2 times (e.g., the bug #1,
#12 and #45 in Table 1). In a special case, if there are no
if-statements or constraints in the path from the entry point to
the target buggy code, all the generated inputs are reachable.
So there is no need to train a deep learning model.

Complicated Functions. To evaluate FuzzGuard on handling
complicated functions with multiple constraints and branches,

we measure the number of unique functions and constraints5

in the path to each bug in Table 1. From the table, we can see
that the average number of unique functions and constraints
are 15.5 thousand and 315.9 million, respectively. Over 50%
of the bugs are guarded by thousands of constraints (e.g.,
the bugs in GraphicsMagick and ImageMagick). For these
bugs, FuzzGuard achieves the speedup from 1.4 to 15.9. For
some bugs guarded by millions constraints (e.g., #13 and #18
in Table 1), FuzzGuard achieves over 10× speedup. The re-
sults show that FuzzGuard can handle complicated functions
well, which could be quite time-consuming for traditional
constraint solving.

Cost. In our evaluation of the 45 bugs in Table 1, the time
spent on training the online model is 60 minutes on average,
which includes 13.5% for data collection, 0.5% for data em-
bedding and 86% for the training process. Note that the time
spent on training only takes 6% of the time for input genera-
tion by the fuzzer (15 hours on average). The total time spent
by FuzzGuard is 1.4 hours on average, which only takes 9.2%
of the total time of the fuzzing (T+FG in Table 1) and 2.5%
of the total time of the fuzzing process performed by AFLGo
(TAFLGo in Table 1). Such a time period is enough for a fuzzer
to process 704 thousand inputs, which is far more efficient
than directly executing the target program for testing.

Figure 4: Evaluation on execution time in fuzzing process.

To understand the upper limit of of the fuzzing time that
FuzzGuard could save, we perform a 24-hour fuzzing on 45
vulnerabilities (shown in Table 1) using AFLGo. From Fig-
ure 4, we can see that the average execution time of the target
program is over 88% of the total time of fuzzing, which means
that the average upper limit of the fuzzing time that Fuzz-
Guard could save is about 88%. The time cost of FuzzGuard
should be less than the limit.

6.3 Accuracy
We measure the accuracy of FuzzGuard. The accuracy is
based on whether the reachability is correctly judged. The
more accurate it behaves, the more unreachable inputs could
be filtered out. Note that no PoC will be missed since the
filtered inputs will be saved in the PUI, which will further

5As it is very hard to check whether a constraint is dependent on inputs due
to inaccuracy of taint analysis, we count the number of all unique constraints.
Such problem also happens in symbolic execution.
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be checked by an updated model. A more accurate model
may find the reachable ones in the pool and let the target
program execute with them, which in theory will not have
false negatives. However, in real execution, we usually set a
timeout for fuzzing. In this case, if a false negative input is left
in the pool without being found before the timeout, it will be
missed. Fortunately, in our evaluation of the 45 bugs, no PoC
is found in the PUI due to the accurate model. We define false
positive rate as follows: f pr = N f p/Nn× 100%, where Nn
represents the number of the unreachable inputs generated by
AFLGo, and N f p is the number of inputs that cannot reach the
buggy code but be viewed as reachable ones by FuzzGuard.
The false negative rate is: f nr = N f n/Np×100%, where Np
represents the number of the reachable inputs, and N f n is the
number of reachable inputs but be filtered out by FuzzGuard.
The higher the f pr, the more time is spent on executions with
unreachable inputs. The higher the f nr, the more likely the
PoC is executed late in the fuzzing. The accuracy is calculated
by acc = Np+Nn−N f p−N f n

Np+Nn
.

Figure 5: The accuracy of FuzzGuard.

From Figure 5, we can find that FuzzGuard is very accurate
(ranging from 92.5% to 99.9%). The average accuracy is
98.7%. The false positive rate for all vulnerabilities is 1.9%
on average. Note that false positives do not let a PoC be
missed. Neither do they increase the time spent on executing
the inputs (such inputs are always executed by the program if
there is no FuzzGuard). The false negative rate is negligible,
which is 0.02% on average. There are only 4 vulnerabilities
that have false negatives, and the highest one is 0.3%. We
further check those false negatives manually and confirm that
there is no PoC in those inputs. Even if a PoC is included, as
mentioned previously, FuzzGuard will save it to the PUI for
further testing by updated models (no PoC will be missed).
Such an accurate model enables FuzzGuard to have high
performance.

