
Exploring Connections Between Active Learning and Model Extraction

Varun Chandrasekaran1, Kamalika Chaudhuri3, Irene Giacomelli2, Somesh Jha1, and Songbai Yan3

1University of Wisconsin-Madison
2Protocol Labs

3University of California San Diego

Abstract

Machine learning is being increasingly used by individu-

als, research institutions, and corporations. This has resulted

in the surge of Machine Learning-as-a-Service (MLaaS) -

cloud services that provide (a) tools and resources to learn the

model, and (b) a user-friendly query interface to access the

model. However, such MLaaS systems raise concerns such

as model extraction. In model extraction attacks, adversaries

maliciously exploit the query interface to steal the model.

More precisely, in a model extraction attack, a good approxi-

mation of a sensitive or proprietary model held by the server

is extracted (i.e. learned) by a dishonest user who interacts

with the server only via the query interface. This attack was

introduced by Tramèr et al. at the 2016 USENIX Security

Symposium, where practical attacks for various models were

shown. We believe that better understanding the efficacy of

model extraction attacks is paramount to designing secure

MLaaS systems. To that end, we take the first step by (a)

formalizing model extraction and discussing possible defense

strategies, and (b) drawing parallels between model extraction

and established area of active learning. In particular, we show

that recent advancements in the active learning domain can

be used to implement powerful model extraction attacks, and

investigate possible defense strategies.

1 Introduction
Advancements in various facets of machine learning has made

it an integral part of our daily life. However, most real-world

machine learning tasks are resource intensive. To that end,

several cloud providers, such as Amazon, Google, Microsoft,

and BigML offset the storage and computational requirements

by providing Machine Learning-as-a-Service (MLaaS). A

MLaaS server offers support for both the training phase, and

a query interface for accessing the trained model. The trained

model is then queried by other users on chosen instances (refer

Fig. 1). Often, this is implemented in a pay-per-query regime

i.e. the server, or the model owner via the server, charges the

the users for the queries to the model. Pricing for popular

MLaaS APIs is given in Table 1.

Current research is focused at improving the performance

of training algorithms, while little emphasis is placed on the

related security aspects. For example, in many real-world ap-

plications, the trained models are privacy-sensitive - a model

can (a) leak sensitive information about training data [5] dur-

ing/after training, and (b) can itself have commercial value or

can be used in security applications that assume its secrecy

(e.g., spam filters, fraud detection etc. [29, 38, 53]). To keep

the models private, there has been a surge in the practice of

oracle access, or black-box access. Here, the trained model

is made available for prediction but is kept secret. MLaaS

systems use oracle access to balance the trade-off between

privacy and usability.

Models Google Amazon Microsoft

• DNNs Confidence

Score

✗ Confidence

Score

• Regression Confidence

Score

Confidence

Score

Confidence

Score

• Decision trees Leaf Node ✗ Leaf Node

• Random forests Leaf Node ✗ Leaf Node

• Binary & n-ary

classification

Confidence

Score

Confidence

Score

Confidence

Score

• Batch $0.093∗ $0.1 $0.5

• Online $0.056∗ $0.0001 $0.0005

Table 1: Pricing, and auxiliary information shared. ∗ Google’s pricing

model is per node per hour. Leaf node denotes the exact leaf (and not an

internal node) where the computation halts, and ✗indicates the absence of

support for the associated model.

Despite providing oracle access, a broad suite of attacks

continue to target existing MLaaS systems [13]. For example,

membership inference attacks attempt to determine if a given

data-point is included in the model’s training dataset only by

interacting with the MLaaS interface (e.g. [52]). In this work,

we focus on model extraction attacks, where an adversary

makes use of the MLaaS query interface in order to steal the

proprietary model (i.e. learn the model or a good approxima-

2 Machine Learning Overview
In this section, we give a brief overview of machine learning,

and terminology we use throughout the paper. In particular,

we summarize the passive learning framework in § 2.1, and

focus on active learning algorithms in § 2.2. A review of

the state-of-the-art of active learning algorithms is needed

to explicitly link model extraction to active learning and is

presented in § 3.

2.1 Passive learning

In the standard, passive machine learning setting, the learner

has access to a large labeled dataset and uses it in its entirety

to learn a predictive model from a given class. Let X be

an instance space, and Y be a set of labels. For example, in

object recognition, X can be the space of all images, and Y

can be a set of objects that we wish to detect in these images.

We refer to a pair (x,y) ∈ X×Y as a data-point or labeled

instance (x is the instance, y is the label). Finally, there is

a class of functions F from X to Y called the hypothesis

space that is known in advance. The learner’s goal is to find a

function f̂ ∈ F that is a good predictor for the label y given

the instance x, with (x,y) ∈ X×Y. To measure how well f̂

predicts the labels, a loss function ℓ is used. Given a data-point

z = (x,y) ∈ X×Y, ℓ(f̂ ,z) measures the difference between

f̂ (x) and the true label y. When the label domain Y is finite

(classification problem), the 0-1 loss function is frequently

used:

ℓ(f̂ ,z) =

{

0, if f̂ (x) = y

1, otherwise

If the label domain Y is continuous, one can use the square

loss: ℓ(f̂ ,z) = (f̂ (x)− y)2.

In the passive setting, the PAC (probably approximately

correct) learning [56] framework is predominantly used. Here,

we assume that there is an underlying distribution D on X×Y

that describes the data; the learner has no direct knowledge

of D but has access to a set of training data D drawn from it.

The main goal in passive PAC learning is to use the labeled

instances from D to produce a hypothesis f̂ such that its

expected loss with respect to the probability distribution D is

low. This is often measured through the generalization error

of the hypothesis f̂ , defined by

ErrD(f̂) = Ez∼D [ℓ(f̂ ,z)] (1)

More precisely, we have the following definition.

Definition 1 (PAC passive learning [56]). An algorithm A is

a PAC passive learning algorithm for the hypothesis class F if

the following holds for any D on X×Y and any ε,δ ∈ (0,1):
If A is given sA(ε,δ) i.i.d. data-points generated by D , then A

outputs f̂ ∈ F such that ErrD(f̂)≤min f∈F ErrD(f)+ε with

probability at least 1−δ. We refer to sA(ε,δ) as the sample

complexity of algorithm A.

Remark 1 (Realizability assumption). In the general case, the

labels are given together with the instances, and the factor

min f∈F ErrD(f) depends on the hypothesis class. Machine

learning literature refers to this as agnostic learning or the

non-separable case of PAC learning. However, in some ap-

plications, the labels themselves can be described using a

labeling function f ∗ ∈ F . In this case (known as realizable

learning), min f∈F ErrD(f) = 0 and the distribution D can be

described by its marginal over X. A PAC passive learning al-

gorithm A in the realizable case takes sA(ε,δ) i.i.d. instances

generated by D and the corresponding labels generated using

f ∗, and outputs f̂ ∈ F such that ErrD(f̂)≤ ε with probability

at least 1−δ.

2.2 Active learning

In the passive setting, learning an accurate model (i.e. learning

f̂ with low generalization error) requires a large number of

data-points. Thus, the labeling effort required to produce an

accurate predictive model may be prohibitive. In other words,

the sample complexity of many learning algorithms grows

rapidly as ε→ 0 (refer Example 1). This has spurred interest in

learning algorithms that can operate on a smaller set of labeled

instances, leading to the emergence of active learning (AL).

In active learning, the learning algorithm is allowed to select a

subset of unlabeled instances, query their corresponding labels

from an annotator (i.e. oracle) and then use it to construct or

update a model. How the algorithm chooses the instances

varies widely. However, the common underlying idea is that

by actively choosing the data-points used for training, the

learning algorithm can drastically reduce sample complexity.

Formally, an active learning algorithm is an interactive pro-

cess between two parties - the oracle O and the learner L . The

only interaction allowed is through queries - L chooses x ∈X

and sends it to O, who responds with y ∈Y (i.e., the oracle re-

turns the label for the chosen unlabeled instance). This value

of (x,y) is then used by L to infer some information about the

labeling procedure, and to choose the next instance to query.

Over many such interactions, L outputs f̂ as a predictor for

labels. We can use the generalization error (1) to evaluate the

accuracy of the output f̂ . However, depending on the query

strategy chosen by L , other types of error can be used.

There are two distinct scenarios for active learning: PAC

active learning and Query Synthesis (QS) active learning. In

literature, QS active learning is also known as Membership

Query Learning, and we will use the two terms synonymously.

2.2.1 PAC active learning

This scenario was introduced by Dasgupta in 2005 [20] in the

realizable context and then subsequently developed in follow-

ing works (e.g., [4, 19, 26]). In this scenario, the instances

are sampled according to the marginal of D over X, and the

learner, after seeing them, decides whether to query for their

labels or not. Since the data-points seen by L come from the

actual underlying distribution D, the accuracy of the output

hypothesis f̂ is measured using the generalization error (1),

as in the classic (i.e., passive) PAC learning.

There are two options to consider for sampling data-points.

In stream-based sampling (also called selective sampling) ,

the instances are sampled one at a time, and the learner decides

whether to query for the label or not on a per-instance basis.

