
Local Model Poisoning Attacks to Byzantine-Robust Federated Learning

Minghong Fang∗1, Xiaoyu Cao∗2, Jinyuan Jia2, Neil Zhenqiang Gong2

1CS Department, Iowa State University, 2ECE Department, Duke University
1myfang@iastate.edu, 2{xiaoyu.cao, jinyuan.jia, neil.gong}@duke.edu

Abstract
In federated learning, multiple client devices jointly learn a

machine learning model: each client device maintains a local

model for its local training dataset, while a master device

maintains a global model via aggregating the local models

from the client devices. The machine learning community

recently proposed several federated learning methods that

were claimed to be robust against Byzantine failures (e.g.,

system failures, adversarial manipulations) of certain client

devices. In this work, we perform the first systematic study

on local model poisoning attacks to federated learning. We

assume an attacker has compromised some client devices,

and the attacker manipulates the local model parameters on

the compromised client devices during the learning process

such that the global model has a large testing error rate. We

formulate our attacks as optimization problems and apply

our attacks to four recent Byzantine-robust federated learning

methods. Our empirical results on four real-world datasets

show that our attacks can substantially increase the error rates

of the models learnt by the federated learning methods that

were claimed to be robust against Byzantine failures of some

client devices. We generalize two defenses for data poisoning

attacks to defend against our local model poisoning attacks.

Our evaluation results show that one defense can effectively

defend against our attacks in some cases, but the defenses are

not effective enough in other cases, highlighting the need for

new defenses against our local model poisoning attacks to

federated learning.

1 Introduction

Byzantine-robust federated learning: In federated learn-
ing (also known as collaborative learning) [32, 39], the

training dataset is decentralized among multiple client de-

vices (e.g., desktops, mobile phones, IoT devices), which

could belong to different users or organizations. These

users/organizations do not want to share their local training

∗Equal contribution. Minghong Fang performed this research when he

was under the supervision of Neil Zhenqiang Gong.

Figure 1: Data vs. local model poisoning attacks.

datasets, but still desire to jointly learn a model. For instance,

multiple hospitals may desire to learn a healthcare model

without sharing their sensitive data to each other. Each client

device (called worker device) maintains a local model for its

local training dataset. Moreover, the service provider has a

master device (e.g., cloud server), which maintains a global
model. Roughly speaking, federated learning repeatedly per-

forms three steps: the master device sends the current global

model to worker devices; worker devices update their local

models using their local training datasets and the global model,

and send the local models to the master device; and the master

device computes a new global model via aggregating the local

models according to a certain aggregation rule.

For instance, the mean aggregation rule that takes the aver-

age of the local model parameters as the global model is

widely used under non-adversarial settings. However, the

global model can be arbitrarily manipulated for mean even

if just one worker device is compromised [9, 66]. Therefore,

the machine learning community recently proposed multi-

ple aggregation rules (e.g., Krum [9], Bulyan [42], trimmed

mean [66], and median [66]), which aimed to be robust against

Byzantine failures of certain worker devices.

Existing data poisoning attacks are insufficient: We con-

sider attacks that aim to manipulate the training phase of

machine learning such that the learnt model (we consider the

model to be a classifier) has a high testing error rate indiscrim-

inately for testing examples, which makes the model unusable

and eventually leads to denial-of-service attacks. Figure 1

shows the training phase, which includes two components,

i.e., training dataset collection and learning process. The

training dataset collection component is to collect a training

dataset, while the learning process component produces a

model from a given training dataset. Existing attacks mainly

inject malicious data into the training dataset before the learn-

ing process starts, while the learning process is assumed to

maintain integrity. Therefore, these attacks are often called

data poisoning attacks [8, 30, 33, 50, 56, 62]. In federated

learning, an attacker could only inject the malicious data into

the worker devices that are under the attacker’s control. As

a result, these data poisoning attacks have limited success to

attack Byzantine-robust federated learning (see our experi-

mental results in Section 4.4).

Our work: We perform the first study on local model poison-
ing attacks to Byzantine-robust federated learning. Existing

studies [9, 66] only showed local model poisoning attacks to

federated learning with the non-robust mean aggregation rule.

Threat model. Unlike existing data poisoning attacks that

compromise the integrity of training dataset collection, we

aim to compromise the integrity of the learning process in

the training phase (see Figure 1). We assume the attacker

has control of some worker devices and manipulates the local

model parameters sent from these devices to the master device

during the learning process. The attacker may or may not

know the aggregation rule used by the master device. To

contrast with data poisoning attacks, we call our attacks local

model poisoning attacks as they directly manipulate the local

model parameters.

Local model poisoning attacks. A key challenge of local

model poisoning attacks is how to craft the local models

sent from the compromised worker devices to the master

device. To address this challenge, we formulate crafting local

models as solving an optimization problem in each iteration

of federated learning. Specifically, the master device could

compute a global model in an iteration if there are no attacks,

which we call before-attack global model. Our goal is to craft

the local models on the compromised worker devices such that

the global model deviates the most towards the inverse of the

direction along which the before-attack global model would

change. Our intuition is that the deviations accumulated over

multiple iterations would make the learnt global model differ

from the before-attack one significantly. We apply our attacks

to four recent Byzantine-robust federated learning methods

including Krum, Bulyan, trimmed mean, and median.