The main reason for false positives and false negatives is
due to lack of balanced representative data. For example, an
unreachable input could be predicted by FuzzGuard as reach-
able (i.e., a false positive) if it is similar enough to previous
reachable inputs. The execution path of the input can also
be similar to the path to the buggy code (covering some pre-
dominating nodes of the buggy code). But some bytes in the
input stop the execution to the buggy code eventually. A false

negative may let the program reach the target buggy code
through an execution path that is never seen before. If those
new execution paths could be learned by the model, the pre-
diction will be more accurate. In our evaluation, the number
of unseen paths becomes less after long-time fuzzing, which
is probably the reason for the low false positive rate.

6.4 Contribution of Individual Techniques
To investigate the individual contribution of the step-
forwarding approach and the representative data selection,
we measure the performance boost with and without each
technique for all the bugs in Table 1. In particular, to be fair in
the comparison, for each bug to test, we use the same sequence
of inputs. We first perform the evaluation without the step-
forwarding approach, and record the performance increase
(column FG1 in Table 1). Then we do not use representa-
tion data selection and record the corresponding performance
increase (column FG2 in Table 1). The results indicate that
FuzzGuard (with both the two techniques) can gain 5.4×
speedup compared to the vanilla AFLGo implementation,
while FuzzGuard without step-forwarding and FuzzGuard
without representative data selection can gain only 2.6× and
4.4× speedup, respectively.

We also made further analysis. As we know, the step-
forwarding approach is designed to help FuzzGuard to get
balanced data earlier in the fuzzing process, further to let
the training process start earlier. So we want to measure how
much step-forwarding can help. We record the start time of the
first training with and without the step-forwarding approach
(see Figure 3). The x-axis in the figure shows the bug index in
Table 1, and the y-axis gives the start time in hours. From the
figure, we find that if step-forwarding is not used, FuzzGuard
fails to start the training process for 14 bugs (e.g., #5 , #6
and #7) due to lack of balanced data. For other bugs, even if
the training process starts, the time of start will be postponed
by 17.4 hours on average compared with the model using
step-forwarding. This also postpones the filtering process and
finally impacts the overall performance.

Regarding representative data selection, we also measure
its impact on the accuracy of the model. For each bug, we
record the model’s accuracy with and without using represen-
tative data selection. The results are shown in Figure 5. The
x-axis shows the bug index and y-axis gives the accuracy of
the model. From the figure, on average, representative data
selection increases the accuracy by 4.4%. For some cases
(#14, #21 and #40 in Figure 5), the accuracy of the model
decreases dramatically without representative data selection.
Based on the individual evaluations above, we find that Fuzz-
Guard needs both step-forwarding and the representative data
selection for efficiency and accuracy.

6.5 Findings
Interestingly, in our evaluation, we find 23 undisclosed bugs
(4 of them are zero-day vulnerabilities). Note that the buggy
code of the undisclosed bugs is actually not our target. The
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goal of FuzzGuard is to increase the efficiency of fuzzing
by removing unreachable inputs, instead of triggering new
bugs. All the bugs found by FuzzGuard+AFLGo could even-
tually be discovered by AFLGo. The undisclosed bugs are
patched in the new versions of the corresponding programs.
For the four zero-day vulnerabilities, we successfully gain the
CVE numbers6. The vulnerabilities are triggered when we
perform target fuzzing on other vulnerabilities. For example,
CVE-2018-20189 is found in the fuzzing process of CVE-
2017-17501; and CVE-2019-7663 is found in the fuzzing
process of CVE-2016-10266. Also, we discover CVE-2019-
7581 and CVE-2019-7582 when verifying CVE-2016-9831.
After manually analyzing the undisclosed bugs and zero-day
vulnerabilities, we find that their locations are quite near the
buggy code (i.e., the destination in targeted fuzzing). For ex-
ample, List 2 and List 3 show the call stacks of triggering
CVE-2017-17501 and CVE-2018-20189 respectively. The
first 8 pre-dominating nodes are the same for both the two
call stacks, while only the last basic blocks differ. We guess
the code near the buggy code could be more likely to contain
a new bug7.

7 Understanding
Our evaluation results show that FuzzGuard is highly effec-
tive to filter out unreachable inputs, with an average accuracy
of 98.7%. We want to understand from the features why Fuzz-
Guard has such a good performance. If the learned features by
FuzzGuard are reasonable, the results of FuzzGuard are also
understandable. To achieve this goal, our idea is to extract the
features from the model and analyze them manually. How-
ever, as we know, the high-dimensional features extracted by
the deep neural network are hard to be understood directly.
Inspired by saliency maps [8], our idea is to project the fea-
tures to individual bytes (referred to as the key features), and
to check whether the key features could impact the execution
of the target program.