Pool-based sampling assumes that all of the instances are

collected in a static pool S⊆ X and then the learner chooses

specific instances in S and queries for their labels. Typically,

instances are chosen by L in a greedy fashion using a met-

ric to evaluate all instances in the pool. This is not possible

in stream-based sampling, where L goes through the data

sequentially, and has to therefore make decisions to query

individually. Pool-based sampling is extensively studied since

it has applications in many real-world problems, such as text

classification, information extraction, image classification and

retrieval, etc. [39]. Stream-based sampling represents scenar-

ios where obtaining unlabeled data-points is easy and cheap,

but obtaining their labels is expensive (e.g., stream of data is

collected by a sensor, but the labeling requires an expert).

Before describing query synthesis active learning, we wish

to highlight the advantage of PAC active learning over pas-

sive PAC learning (i.e. the reduced sample complexity) for

some hypothesis class through Example 1. Recall that this

advantage comes from the fact that an active learner is al-

lowed to adaptively choose the data from which it learns,

while a passive learning algorithm learns from a static set of

data-points.

Example 1 (PAC learning for halfspaces). Let Fd,HS be the

hypothesis class of d-dimensional halfspaces1, used for binary

classification. A function in fw ∈ Fd,HS is described by a

normal vector w ∈ R
d (i.e., ||w||2 = 1) and is defined by

fw(x) = sign(〈w,x〉) for any x ∈ R
d

where given two vectors a,b ∈ R
d , then their product is de-

fined as 〈a,b〉= ∑d
i=1 aibi. Moreover, if x ∈R, then sign(x) =

1 if x ≥ 0 and sign(x) = −1 otherwise. A classic result in

passive PAC learning states that O(d
ε log(1

ε)+
1
ε log(1

δ
)) data-

points are needed to learn fw [56]. On the other hand, sev-

eral works propose active learning algorithms for Fd,HS with

sample complexity2 Õ(d log(1
ε)) (under certain distributional

assumptions). For example, if the underlying distribution is

log-concave, there exists an active learning algorithm with

sample complexity Õ(d log(1
ε)) [9, 10, 63]. This general re-

duction in the sample complexity for Fd,HS is easy to infer

when d = 1. In this case, the data-points lie on the real line

and their labels are a sequence of−1’s followed by a sequence

of +1’s. The goal is to discover a point w where the change

from −1 to +1 happens. PAC learning theory states that this

can be achieved with Õ(1
ε)

3 points i.i.d. sampled from D . On

1Halfspace models are also called linear SVM (support vector machine).
2The Õ notation ignores logarithmic factors and terms dependent on δ.
3More generally, Õ(d

ε) points.

fw(x) =

{

−1 if 〈w,x〉<−1

+1 otherwise

R

−1 −1 −1 +1 +1 +1 +1 +1

w∗

Figure 2: Halfspace classification in dimension 1.

the other hand, an active learning algorithm that uses a sim-

ple binary search can achieve the same task with O(log(1
ε))

queries [20] (refer Figure 2).

2.2.2 Query Synthesis (QS) active learning

In this scenario, the learner can request labels for any instance

in the input space X, including points that the learner gen-

erates de novo, independent of the distribution D (e.g., L

can ask for labels for those x that have zero-probability of

being sampled according to D). Query synthesis is reason-

able for many problems, but labeling such arbitrary instances

can be difficult if the oracle is a human annotator. Thus, this

scenario better represents real-world applications where the

oracle is automated (e.g., results from synthetic experiments

[32]). Since the data-points are independent of the distribu-

tion, generalization error is not an appropriate measure of

accuracy of the hypothesis f̂ , and other types of error are

typically used. These new error formulations depend on the

concrete hypothesis class F considered. For example, if F

is the class of boolean functions from {0,1}n to {0,1}, then

the uniform error is used. Assume that the oracle O knows

f ∗ ∈ F and uses it as labeling function (realizable case), then

the uniform error of the hypothesis f̂ is defined as

Erru(f̂) = Pr
x∼{0,1}n

[f̂ (x) 6= f ∗(x)]

where x is sampled uniformly at random from the instance

space {0,1}n. Recent work [3, 16], for the class of halfspaces

Fd,HS (refer to Example 1) use geometric error. Assume that

the true labeling function used by the oracle is fw∗ , then the

geometric error of the hypothesis fw ∈ Fd,HS is defined as

Err2(fw) = ||w∗−w||2

where || · ||2 is the 2-norm.

In both active learning scenarios (PAC and QS), the learner

needs to evaluate the usefulness of an unlabeled instance x,

which can either be generated de novo or sampled from the

given distribution, in order to decide whether to query the

oracle for the corresponding label. In the state of the art, we

can find many ways of formulating such query strategies.

Most of existing literature presents strategies where efficient

search through the hypothesis space is the goal (refer the sur-

vey by Settles [50]). Another point of consideration for an

active learner L is to decide when to stop. This is essential

as active learning is geared at improving accuracy while be-

ing sensitive to new data acquisition cost (i.e., reducing the

query complexity). While one school of thought relies on the

stopping criteria based on the intrinsic measure of stability

or self-confidence within the learner, another believes that

it is based on economic or other external factors (refer [50,

Section 6.7]).

Given this diversity within active learning, we enhance

the standard definition of a learning algorithm and propose

the definition of an active learning system, which is geared

towards model extraction. Our definition is informed by the

MLaaS APIs that we investigated (more details in Table 1).

Definition 2 (Active learning system). Let F be a hypothesis

class with instance space X and label space Y. An active

learning system for F is given by two entities, the learner

L and the oracle O, interacting via membership queries: L

sends to O an instance x ∈ X; O answers with a label y ∈ Y.

We indicate via the notation O f ∗ the realizable case where O

uses a specific labeling function f ∗ ∈ F , i.e. y = f ∗(x). The

behavior of L is described by the following parameters:

1. Scenario: this is the rule that describes the generation of

the input for the querying process (i.e. which instances

x∈X can be queried). In the PAC scenario, the instances

are sampled from the underlying distribution D. In the

query synthesis (QS) scenario, the instances are gener-

ated by the learner L ;

2. Query strategy: given a specific scenario, the query strat-

egy is the algorithm that adaptively decides if the la-

bel for a given instance xi is queried for, given that

the queries x1, . . . ,xi−1 have been answered already. In

the query synthesis scenario, the query strategy also de-

scribes the procedure for instance generation.

3. Stopping criteria: this is a set of considerations used by

L to decide when it must stop querying.

Any system (L ,O) described as above is an active learning

system for F if one of the following holds:

- (PAC scenario) For any D on X×Y and any ε,δ ∈
(0,1), if L is allowed to interact with O using qL(ε,δ)
queries, then L outputs f̂ ∈ F such that ErrD(f̂) ≤
min f∈F ErrD(f)+ ε with probability at least 1−δ.

- (QS scenario) Fix an error measure Err for the functions

in F . For any f ∗ ∈ F , if L is allowed to interact with

O f ∗ using qL(ε,δ) queries, then L outputs f̂ ∈ F such

that Err(f̂)≤ ε with probability at least 1−δ.

We refer to qL(ε,δ) as the query complexity of L .

As we will show in the following section (in particular,

refer § 3.2), the query synthesis scenario is more appropriate

in casting model extraction attack as active learning when we

make no assumptions about the adversary’s prior knowledge.

Note that, other types queries have been studied in literature.

This includes the equivalence query [4]. Here the learner can

verify if a hypothesis is correct or not. We do not consider

equivalence queries in our definition because we did not see

any of the MLaaS APIs support them.

3 Model Extraction
In § 3.1, we begin by formalizing the process of model extrac-

tion. We then draw parallels between model extraction and

active learning in § 3.2.

3.1 Model Extraction Definition

We begin by describing the operational ecosystem of model

extraction attacks in the context of MLaaS systems. An entity

learns a private model f ∗ from a public class F , and provides

it to the MLaaS server. The server provides a client-facing

query interface for accessing the model for prediction. For

example, in the case of logistic regression, the MLaaS server

knows a model represented by parameters a0,a1, · · · ,ad . The

client issues queries of the form x = (x[1], · · · ,x[d])∈Rd , and

the MLaaS server responds with 0 if (1+e−a(x))−1 ≤ 0.5 and

1 otherwise, with a(x) = a0 +∑d
i=1 aix[i].

Model extraction is the process where an adversary exploits

this interface to learn more about the proprietary model f ∗.
The adversary can be interested in defrauding the descrip-

tion of the model f ∗ itself (i.e., stealing the parameters ai as

in a reverse engineering attack), or in obtaining an approx-

imation of the model, say f̂ ∈ F , that he can then use for

free for the same task as the original f ∗ was intended for. To

capture the different goals of an adversary, we say that the

attack is successful if the extracted model is “close enough”

to f ∗ according to an error function on F that is context de-

pendent. Since many existing MLaaS providers operate in a

pay-per-query regime, we use query complexity as a measure

of efficiency of such model extraction attacks.

Formally, consider the following experiment: an adversary

A , who knows the hypothesis class F , has oracle access to a

proprietary model f ∗ from F . This can be thought of as A in-

teracting with a server S that safely stores f ∗. The interaction

has several rounds. In each round, A chooses an instance x

and sends it to S. The latter responds with f ∗(x). After a few

rounds, A outputs a function f̂ that is the adversary’s candi-

date approximation of f ∗; the experiment considers f̂ a good

approximation if its error with respect to the true function f ∗

held by the server is less then a fixed threshold ε. The error

function Err is defined a priori and fixed for the extraction

experiment on the hypothesis class F .

Experiment 1 (Extraction experiment). Given a hypothesis

class F = { f : X→ Y}, fix an error function Err : F → R.

Let S be a MLaaS server with the knowledge of a specific

f ∗ ∈ F , denoted by S(f ∗). Let A be an adversary interacting

with S with a maximum budget of q queries. The extraction

experiment Expε
F (S(f ∗),A ,q) proceeds as follows

1. A is given a description of F and oracle access to f ∗

through the query interface of S. That is, if A sends x∈X

to S, it gets back y = f ∗(x). After at most q queries, A

eventually outputs f̂ ;

2. The output of the experiment is 1 if Err(f̂)≤ ε. Other-

wise the output is 0.

Informally, an adversary A is successful if with high proba-

bility the output of the extraction experiment is 1 for a small

value of ε and a fixed query budget q. This means that A

likely learns a good approximation of f ∗ by only asking q

queries to the server. More precisely, we have the following

definition.

Definition 3 (Extraction attack). Let F be a public hypothe-

sis class and S an MLaaS server as explained before. We say

that an adversary A , which interacts with S, implements an

ε-extraction attack of complexity q and confidence γ against

the class F if Pr[Expε
F (S(f ∗),A ,q) = 1]≥ γ, for any f ∗ ∈ F .

The probability is over the randomness of A .

In other words, in Definition 3 the success probability of

an adversary constrained by a fixed budget for queries is

explicitly lower bounded by the quantity γ.

Before discussing the connection between model extraction

and active learning, we provide an example of a hypothesis

class that is easy to extract.

Example 2 (Equation-solving attack for linear regression).

Let Fd,R be the hypothesis class of regression models from

R
d to R. A function fa in this class is described by d + 1

parameters a0,a1, . . . ,ad from R and defined by: for any

x ∈ R
d , fa(x) = a0 +∑d

i=1 aixi. Consider the adversary AES

that queries x1, . . . ,xd+1 (d + 1 instances from R
d) chosen

in such a way that the set of vectors {(1,xi)}i=1,...,d+1 is lin-

early independent in R
d+1. AES receives the corresponding

d +1 labels, y1, . . . ,yd+1, and can therefore solve the linear

system given by the equations fa(x
i) = yi. Assume that fa∗ is

the function known by the MLaaS server (i.e., yi = fa∗(x
i)).

It is easy to see that if we fix Err(fa) = ||a∗ − a||1, then

Pr[Exp0
Fd,R

(S(fa∗),AES,d + 1) = 1] = 1. That is, AES imple-

ments 0-extraction of complexity d +1 and confidence 1.

While our model operates in the black-box setting, we

discuss other attack models in more detail in Remark 2

3.2 Active Learning and Extraction

From the description presented in the § 2, it is clear that model

extraction in the MLaaS system context closely resembles

active learning. The survey of active learning in § 2.2 contains

a variety of algorithms and scenarios which can be used to

implement model extraction attacks (or to study its impossi-

bility).

However, different scenarios of active learning impose dif-

ferent assumptions on the adversary’s prior knowledge. Here,

we focus on the general case of model extraction with an

adversary A that has no knowledge of the data distribution D .

In particular, such an adversary is not restricted to only con-

sidering instances x∼D to query. For this reason, we believe

that query synthesis (QS) is the right active learning scenario

to investigate in order to draw a meaningful parallelism with

model extraction. Recall that the query synthesis is the only

framework where the query inputs can be generated de novo

(i.e., they do not conform to a distribution).

Observation 1: Given a hypothesis class F and an error func-

tion Err, let (L ,O) be an active learning system for F in the

QS scenario (Definition 2). If the query complexity of L is

qL(ε,δ), then there exists an adversary A that implements

ε-extraction with complexity qL(ε,δ) and confidence 1− δ
against the class F .

The reasoning for this observation is as follows: consider

the adversary A that is the learner L (i.e., A deploys the query

strategy procedure and the stopping criteria that describe L).

This is possible because (L ,O) is in the QS scenario and L

is independent of any underlying (unknown) distribution. Let

q = qL(ε,δ) and observe that

Pr[Expε
F (S(f ∗),A ,q) = 1] =

Pr[A outputs f̂ and Err(f̂)≤ ε] =

Pr[L outputs f̂ and Err(f̂)≤ ε]≥ 1−δ

Our observation states that any active learning algorithm in

the QS scenario can be used to implement a model extraction

attack. Therefore, in order to study the security of a given

hypothesis class in the MLaaS framework, we can use known

techniques and results from the active learning literature. Two

examples of this follow.

Example 3 (Decision tree extraction via QS active learning).

Let Fn,BF denote the set of boolean functions with domain

{0,1}n and range {−1,1}. The reader can think of −1 as 0

and +1 as 1. Using the range of {−1,+1} is very common

in the literature on learning boolean functions. An interesting

subset of Fn,BF is given by the functions that can be repre-

sented as a boolean decision tree. A boolean decision tree

T is a labeled binary tree, where each node v of the tree is

labeled by Lv ⊆{1, · · · ,n} and has two outgoing edges. Every

leaf in this tree is labeled either +1 or −1. Given an n-bit

string x = (b1, · · · ,bn),bi ∈ {0,1} as input, the decision tree

defines the following computation: the computation starts at

the root of the tree T . When the computation arrives at an

internal node v, we calculate the parity of ∑i∈Lv
bi and go left

if the parity is 0 and go right otherwise. The value of the

leaf that the computation ends up in is the value of the func-

tion. We denote by F m
n,BT the class of boolean decision trees

with n-bit input and m nodes. Kushilevitz and Mansour [35]

present an active learning algorithm for the class Fn,BF that

works in the QS scenario. This algorithm utilizes the uniform

error to determine the stopping condition (refer § 2.2). The

authors claim that this algorithm has practical efficiency when

restricted to the classes F m
n,BT ⊂ Fn,BF for any m. In partic-

ular, if the active learner L of [35] interacts with the oracle

OT ∗ where T ∗ ∈ F m
n,BT , then L learns g ∈ Fn,BF such that

Prx∼{0,1}n [g(x) 6= T ∗(x)] ≤ ε with probability at least 1− δ

using a number of queries polynomial in n, m, 1
ε and log(1

δ
).

Based on Observation 1, this directly translates to the exis-

tence of an adversary that implements ε-extraction with com-

plexity polynomial in n, m, 1
ε and confidence 1− δ against

the class F m
n,BT .

Moreover, the algorithm [35] can be extended to (a)

boolean functions of the form f : {0,1, . . . ,k − 1}n →
{−1,+1} that can be computed by a polynomial-size k-ary

decision tree4, and (b) regression trees (i.e., the output is a real

value from [0,M]). In the second case, the running time of

the learning algorithm is polynomial in M (refer § 6 of [35]).

Note that the attack model considered here is a stronger model

than that considered by Tramèr et al. [55] because the at-

tacker/learner does not get any information about the internal

path of the decision tree (refer Remark 2).

Example 4 (Halfspace extraction via QS active learning).

Let Fd,HS be the hypotheses class of d-dimensional half-

spaces defined in Example 1. Alabdulmohsin et al. [3]

present a spectral algorithm to learn a halfspace in the QS

scenario that, in practice, outperformed earlier active learning

strategies in the PAC scenario. They demonstrate, through

several experiments that their algorithm learns fw ∈ Fd,HS

such that ‖w − w∗‖2 ≤ ε with approximately 2d log(1
ε)

queries, where fw∗ ∈ Fd,HS is the labeling function used by O.

It follows from Observation 1 that an adversary utilizing this

algorithm implements ε-extraction against the class Fd,HS

with complexity O(d log(1
ε)) and confidence 1. We validate

the practical efficacy of this attack in § 6.

Remark 2 (Extraction with auxiliary information). Observe

that we define model extraction for only those MLaaS servers

that return only the label value y for a well-formed query x

(i.e. in the oracle access setting). A weaker model considers

the case of MLaaS servers responding to a user’s query x

even when x is incomplete (i.e. with missing features), and

returning the label y along with some auxiliary information.

The work of Tramèr et al. [55] proves that model extraction

attacks in the presence of such “leaky servers” are feasible

and efficient (i.e. low query complexity) for many hypoth-

esis classes (e.g., logistic regression, multilayer perceptron,

and decision trees). In particular, they propose an equation

solving attack [55, Section 4.1] that uses the confidence val-

ues returned by the MLaaS server together with the labels

to steal the model parameters. For example, in the case of

logistic regression, the MLaaS server knows the parameters

a0,a1, . . . ,ad and responds to a query x with the label y (y = 0

if (1+ e−a(x))≤ 0.5 and y = 1 otherwise) and the value a(x)
as confidence value for y. Clearly, the knowledge of the con-

4A k-ary decision tree is a tree in which each inner node v has k outgoing

edges.

fidence values allows an adversary to implement the same

attack we describe in Example 2 for linear regression models.