In particular, to get the key features, we design a mask-
based approach to obtain the corresponding key bytes of an
input used by the model. The basic idea is as follows: we
use a mask (i.e., a vector with the same length as the input)
to cover the bytes of the input x (the covered fields are set
to 0). If the covered input has the same prediction result
as the uncovered one (i.e., f (mask · x) = f (x), where f is
the CNN model used by FuzzGuard), the covered fields will
not impact the prediction result, which means that they are
not the key features. By increasing the number of covered
fields in the input step by step, we could acquire all the key
features in the end. The mask at this time is referred to as the
maximum mask. For example, an input is shown in Figure 6.
The mask sets the value of the shaded part of the input to
0. When f (x) = f (m · x), the shaded part will not impact

6CVE-2018-20189, CVE-2019-7581, CVE-2019-7582, CVE-2019-7663.
7One reason could be that both the two pieces of code are written by the

same developer.

the reachability of the input x. So we shade more bytes and
iterate this process. The problem here is that the covered
fields have too many combinations. So our idea is to leverage
gradient descent to calculate the maximum mask. In particular,
we adjust the mask according to the deviation between the
predicted label yp and the real label y of x until yp = y. To
utilize this approach, we design a loss function that considers
not only the deviation between the predicted and actual values,
but also the coverage rate in the mask as follows:

loss =
∑

n
i=1 maski

n
+

∑
m
i=1(y

x
i − yi)

2

m

where n is the number of bytes of mask and m is the length of
y mentioned in Section 4.3. When the gap between yp and y
is minimal and the number of covered bytes is maximum, the
uncovered bytes in x are the key features, which are the fields
in the input affecting the reachability viewed by FuzzGuard.
In this way, the key features could be compared with the
constraints in the target program to check whether the key
features can really impact the execution.

Figure 6: A PoC of CVE-2018-20189.

For example, the PoC (a PNG file) of CVE-2018-20189
is shown in Figure 6. The key features in this PoC are un-
shaded. After manual analysis, we verify that the field from
offset 0x0e to 0x0f (bits_per_pixel in List 1) in the in-
put decides the execution direction of the branch in Line
6; and the fields from offset 0x0c to 0x0d (number_colors
in List 1) in the input impact the execution. For example,
when bits_per_pixel < 16 or number_colors 6= 0, the
buggy code will be executed. The bug will be triggered when
bits_per_pixel > 8. Through the above analysis, we can
confirm that the key features do affect the reachability of the
input, which means that the model successfully captures the
fields as features when the number of such inputs is enough
for training.

1 ThrowReaderException(...);
2 if (dib_info.colors_important > 256)
3 ThrowReaderException(...);
4 if ((dib_info.image_size != 0U) && (dib_info.image_size

> file_size))
5 ThrowReaderException(...);
6 if ((dib_info.number_colors != 0) ||

(dib_info.bits_per_pixel < 16)) {
7 image->storage_class=PseudoClass;

Listing 1: The vulnerable code of CVE-2018-20189.
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8 Discussion
Benefit to input mutation. Most of the current fuzzers focus
on mutating inputs for enhancing the performance of fuzzing
(e.g., AFL [2], AFLFast [10] and AFLGo [9]). Different from
them, our idea is to help DGF filter out unreachable inputs.
Interestingly, we find our approach could also potentially help
them to optimize the strategy of input mutation. If a fuzzer
knows the fields in inputs impacting the execution, it can mu-
tate them for letting the program execution reach the buggy
code. Modification of other fields would not help in this pro-
cess. Based on the understanding of features extracted by
FuzzGuard, we find that FuzzGuard could learn the fields
impacting the execution (see Section 7). Thus, FuzzGuard
could further help the DGF in the process of input mutation.

Learning models. Intuitively, the convolutional architecture
uses local patterns. But CNN can actually handle non-local
patterns as long as it has enough neural network layers. RNN
is similar: when it has enough layers, it can handle non-local
patterns; otherwise, it will forget former features. However,
the overhead of RNN to handle long data is very large. So we
choose to use a 3-layer CNN. In our evaluation, the results
show that CNN achieved a good performance (1.9% false
positive rate and 0.02% false negative rate on average), which
may indicate that most key features in the inputs are local
patterns (e.g., the field bits_per_pixel in Figure 6). This is
understandable: for a single constraint in an if-statement, it
usually relies on the local bytes in inputs to make decisions.

Memory usage. In theory, we could keep the unreachable
inputs in memory forever to avoid missing a PoC. However, in
real situation, the memory is limited. So our idea is to remove
those inputs that are highly impossible to reach the buggy
code. In other words, if an input is judged as “unreachable”
by the updated models for dozens of times, it is highly possible
that it cannot reach the buggy code. In this way, we could
save memory while at the same time keeping the accuracy.
Based on our evaluation, no PoC is dropped in this way.