In [55, §4.2], the authors describes a path-finding attack that

use the leaf/node identifier returned by the server, even for

incomplete queries, to steal a decision tree. These attacks

are very efficient (i.e., d + 1 queries are needed to steal a

d-dimensional logistic regression model). However, their effi-

ciency heavily relies on the presence of the various forms of

auxiliary information provided by the MLaaS server. While

the work in [55] performs preliminary exploration of attacks

in the black-box setting [17, 38], it does not consider more

recent and efficient algorithms in the QS scenario. Our work

explores this direction through a formalization of the model

extraction framework that enables understanding the possi-

bility of extending/improving the active learning attacks pre-

sented in [55]. Furthermore, having a better understanding of

model extraction attack and its unavoidable connection with

active learning is paramount for designing MLaaS systems

that are resilient to model extraction.

4 Non-linear Classifiers

This section focuses on model extraction for two important

non-linear classifiers: kernel SVMs and discrete models (i.e.

decision trees and random forests). For kernel SVMs our

method is a combination of the adaptive-retraining algorithm

introduced by Tramèr et al. and the active selection strategy

from classic literature on active learning of kernel SVMs [12].

For discrete models our algorithm is based on the importance

weighted active learning (IWAL) as described in [11]. Note

that decision trees for general labels (i.e. non-binary case) and

random forests was not discussed in [11].

4.1 Kernel SVMs

In kernel SVMs (kSVMs), there is a kernel K : X×X→ R

associated with the SVM. Some of the common kernels are

polynomials and radial-basis functions (RBFs). If the ker-

nel function K(., .) has some special properties (required by

classic theorem of Mercer [40]), then K(., .) can be replaced

with Φ(.)T Φ(.) for a projection/feature function Φ. In the

feature space (the domain of Φ) the optimization problem is

as follows5:

minw,b‖w‖2 +C ∑n
i=1 ηi

such that for 1≤ i≤ n

yiŷ(xi) ≥ 1−ηi

ηi ≥ 0

In the formulation given above, ŷ(x) is equal to wT Φ(x)+b.

Recall that prediction of the kSVM is the sign of ŷ(x), so ŷ(x)
is the “pre sign” value of the prediction. Note that for some

kernels (e.g. RBF) Φ is infinite dimensional, so one generally

uses the “kernel trick”i.e. one solves the dual of the above

5we are using the formulation for soft-margin kSVMs

problem and obtains a kernel expansion, so that

ŷ(x) =
n

∑
i=1

αiK(x,xi) + b

The vectors x1, · · · ,xn are called support vectors. We assume

that hyper-parameters of the kernel (C,η) are known; one can

extract the hyper-parameters for the RBF kernel using the

extract-and-test approach as Tramèr et al. Note that if Φ is

finite dimensional, we can use an algorithm (including active

learning strategies) for linear classifier by simply working in

the feature space (i.e. extracting the domain of Φ(·)). How-

ever, there is a subtle issue here, which was not addressed

by Tramèr et al. We need to make sure that if a query y is

made in the feature space, it is “realizable” (i.e. there exists

a x such that Φ(x) = y). Otherwise the learning algorithm is

not sound.

Next we describe our model-extraction algorithm for

kSVMs with kernels whose feature space is infinite dimension

(e.g. RBF or Laplace kernels). Our algorithm is a modifica-

tion of the adaptive training approach from Tramèr et al. Our

discussion is specialized to kSVMs with RBFs, but our ideas

are general and are applicable in other contexts.

Extended Adaptive Training (EAT): EAT proceeds in mul-

tiple rounds. In each round we construct h labeled instances.

In the initial stage (t = 0) we draw r instances x1, · · · ,xr from

the uniform distribution, query their labels, and create an ini-

tial model M0. Assume that we are at round t, where t > 0,

and let Mt−1 be model at time t−1. Round t works as follows:

create h labeled instances using a strategy StT (Mt−1,h) (note

that the strategy St is oracle access to the teacher, and takes

as parameters model from the previous round and number of

labeled instances to be generated). Now we train Mt−1 on the

instances generated by StT (Mt−1,h) and obtain the updated

model Mt . We keep iterating using the strategy StT (·, ·) un-

til the query budget is satisfied. Ideally, StT (Mt−1,h) should

be instances that the model Mt−1 is least confident about or

closest to the decision boundary.

Tramèr et al. use line search as their strategy StT (Mt−1,h),
which can lead to several queries (each step in the binary

search leads to a query). We generate the initial model M0

as in Tramèr et al. and then our strategy differs. Our strat-

egy StT (Mt−1,1) (note that we only add one labeled sample

at each iteration) works as follows: we generate k random

points x1, · · · ,xk and then compute ŷi(xi) for each xi (recall

that ŷi(xi) is the “pre sign” prediction of xi on the SVM Mt−1.

We then pick xi with minimum | ŷi(xi) | and query for its label

and retrain the model Mt−1 and obtain Mt . This strategy is

called active selection and has been used for active learning of

SVMs [12]. The argument for why this strategy finds the point

closest to the boundary is given in [12, §4]. There are other

strategies described in [12], but we found active selection to

perform the best.

4.2 Decision Trees and Random Forests
Next we will describe the idea of importance weighted ac-

tive learning (IWAL) [11]. Our discussion will be specialized

to decision trees and random forests, but the ideas that are

described are general.

Let H be the hypothesis class (i.e. space of decision trees or

random forests), X is the space of data, and Y is the space of la-

bels. The active learner has a pool of unlabeled data x1,x2, · · · .
For i> 1, we denote by X1:i−1 the sequence x1, · · · ,xi−1. After

having processed the sequence X1:i−1, a coin is flipped with

probability pi ∈ [0,1] and if it comes up heads, the label of

xi is queried. We also define a set Si (S0 = /0) recursively as

follows: If the label for xi is not queried, then Si = Si−1; oth-

erwise Si = Si−1∪ (xi,yi, pi). Essentially the set Si keeps the

information (i.e. data, label, and probability of querying) for

all the datapoints whose label was queried. Given a hypothesis

h ∈H , we define err(h,Sn) as follows:

err(h,Sn) =
1

n
∑

(x,y,p)∈Sn

1

p
1h(x)6=y (2)

Next we define the following quantities (we assume n≥ 1):

hn = argmin{err(h,Sn−1) : h ∈H }
h′n = argmin{err(h,Sn−1) : h ∈H ∧h(Xn) 6= hn(Xn)}
Gn = err(h′n,Sn−1)− err(hn,Sn−1)

Recall that pn is the probability of querying for the label for

Xn, which is defined as follows:

pn =

{

1 if Gn ≤ µ(n)
s(n) otherwise

Where µ(n) =
√

c0 logn
n−1 + c0 logn

n−1 , and s(n) ∈ (0,1) is the posi-

tive solution to the following equation:

Gn =

(

c1√
s− c1 +1

)

·
√

c0 logn

n−1
+

(

c2√
s− c2 +1

)

· c0 logn

n−1

Note the dependence on constants/hyperparameters c0, c1

and c2, which are tuned for a specific problem (e.g. in their

experiments for decision trees [11, §6] the authors set c0 = 8

and c1 = c2 = 1).

Decision Trees: Let DT be any algorithm to create a decision

tree. We start with an initial tree h0 (this can constructed using

a small, uniformly sampled dataset whose labels are queried).

Let hn be the tree at step n−1. The question is: how to con-

struct h′n? Let xn be the nth datapoint and Y = {l1, · · · , lr} be

the set of labels. Let hn(xn) = l j. Let hn(l) be the modification

of tree hn such that hn(l) produces label l 6= hn(xn) on data-

point xn. Let h′n be the tree in the set {hn(l) | l ∈ Y−{l j}}
that has minimum err(·,Sn−1). Now we can compute Gn and

the algorithm can proceed as described before.

Random Forests: In this case we will restrict ourselves to

binary classification, but the algorithm can readily extended to

the case of multiple labels. As before RF0 is the random forest

trained on a small initial dataset. Since we are in the binary

classification domain, the label set Y = {1,−1}. Assume that

we have a random forest RF = {RF [1], · · · ,RF [o]} of trees

RF [i] and on a datapoint x the label of the random forest RF(x)
is the majority of the label of the trees RF [1](x), · · · ,RF [o](x).
Let RFn be the random forest at time step n−1. The question

again is: how to construct RF ′n? Without loss of generality, let

us say on xn RFn(xn) = +1 (the case when the label is −1 is

symmetric) and there are r trees in RFn (denoted by RF+1
n (xn))

such that their labels on xn are +1. Note that r > ⌊ o
2⌋ because

the majority label was +1. Define j = r−⌊ o
2⌋+1. Note that if

j trees in RF+1
n (xn) will “flip” their decision to−1 on xn, then

the decision on xn will be flipped to −1. This is the intuition

we use to compute RF ′n. There are
(

r
j

)

choices of trees and

we pick the one with minimum error on Sn−1, and that gives

us RF ′n. Recall that
(

r
j

)

is approximately r j, but we can be

approximate by randomly picking j trees out of RF+1
n (xn),

and choosing the random draw with the minimum error to

approximate RF ′n.

5 Defense Strategies
Our main observation is that model extraction in the context

of MLaaS systems described at the beginning of § 3 (i.e.,

oracle access) is equivalent to QS active learning. Therefore,

any advancement in the area of QS active learning directly

translates to a new threat for MLaaS systems. In this section,

we discuss strategies that could be used to make the process

of extraction more difficult.We investigate the link between

ML in the noisy setting and model extraction. The design of

a good defense strategy is an open problem; we believe this

is an interesting direction for future work where the ML and

security communities can fruitfully collaborate.

In this section, we assume that the MLaaS server S with the

knowledge of f ∗, S(f ∗), has the freedom to modify the pre-

diction before forwarding it to the client. More precisely, we

assume that there exists a (possibly) randomized procedure D

that the server uses to compute the answer ỹ to a query x, and

returns that instead of f ∗(x). We use the notation SD(f ∗) to

indicate that the server S implements D to protect f ∗. Clearly,

the learner that interacts with SD(f ∗) can still try to learn a

function f from the noisy answers from the server. However,

the added noise requires the learner to make more queries, or

could produce a less accurate model than f .

5.1 Classification case

We focus on the binary classification problem where F is an

hypothesis class of functions of the form f : X→ Y and Y

is binary, but our argument can be easily generalized to the

multi-class setting.

First, in the following two remarks we recall two known

results from the literature [27] that establish information the-

oretic bounds for the number of queries required to extract

the model when any defense is implemented. Let ν be the

generalization error of the model f ∗ known by the server SD

and µ be the generalization error of the model f learned by an

adversary interacting with SD(f ∗). Assume that the hypoth-

esis class F has VC dimension equal to d. Recall that the

VC dimension of a hypothesis class F is the largest number

d such that there exists a subset X ⊂ X of size d which can

be shattered by F . A set X = {x1, . . . ,xd} ⊂ X is said to be

shattered by F if |{(f (x1), f (x2), . . . , f (xd)) : f ∈ F }|= 2d .

Remark 3 (Passive learning). Assume that the adversary uses

a passive learning algorithm to compute f , such as the Em-

pirical Risk Minimization (ERM) algorithm, where given

a labeled training set {(X1,Y1), . . .(Xn,Yn)}, the ERM algo-

rithm outputs f̂ = argmin f∈F
1
n ∑n

i=11[f (Xi) 6=Yi]. Then, the

adversary can learn f̂ with excess error ε (i.e., µ≤ ν+ε) with

Õ(ν+ε
ε2 d) examples. For any algorithm, there is a distribution

such that the algorithm needs at least Ω̃(ν+ε
ε2 d) samples to

achieve an excess error of ε.

Remark 4 (Active learning). Assume that the adversary uses

an active learning algorithm to compute f , such as the

disagreement-based active learning algorithm [27]. Then,

the adversary achieves excess error ε with Õ(ν2

ε2 dθ) queries

(where θ is the disagreement coefficient [27]). For any active

learning algorithm, there is a distribution such that it takes at

least Ω̃(ν2

ε2 d) queries to achieve an excess error of ε.

Observe that any defense strategy D used by a server S

to prevent the extraction of a model f ∗ can be seen as a

randomized procedure that outputs ỹ instead of f ∗(x) with a

given probability over the random coins of D. In the discrete

case, we represent this with the notation

ρD(f ∗,x) = Pr[Yx 6= f ∗(x)], (3)

where Yx is the random variable that represents the answer

of the server SD(f ∗) to the query x (e.g., ỹ← Yx). When the

function f ∗ is fixed, we can consider the supremum of the

function ρD(f ∗,x), which represents the upper bound for the

probability that an answer from SD(f ∗) is wrong:

ρD(f ∗) = sup
x∈X

ρD(f ∗,x).

Before discussing potential defense approaches, we first

present a general negative result. The following proposition

states that that any candidate defense D that correctly responds

to a query with probability greater than or equal to 1
2 + c for

some constant c > 0 for all instances can be easily broken. In-

deed, an adversary that repetitively queries the same instance

x can figure out the correct label f ∗(x) by simply looking

at the most frequent label that is returned from SD(f ∗). We

prove that with this extraction strategy, the number of queries

required increases by only a logarithmic multiplicative factor.

Proposition 1. Let F be an hypothesis class used for clas-

sification and (L ,O) be an active learning system for F

in the QS scenario with query complexity q(ε,δ). For any

D, randomized procedure for returning labels, such that

there exists f ∗ ∈ F with ρD(f ∗) < 1
2 , there exists an ad-

versary that, interacting with SD(f ∗), can implement an ε-

extraction attack with confidence 1− 2δ and complexity

q = 8
(1−2ρD(f ∗))2 q(ε,δ) ln

q(ε,δ)
δ

.

The proof of Proposition 1 can be found in the appendix

in [1]. Proposition 1 can be used to discuss the following two

different defense strategies:

1. Data-independent randomization. Let F denote a hy-

pothesis class that is subject to an extraction attack using QS

active learning. An intuitive defense for F involves adding

noise to the query output f ∗(x) independent of the labeling

function f ∗ and the input query x. In other words, ρD(f ,x)= ρ
for any x ∈X, f ∈ F , and ρ is a constant value in the interval

(0,1). It is easy to see that this simple strategy cannot work. It

follows from Proposition 1 that if ρ < 1
2 , then D is not secure.

On the other hand, if ρ≥ 1
2 , then the server is useless since it

outputs an incorrect label with probability at least 1
2 .

Example 5 (Halfspace extraction under noise). For example,

we know that ε-extraction with any level of confidence can

be implemented with complexity q = O(d log(1
ε)) using QS

active learning for the class Fd,HS i.e. for binary classification

via halfspaces (refer Example 4). It follows from the earlier

discussion that any defense that flips labels with a constant

flipping probability ρ does not work. This defense approach

is similar to the case of “noisy oracles” studied extensively

in the active learning literature [30, 31, 45]. For example,

from the ML literature we know that if the flipping probabil-

ity is exactly ρ (ρ ≤ 1
2), the AVERAGE algorithm (similar

to our Algorithm 1, defined in Section 6) ε-extracts f ∗ with

Õ(d2

(1−2ρ)2 log 1
ε) labels [33]. Under bounded noise where each

label is flipped with probability at most ρ (ρ < 1
2), the AV-

ERAGE algorithm does not work anymore, but a modified

Perceptron algorithm can learn with Õ(d
(1−2ρ)2 log 1

ε) labels

[61] in a stream-based active learning setting, and a QS active

learning algorithm proposed by Chen et al. [16] can also learn

with the same number of labels. An adversary implementing

the Chen et al. algorithm [16] is even more efficient than the

adversary Ã defined in the proof of Proposition 1 (i.e., the

total number of queries only increases by a constant multi-

plicative factor instead of lnq(ε,δ)). We validate the practical

efficiency of this attack in § 6.

2. Data-dependent randomization. Based on the outcome

of the earlier discussion, we believe that a defense that aims

to protect a hypothesis class against model extraction via QS

active learning should implement data-dependent perturbation

of the returned labels. That is, we are interested in a defense D

such that the probability ρD(f ∗,x) depends on the query input

x and the labeling function f ∗. For example, given a class

F that can be extracted using an active learner L (in the QS

scenario), if we consider a defense D such that ρD(f ∗,x)≥ 1
2

for some instances, then the proof of Proposition 1 does not

work (the argument only works if there is a constant c > 0

such that ρD(f ∗,x)≤ 1
2 − c for all x) and the effectiveness of

the adversary Ã is not guaranteed anymore6.

Example 6 (Halfspace extraction under noise). For the case

of binary classification via halfspaces, Alabdulmohsin et

al. [2] design a system that follows this strategy. They con-

sider the class Fd,HS and design a learning rule that uses

training data to infer a distribution of models, as opposed to

learning a single model. To elaborate, the algorithm learns

the mean µ and the covariance Σ for a multivariate Gaussian

distribution N (µ,Σ) on Fd,HS such that any model drawn

from N (µ,Σ) provides an accurate prediction. The problem

of learning such a distribution of classifiers is formulated as

a convex-optimization problem, which can be solved quite

efficiently using existing solvers. During prediction, when the

label for a instance x is queried, a new w is drawn at random

from the learned distribution N (µ,Σ) and the label is com-

puted as y = sign(〈w,x〉). The authors show that this random-

ization method can mitigate the risk of reverse engineering

without incurring any notable loss in predictive accuracy. In

particular, they use PAC active learning algorithms [9, 17]

(assuming that the underlying distribution D is Gaussian) to

learn an approximation ŵ from queries answered in three dif-

ferent ways: (a) with their strategy, i.e. using a new model for

each query, (b) using a fixed model to compute all labels, and

(c) using a fixed model and adding independent noise to each

label, i.e. y = sign(〈w,x〉+η) and η← [−1,+1]. They show

that the geometric error of ŵ with respect to the true model is

higher in the former setting (i.e. in (a)) than in the others. On

15 different datasets, their strategy gives typically an order of

magnitude larger error. We empirically evaluate this defense

in the context of model extraction using QS active learning

algorithms in § 6.