9 Related Work
Traditional Fuzzers. A lot of state-of-the-arts are proposed
in recent years. AFL [2] is a representative CGF fuzzer among
them, which gives other fuzzers a guidance. For example,
Böhme et al. [10] use the Markov model to construct the
fuzzing process. It chooses the seeds which exercise the
low-frequency execution paths, and then mutates them to
cover more code to find bugs. FairFuzz [24] is similar to
AFLFast [10], but it provides new mutation strategies (i.e.,
overwritten, deleted and inserted). Gan et al. [16] fix the prob-
lem of path collision in AFL by correcting the path coverage
calculation in AFL. Another variant of AFL is AFLGo [9],
it selects the seeds which have the execution path closer to
the targets path, and mutates them to trigger the target bugs.
And Chen et al. [12] improve AFLGo by new strategies of
seed selection and mutation. Some researchers improve the

effectiveness by traditional program analysis. For example, Li
et al. [25] use static analysis and instrumentation to acquire
the magic number position during execution and apply them
to the mutation to improve the execution depth of the test case.
Chen et al. [13] use dynamic techniques such as colorful taint
analysis to find bugs. Rawat et al. [30] use both static and
dynamic analysis techniques to obtain control flow and data
flow information to improve the effectiveness of the mutation.
Chen et al. [14] discover memory layouts to perform accurate
fuzzing. Different from their work, we leverage deep-learning-
based approach to filter out unreachable inputs to increase the
performance of fuzzing.

Learning-based Fuzzers. There are also some fuzzers using
intelligent techniques. For example, You et al. [35] extract
vulnerable information from CVE descriptions and trigger
the bugs in Linux kernel. Wang et al. [33] learn the grammar
and semantics features from a large number of program in-
puts through probabilistic context sensitive grammar (PCSG),
and then generate program inputs from that PCSG. Similarly,
there are some previous studies [17, 28, 29] training static
models to improve the mutation strategy of the fuzzer by gen-
erating inputs that are more likely to trigger bugs. Godefroid
et al. [17] apply RNN to learn the grammar of program inputs
through a large number of test cases, and further leverage the
learned grammar to generate new inputs consequently. Rajpal
et al. [29] utilize a LSTM model to predict suitable bytes in
inputs and mutates these bytes to maximize edge-coverage
based on previous fuzzing experience. Nichols et al. [28] train
a GAN model to predict the executed path of an input. Chen
et al. [15] apply gradient descent algorithm to solve the path
constraint problem and find the key bytes in an input to the
buggy code. She et al. [31] also utilize gradient descent to
smooth the neural network model and learn branches in the
program to improve program coverage. Different from these
studies which mainly focus on mutating inputs to achieve
high code coverage or to efficiently reach target buggy code,
the goal of FuzzGuard is to help DGF filter out unreachable
inputs, which is complementary and compatible with other
fuzzers, instead of replacing them.

10 Conclusion
Recently, DGF is efficient to find the bugs with potentially
known locations. To increase the efficiency of fuzzing, most
of the current studies focus on mutating inputs to increase
the possibility to reach the target, but little has been done on
filtering out unreachable inputs. In this paper, we propose
a deep-learning-based approach, named FuzzGuard, which
predicts reachability of program inputs without executing the
program. We also present a suite of novel techniques to han-
dle the challenge of lacking representative labeled data. The
results on 45 real bugs show that up to 17.1× speedup could
be gained by FuzzGuard. We further show the key features
learned by FuzzGuard, which indeed impact the execution.
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Appendix

1 0x665abb in WriteOnePNGImage coders/png.c:7061
2 0x677891 in WriteMNGImage coders/png.c:9881
3 0x479f3d in WriteImage magick/constitute.c:2230
4 0x47a891 in WriteImages magick/constitute.c:2387
5 0x42bb9d in ConvertImageCommand magick/command.c:6087
6 0x43672e in MagickCommand magick/command.c:8872
7 0x45eeaf in GMCommandSingle magick/command.c:17393
8 0x45f0fb in GMCommand magick/command.c:17446
9 0x40c895 in main utilities/gm.c:61

Listing 2: The sequence of calls to trigger CVE-2017-17501.

1 0x548b71 in WriteOnePNGImage coders/png.c:7263
2 0x551d97 in WriteMNGImage coders/png.c:9881
3 0x450f60 in WriteImage magick/constitute.c:2230
4 0x4515da in WriteImages magick/constitute.c:2387
5 0x4215bc in ConvertImageCommand magick/command.c:6087
6 0x427e48 in MagickCommand magick/command.c:8872
7 0x44113e in GMCommandSingle magick/command.c:17393
8 0x441267 in GMCommand magick/command.c:17446
9 0x40be26 in main utilities/gm.c:61

Listing 3: The sequence of calls to trigger the zero-day
vulnerability.
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