Continuous case: Generalizing Proposition 1 to the continu-

ous case does not seem straightforward, i.e. when the target

model held by the MLaaS server is a real-valued function

f ∗ : X→ R; a detailed discussion about the continuous case

appears in the appendix in [1].

6 Implementation and Evaluation
For all experiments described below, we use an Ubuntu 16.04

server with 32 GB RAM, and an Intel i5-6600 CPU clocking

3.30GHz. We use a combination of datasets obtained from

the scikit-learn library and the UCI machine learning

repository7, as used by Tramèr et al..

6Intuitively, in the binary case if ρD(f ∗,xi)≥ 1
2 then the definition of yi

performed by Ã in step 2 (majority vote) is likely to be wrong. However,

notice that this is not always the case in the multiclass setting: For example,

consider the case when the answer to query xi is defined to be wrong with

probability ≥ 1
2 and, when wrong, is sampled uniformly at random among

the k−1 classes that are different to the true class f ∗(x), then if k is large

enough, yi defined via the majority vote is likely to be still correct.
7https://archive.ics.uci.edu/ml/datasets.html

Dataset Adaptive Retraining EAT

Queries Accuracy Queries Accuracy

Mushroom 11301 98.5 1001 94.5

Breast Cancer 1101 99.3 119 96.4

Adult 10901 96.98 48 98.2

Diabetes 901 98.5 166 94.8

Table 3: Extraction of a kernel SVM model. Comparison of the query

complexity and test accuracy (in %) obtained running Tramèr et al. adaptive

retraining vs. extended adaptive retraining.

Dataset Oracle Path Finding IWAL

Accuracy Queries Queries Accuracy

Adult 81.2 18323 244188 80.2

Steak 52.1 5205 1334 73.1

Iris 86.8 246 361 89.4

GSShappiness 79 18907 254892 79.3

Table 4: Extraction of a decision tree model. Comparison of the query

complexity and test accuracy (in %) obtained by running path finding (Tramèr

et al.) vs. IWAL algorithm. The test accuracy (in %) of the server-hosted

oracle is presented as a baseline.

that we train locally8, eliminating redundant queries to the

oracle. To compare the efficiency of our algorithm, we re-

execute the adaptive retraining procedure, and present our

results in Table 3.

It is clear that our approach is more query efficient in com-

parison to Tramèr et al. (between 5×-224×), with compara-

ble test accuracy. These advantages stem from (a) using a

more informative metric of uncertainty than the distance from

the decision boundary, and (b) querying labels of only those

points which the local model is uncertain about.

Q2. Decision Trees: Tramèr et al. propose a path finding

algorithm to determine the structure of the server-hosted de-

cision tree. They rely on the server’s response to incomplete

queries, and the addition of node identifiers to the generated

outputs to recreate the tree. From our analysis presented in

Table 1such flexibility is not readily available in most MLaaS

providers. As discussed earlier (refer § 4.2), we utilize the

IWAL algorithm proposed by Beygelzimer et al. [11] that

iteratively refines a learned hypothesis. It is important to note

that the IWAL algorithm is more general, and does not rely

on the information needed by the path finding algorithm. We

present the results of extraction using the IWAL algorithm

below in Table 4.

In each iteration, the algorithm learns a new hypothesis, but

the efficiency of the approach relies on the hypothesis used

preceding the first iteration. To this end, we generate inputs

uniformly at random. Note that in such a uniform query gener-

ation scenario, we rely on zero auxiliary information. We can

see that while the number of queries required to launch such

extraction attacks is greater than in the approach proposed

8such a local model is seeded with uniformly random points labeled by

the oracle

by Tramèr et al., such an approach obtains comparable test

error to the oracle. While the authors rely on certain distri-

butional assumptions to prove a label complexity result, we

empirically observe success using the uniform strategy. Such

an approach is truly powerful; it makes limited assumptions

about the MLaaS provider and any prior knowledge.

7 Discussion
We begin our discussion by highlighting algorithms an adver-

sary could use if the assumptions made about the operational

ecosystem are relaxed. Then, we discuss strategies that can

potentially be used to make the process of extraction more

difficult, and shortcomings in our approach.

7.1 Varying the Adversary’s Capabilities

The operational ecosystem in this work is one where the ad-

versary is able to synthesize data-points de novo to extract

a model through oracle access. In this section, we discuss

other algorithms an adversary could use if this assumption

is relaxed. We begin by discussing other models an adver-

sary can learn in the query synthesis regime, and move on to

discussing algorithms in other approaches.

Equivalence queries. In her seminal work, Angluin [4] pro-

poses a learning algorithm, L∗, to correctly learn a regular set

from any minimally adequate teacher, in polynomial time. For

this to work, however, equivalence queries are also needed

along with membership queries. Should MLaaS servers pro-

vide responses to such equivalence queries, different extrac-

tion attacks could be devised. To learn linear decision bound-

aries, Wang et al. [59] first synthesize an instance close to the

decision boundary using labeled data, and then select the real

instance closest to the synthesized one as a query. Similarly,

Awasthi et al. [7] study learning algorithms that make queries

that are close to examples generated from the data distribution.

These attacks require the adversary to have access to some

subset of the original training data. In other domains, program

synthesis using input-output example pairs (e.g.,[25, 58]) also

follows a similar principle.

If the adversary had access to a subset of the training data,

or had prior knowledge of the distribution from which this

data was drawn from, it could launch a different set of attacks

based on the algorithms discussed below.

Stream-based selective sampling. Atlas et al. [6] propose

selective sampling as a form of directed search (similar to

Mitchell [41]) that can greatly increase the ability of a connec-

tionist network (i.e. power system security analysis in their

paper) to generalize accurately. Dagan et al. [18] propose a

method for training probabilistic classifiers by choosing those

examples from a stream that are more informative. Linden-

baum et al. [36] present a lookahead algorithm for selective

sampling of examples for nearest neighbor classifiers. The

algorithm looks for the example with the highest utility, tak-

ing its effect on the resulting classifier into account. Another

important application of selective learning was for feature

selection [37], an important preprocessing step. Other appli-

cations of stream-based selective sampling include sensor

scheduling [34], learning ranking functions for information

retrieval [62], and in word sense disambiguation [24].

Pool-based sampling. Dasgupta [21] surveys active learning

in the non-separable case, with a special focus on statistical

learning theory. He claims that in this setting, AL algorithms

usually follow one of the following two strategies - (i) Ef-

ficient search in the hypothesis spaces (as in the algorithm

proposed by Chen et al. [16], or by Cohn et al. [17]), or (ii)

Exploiting clusters in the data (as in the algorithm proposed

by Dasgupta et al. [22]). The latter option can be used to

learn more complex models, such as decision trees. As the

ideal halving algorithm is difficult to implement in practice,

pool-based approximations are used instead such as uncer-

tainty sampling and the query-by-committee (QBC) algorithm

(e.g., [14, 54]). Unfortunately, such approximation methods

are only guaranteed to work well if the number of unlabeled

examples (i.e. pool size) grows exponentially fast with each

iteration. Otherwise, such heuristics become crude approxi-

mations and they can perform quite poorly.

7.2 Complex Models

PAC active learning strategies have proven effective in learn-

ing DNNs. The work of Sener et al. [49] selects the most

representative points from a sample of the training distribu-

tion to learn the DNN. Papernot et al. [46] employ substitute

model training - a procedure where a small training subset

is strategically augmented and used to train a shadow model

that resembles the model being attacked. Note that the prior

approaches rely on some additional information, such as a

subset of the training data.

Active learning for complex models is challenging. Active

learning algorithms considered in this paper operate in an

iterative manner. Let H be the entire hypothesis class. At

time time t ≥ 0 let the set of possible hypothesis be Ht ⊆
H . Usually an active-learning algorithm issues a query at

time t and updates the possible set of hypothesis to Ht+1,

which is a subset of Ht . Once the size of Ht is “small” the

algorithm stops. Analyzing the effect of a query on possible

set of hypothesis is very complicated in the context of complex

models, such as DNNs. We believe this is a very important

and interesting direction for future work.

7.3 Model Transferability

Most work in active learning has assumed that the correct hy-

pothesis space for the task is already known i.e. if the model

being learned is for logistic regression, or is a neural network

and so on. In such situations, observe that the labeled data be-

ing used is biased, in that it is implicitly tied to the underlying

hypothesis. Thus, it can become problematic if one wishes

to re-use the labeled data chosen to learn another, different

hypothesis space. This leads us to model transferability9, a

9A special case of agnostic active learning [8].

less studied form of defense where the oracle responds to any

query with the prediction output from an entirely different

hypothesis class. For example, imagine if a learner tries to

learn a halfspace, but the teacher performs prediction using a

boolean decision tree. Initial work in this space includes that

of Shi et al. [51], where an adversary can steal a linear sepa-

rator by learning input-output relations using a deep neural

network. However, the performance of query synthesis active

learning in such ecosystems is unclear.

7.4 Limitations

We stress that these limitations are not a function of our spe-

cific approach, and stem from the theory of active learning.

Specifically: (1) As noted by Dasgupta [20], the label com-

plexity of PAC active learning depends heavily on the spe-

cific target hypothesis, and can range from O(log 1
ε) to Ω(1

ε).
Similar results have been obtained by others [28, 43]. This

suggests that for some hypotheses classes, the query com-

plexity of active learning algorithms is as high as that in the

passive setting. (2) Some query synthesis algorithms assume

that there is some labeled data to bootstrap the system. How-

ever, this may not always be true, and randomly generating

these labeled points may adversely impact the performance

of the algorithm. (3) For our particular implementation, the

algorithms proposed rely on the geometric error between the

optimal and learned halfspaces. Sometimes, there is no direct

correlation between this geometric error and the generaliza-

tion error used to measure the model’s goodness.

8 Related Work
Machine learning algorithms and systems are optimized for

performance. Little attention is paid to the security and pri-

vacy risks of these systems and algorithms. Our work is moti-

vated by the following attacks against machine learning.

1. Causative Attacks: These attacks are primarily geared at

poisoning the training data used for learning, such that the

classifier produced performs erroneously during test time.

These include: (a) mislabeling the training data, (b) changing

rewards in the case of reinforcement learning, or (c) modify-

ing the sampling mechanism (to add some bias) such that it

does not reflect the true underlying distribution in the case of

unsupervised learning [48]. The work of Papernot et al. [47]

modify input features resulting in misclassification by DNNs.

2. Evasion Attacks: Once the algorithm has trained success-

fully, these forms of attacks provide tailored inputs such that

the output is erroneous. These noisy inputs often preserves the

semantics of the original inputs, are human imperceptible, or

are physically realizable. The well studied area of adversarial

examples is an instantiation of such an attack. Moreover, eva-

sion attacks can also be even black-box i.e. the attacker need

not know the model. This is because an adversarial example

optimized for one model is highly likely to be effective for

other models. This concept, known as transferability, was

introduced by Carlini et al. [15].

3. Exploratory Attacks: These forms of attacks are the primary

focus of this work, and are geared at learning intrinsics about

the algorithm used for training. These intrinsics can include

learning model parameters, hyperparameters, or training data.

Typically, these forms of attacks fall in two categories - model

inversion, or model extraction. In the first class, Fredrikson et

al. [23] show that an attacker can learn sensitive information

about the dataset used to train a model, given access to side-

channel information about the dataset. In the second class, the

work of Tramér et al. [55] provides attacks to learn parameters

of a model hosted on the cloud, through a query interface.

Termed membership inference, Shokri et al. [52] learn the

training data used for machine learning by training their own

inference models. Wang et al. [57] propose attacks to learn a

model’s hyperparameters.

9 Conclusions
In this paper, we formalize model extraction in the context of

Machine-Learning-as-a-Service (MLaaS) servers that return

only prediction values (i.e., oracle access setting), and we

study its relation with query synthesis active learning (Obser-

vation 1). Thus, we are able to implement efficient attacks to

the class of halfspace models used for binary classification

(§ 6). While our experiments focus on the class of halfspace

models, we believe that extraction via active learning can be

extended to multiclass and non-linear models such as deep

neural networks, random forests etc. We also begin exploring

possible defense approaches (§ 5). To the best of our knowl-

edge, this is the first work to formalize security in the context

of MLaaS systems. We believe this is a fundamental first step

in designing more secure MLaaS systems. Finally, we suggest

that data-dependent randomization (e.g., model randomiza-

tion as in [2]) is the most promising direction to follow in

order to design effective defenses.

10 Acknowledgements
This material is partially supported by Air Force Grant

FA9550-18-1-0166, the National Science Foundation (NSF)

Grants CCF-FMitF-1836978, SaTC-Frontiers-1804648, CCF-

1652140, CNS-1838733, CNS-1719336, CNS-1647152, CNS-

1629833 and ARO grant number W911NF-17-1-0405. Kama-

lika Chaudhuri and Songbai Yan thank NSF under 1719133

and 1804829 for research support.

References
[1] https://arxiv.org/abs/1811.02054, 2019.

[2] Ibrahim M. Alabdulmohsin, Xin Gao, and Xiangliang

Zhang. Adding robustness to support vector machines

against adversarial reverse engineering. In Proceed-

ings of the 23rd ACM International Conference on Con-

ference on Information and Knowledge Management,

CIKM 2014, Shanghai, China, November 3-7, 2014,

pages 231–240, 2014.

[3] Ibrahim M Alabdulmohsin, Xin Gao, and Xiangliang

Zhang. Efficient active learning of halfspaces via query

synthesis. In AAAI, pages 2483–2489, 2015.

[4] Dana Angluin. Learning regular sets from queries

and counterexamples. Information and computation,

75(2):87–106, 1987.

[5] Giuseppe Ateniese, Luigi V. Mancini, Angelo Spog-

nardi, Antonio Villani, Domenico Vitali, and Giovanni

Felici. Hacking smart machines with smarter ones: How

to extract meaningful data from machine learning clas-

sifiers. IJSN, 10(3):137–150, 2015.

[6] Les E Atlas, David A Cohn, and Richard E Ladner.

Training connectionist networks with queries and se-

lective sampling. In Advances in neural information

processing systems, pages 566–573, 1990.

[7] Pranjal Awasthi, Vitaly Feldman, and Varun Kanade.

Learning using local membership queries. In Confer-

ence on Learning Theory, pages 398–431, 2013.

[8] Maria-Florina Balcan, Alina Beygelzimer, and John

Langford. Agnostic active learning. Journal of Com-

puter and System Sciences, 75(1):78–89, 2009.

[9] Maria-Florina Balcan, Andrei Z. Broder, and Tong

Zhang. Margin based active learning. In Learning

Theory, 20th Annual Conference on Learning Theory,

COLT 2007, San Diego, CA, USA, June 13-15, 2007,

Proceedings, pages 35–50, 2007.

[10] Maria-Florina Balcan and Philip M. Long. Active and

passive learning of linear separators under log-concave

distributions. In COLT 2013 - The 26th Annual Confer-

ence on Learning Theory, June 12-14, 2013, Princeton

University, NJ, USA, pages 288–316, 2013.

[11] Alina Beygelzimer, Daniel Hsu, John Langford, and

Tong Zhang. Agnostic active learning without con-

straints. In 23rd International Conference on Neural

Information Processing Systems (NIPS), 2010.

[12] Antoine Bordes, Seyda Ertekin, Jason Weston, and Leon

Bottou. Fast kernel classifiers with online and ac-

tive learning. Journal of Machine Learning Research

(JMLR), September 2005.

[13] Wieland Brendel, Jonas Rauber, and Matthias Bethge.

Decision-based adversarial attacks: Reliable attacks

against black-box machine learning models. arXiv

preprint arXiv:1712.04248, 2017.

[14] Klaus Brinker. Incorporating diversity in active learning

with support vector machines. In Proceedings of the

20th International Conference on Machine Learning

(ICML-03), pages 59–66, 2003.

[15] Nicholas Carlini and David Wagner. Towards evaluat-

ing the robustness of neural networks. In Security and

Privacy (SP), 2017 IEEE Symposium on, pages 39–57.

IEEE, 2017.

[16] Lin Chen, Seyed Hamed Hassani, and Amin Karbasi.

Near-optimal active learning of halfspaces via query

synthesis in the noisy setting. In AAAI, pages 1798–

1804, 2017.

[17] David Cohn, Les Atlas, and Richard Ladner. Improving

generalization with active learning. Machine learning,

15(2):201–221, 1994.

[18] Ido Dagan and Sean P Engelson. Committee-based sam-

pling for training probabilistic classifiers. In Proceed-

ings of the Twelfth International Conference on Machine

Learning, pages 150–157. The Morgan Kaufmann series

in machine learning,(San Francisco, CA, USA), 1995.

[19] S. Dasgupta, D. Hsu, and C. Monteleoni. A general

agnostic active learning algorithm. In NIPS, 2007.

[20] Sanjoy Dasgupta. Coarse sample complexity bounds

for active learning. In Advances in Neural Information

Processing Systems 18 [Neural Information Processing

Systems, NIPS 2005, December 5-8, 2005, Vancouver,

British Columbia, Canada], pages 235–242, 2005.

[21] Sanjoy Dasgupta. Two faces of active learning. Theo-

retical computer science, 412(19):1767–1781, 2011.

[22] Sanjoy Dasgupta, Daniel J Hsu, and Claire Monteleoni.

A general agnostic active learning algorithm. In Ad-

vances in neural information processing systems, pages

353–360, 2008.

[23] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon

Lin, David Page, and Thomas Ristenpart. Privacy in

pharmacogenetics: An end-to-end case study of person-

alized warfarin dosing. In USENIX Security Symposium,

pages 17–32, 2014.

[24] Atsushi Fujii, Takenobu Tokunaga, Kentaro Inui, and

Hozumi Tanaka. Selective sampling for example-based

word sense disambiguation. Computational Linguistics,

24(4):573–597, 1998.

[25] Sumit Gulwani. Synthesis from examples: Interaction

models and algorithms. In Symbolic and Numeric Algo-

rithms for Scientific Computing (SYNASC), 2012 14th

International Symposium on, pages 8–14. IEEE, 2012.

[26] S. Hanneke. A bound on the label complexity of agnos-

tic active learning. In ICML, 2007.

[27] Steve Hanneke. Theory of disagreement-based active

learning. Foundations and Trends in Machine Learning,

7(2-3):131–309, 2014.

[28] Tibor Hegedűs. Generalized teaching dimensions and

the query complexity of learning. In Proceedings of the

eighth annual conference on Computational learning

theory, pages 108–117. ACM, 1995.

[29] Ling Huang, Anthony D. Joseph, Blaine Nelson, Ben-

jamin I. P. Rubinstein, and J. D. Tygar. Adversarial

machine learning. In Proceedings of the 4th ACM Work-

shop on Security and Artificial Intelligence, AISec 2011,

Chicago, IL, USA, October 21, 2011, pages 43–58, 2011.

[30] Matti Kääriäinen. Active learning in the non-realizable

case. In Algorithmic Learning Theory, 17th Interna-

tional Conference, ALT 2006, Barcelona, Spain, October

7-10, 2006, Proceedings, pages 63–77, 2006.

[31] Richard M. Karp and Robert Kleinberg. Noisy binary

search and its applications. In Proceedings of the Eigh-

teenth Annual ACM-SIAM Symposium on Discrete Al-

gorithms, SODA 2007, New Orleans, Louisiana, USA,

January 7-9, 2007, pages 881–890, 2007.

[32] Ross D King, Jem Rowland, Stephen G Oliver, Michael

Young, Wayne Aubrey, Emma Byrne, Maria Liakata,

Magdalena Markham, Pinar Pir, Larisa N Soldatova,

et al. The automation of science. Science, 324(5923):85–

89, 2009.

[33] Adam R. Klivans and Pravesh Kothari. Embedding hard

learning problems into gaussian space. In Approxima-

tion, Randomization, and Combinatorial Optimization.

Algorithms and Techniques, APPROX/RANDOM 2014,

September 4-6, 2014, Barcelona, Spain, pages 793–809,

2014.

[34] Vikram Krishnamurthy. Algorithms for optimal schedul-

ing and management of hidden markov model sensors.

IEEE Transactions on Signal Processing, 50(6):1382–

1397, 2002.

[35] Eyal Kushilevitz and Yishay Mansour. Learning deci-

sion trees using the fourier spectrum. SIAM J. Comput.,

22(6):1331–1348, 1993.

[36] Michael Lindenbaum, Shaul Markovitch, and Dmitry

Rusakov. Selective sampling for nearest neighbor clas-

sifiers. In AAAI/IAAI, pages 366–371. Citeseer, 1999.

[37] Huan Liu, Hiroshi Motoda, and Lei Yu. A selective

sampling approach to active feature selection. Artificial

Intelligence, 159(1-2):49–74, 2004.

[38] Daniel Lowd and Christopher Meek. Adversarial learn-

ing. In Proceedings of the Eleventh ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data

Mining, Chicago, Illinois, USA, August 21-24, 2005,

pages 641–647, 2005.

[39] Andrew McCallum and Kamal Nigam. Employing EM

and pool-based active learning for text classification. In

Proceedings of the Fifteenth International Conference

on Machine Learning, Madison, Wisconsin, USA, July

24-27, 1998, pages 350–358, 1998.

[40] Ha Quang Minh, Partha Niyogi, and Yuan Yao. Mercer’s

theorem, feature maps, and smoothing. In International

Conference on Computational Learning Theory, pages

154–168. Springer, 2006.

[41] Tom M Mitchell. Generalization as search. Artificial

intelligence, 18(2):203–226, 1982.

[42] Tom Michael Mitchell. Version spaces: an approach to

concept learning. Technical report, STANFORD UNIV

CALIF DEPT OF COMPUTER SCIENCE, 1978.

[43] Mohammad Naghshvar, Tara Javidi, and Kamalika

Chaudhuri. Noisy bayesian active learning. In Com-

munication, Control, and Computing (Allerton), 2012

50th Annual Allerton Conference on, pages 1626–1633.

IEEE, 2012.

[44] Robert Nowak. Noisy generalized binary search. In Ad-

vances in neural information processing systems, pages

1366–1374, 2009.

[45] Robert D. Nowak. The geometry of generalized binary

search. IEEE Trans. Information Theory, 57(12):7893–

7906, 2011.

[46] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,

Somesh Jha, Z Berkay Celik, and Ananthram Swami.

Practical black-box attacks against machine learning.

In Proceedings of the 2017 ACM on Asia Conference

on Computer and Communications Security, pages 506–

519. ACM, 2017.

[47] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt

Fredrikson, Z Berkay Celik, and Ananthram Swami. The

limitations of deep learning in adversarial settings. In

Security and Privacy (EuroS&P), 2016 IEEE European

Symposium on, pages 372–387. IEEE, 2016.

[48] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha,

and Michael Wellman. Towards the science of secu-

rity and privacy in machine learning. arXiv preprint

arXiv:1611.03814, 2016.

[49] Ozan Sener and Silvio Savarese. Active learning for con-

volutional neural networks: A core-set approach. 2018.

[50] B Settles. Active learning literature survey univ.

wisconsin-madison, madison, wi, 2009. Technical re-

port, CS Tech. Rep. 1648.

[51] Yi Shi, Yalin Sagduyu, and Alexander Grushin. How to

steal a machine learning classifier with deep learning. In

Technologies for Homeland Security (HST), 2017 IEEE

International Symposium on, pages 1–5. IEEE, 2017.

[52] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-

taly Shmatikov. Membership inference attacks against

machine learning models. In Security and Privacy (SP),

2017 IEEE Symposium on, pages 3–18. IEEE, 2017.

[53] Nedim Srndic and Pavel Laskov. Practical evasion of a

learning-based classifier: A case study. In 2014 IEEE

Symposium on Security and Privacy, SP 2014, Berkeley,

CA, USA, May 18-21, 2014, pages 197–211, 2014.

[54] Simon Tong and Daphne Koller. Support vector machine

active learning with applications to text classification.

Journal of machine learning research, 2(Nov):45–66,

2001.

[55] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Re-

iter, and Thomas Ristenpart. Stealing machine learning

models via prediction apis. In 25th USENIX Security

Symposium, USENIX Security 16, Austin, TX, USA, Au-

gust 10-12, 2016., pages 601–618, 2016.

[56] Leslie G Valiant. A theory of the learnable. Communi-

cations of the ACM, 27(11):1134–1142, 1984.

[57] Binghui Wang and Neil Zhenqiang Gong. Stealing

hyperparameters in machine learning. arXiv preprint

arXiv:1802.05351, 2018.

[58] Chenglong Wang, Alvin Cheung, and Rastislav Bodik.

Interactive query synthesis from input-output examples.

In Proceedings of the 2017 ACM International Confer-

ence on Management of Data, pages 1631–1634. ACM,

2017.
[59] Liantao Wang, Xuelei Hu, Bo Yuan, and Jianfeng Lu.

Active learning via query synthesis and nearest neigh-

bour search. Neurocomputing, 147:426–434, 2015.

[60] Songbai Yan, Kamalika Chaudhuri, and Tara Javidi. Ac-

tive learning from imperfect labelers. In Advances in

Neural Information Processing Systems, pages 2128–

2136, 2016.

[61] Songbai Yan and Chicheng Zhang. Revisiting percep-

tron: Efficient and label-optimal learning of halfspaces.

In Advances in Neural Information Processing Systems

30: Annual Conference on Neural Information Process-

ing Systems 2017, 4-9 December 2017, Long Beach, CA,

USA, pages 1056–1066, 2017.

[62] Hwanjo Yu. Svm selective sampling for ranking with ap-

plication to data retrieval. In Proceedings of the eleventh

ACM SIGKDD international conference on Knowledge

discovery in data mining, pages 354–363. ACM, 2005.

[63] Chicheng Zhang and Kamalika Chaudhuri. Beyond

disagreement-based agnostic active learning. In Ad-

vances in Neural Information Processing Systems, pages

442–450, 2014.

	Introduction
	Machine Learning Overview
	Passive learning
	Active learning
	PAC active learning
	Query Synthesis (QS) active learning

	Model Extraction
	Model Extraction Definition
	Active Learning and Extraction

	Non-linear Classifiers
	Kernel SVMs
	Decision Trees and Random Forests

	Defense Strategies
	Classification case

	Implementation and Evaluation
	Linear Models
	Non-Linear Models

	Discussion
	Varying the Adversary's Capabilities
	Complex Models
	Model Transferability
	Limitations

	Related Work
	Conclusions
	Acknowledgements