Our evaluation results on the MNIST, Fashion-MNIST, CH-

MNIST, and Breast Cancer Wisconsin (Diagnostic) datasets

show that our attacks can substantially increase the error rates

of the global models under various settings of federated learn-

ing. For instance, when learning a deep neural network clas-

sifier for MNIST using Krum, our attack can increase the

error rate from 0.11 to 0.75. Moreover, we compare with data

poisoning attacks including label flipping attacks and back-
gradient optimization based attacks [43] (state-of-the-art un-

targeted data poisoning attacks for multi-class classifiers),

which poison the local training datasets on the compromised

worker devices. We find that these data poisoning attacks

have limited success to attack the Byzantine-robust federated

learning methods.

Defenses. Existing defenses against data poisoning attacks

essentially aim to sanitize the training dataset. One category

of defenses [4, 15, 56, 59] detects malicious data based on

their negative impact on the error rate of the learnt model. For

instance, Reject on Negative Impact (RONI) [4] measures the

impact of each training example on the error rate of the learnt

model and removes the training examples that have large

negative impact. Another category of defenses [20, 30, 35]

leverages new loss functions, solving which detects malicious

data and learns a model simultaneously. For instance, Jagielski

et al. [30] proposed TRIM, which aims to jointly find a subset

of training dataset with a given size and model parameters that

minimize the loss function. The training examples that are not

in the selected subset are treated as malicious data. However,

these defenses are not directly applicable for our local model

poisoning attacks because our attacks do not inject malicious

data into the training dataset.

To address the challenge, we generalize RONI and TRIM

to defend against our local model poisoning attacks. Both de-

fenses remove the local models that are potentially malicious

before computing the global model using a Byzantine-robust

aggregation rule in each iteration. One defense removes the

local models that have large negative impact on the error rate

of the global model (inspired by RONI that removes training

examples that have large negative impact on the error rate of

the model), while the other defense removes the local models

that result in large loss (inspired by TRIM that removes the

training examples that have large negative impact on the loss),

where the error rate and loss are evaluated on a validation

dataset. We call the two defenses Error Rate based Rejection
(ERR) and Loss Function based Rejection (LFR), respectively.

Moreover, we combine ERR and LFR, i.e., we remove the

local models that are removed by either ERR or LFR. Our

empirical evaluation results show that LFR outperforms ERR;

and the combined defense is comparable to LFR in most

cases. Moreover, LFR can defend against our attacks in cer-

tain cases, but LFR is not effective enough in other cases. For

instance, LFR can effectively defend against our attacks that

craft local models based on the trimmed mean aggregation

rule, but LFR is not effective against our attacks that are based

on the Krum aggregation rule. Our results show that we need

new defense mechanisms to defend against our local model

poisoning attacks.

Our key contributions can be summarized as follows:

• We perform the first systematic study on attacking

Byzantine-robust federated learning.

• We propose local model poisoning attacks to Byzantine-

robust federated learning. Our attacks manipulate the

local model parameters on compromised worker de-

vices during the learning process.

• We generalize two defenses for data poisoning attacks

to defend against local model poisoning attacks. Our

results show that, although one of them is effective in

some cases, they have limited success in other cases.

2 Background and Problem Formulation

2.1 Federated Learning

Suppose we have m worker devices and the ith worker device

has a local training dataset Di. The worker devices aim to

collaboratively learn a classifier. Specifically, the model pa-

rameters w of the classifier are often obtained via solving the

following optimization problem: minw ∑m
i=1 F(w,Di), where

F(w,Di) is the objective function for the local training dataset

on the ith device and characterizes how well the parameters

w model the local training dataset on the ith device. Differ-

ent classifiers (e.g., logistic regression, deep neural networks)

use different objective functions. In federated learning, each

worker device maintains a local model for its local training

dataset. Moreover, we have a master device to maintain a

global model via aggregating local models from the m worker

devices. Specifically, federated learning performs the follow-

ing three steps in each iteration:

Step I. The master device sends the current global model

parameters to all worker devices.

Step II. The worker devices update their local model pa-

rameters using the current global model parameters and their

local training datasets in parallel. In particular, the ith worker

device essentially aims to solve the optimization problem

minwi F(wi,Di) with the global model parameters w as an

initialization of the local model parameters wi. A worker de-

vice could use any method to solve the optimization problem,

though stochastic gradient descent is the most popular one.

Specifically, the ith worker device updates its local model

parameters wi as wi = w−α · ∂F(w,Bi)
∂w , where α is the learn-

ing rate and Bi is a randomly sampled batch from the local

training dataset Di. Note that a worker device could apply

stochastic gradient descent multiple rounds to update its local

model. After updating the local models, the worker devices

send them to the master device.

Step III. The master device aggregates the local models

from the worker devices to obtain a new global model ac-

cording to a certain aggregation rule. Formally, we have

w = A(w1,w2, · · · ,wm).

The master device could also randomly pick a subset of

worker devices and send the global model to them; the picked

worker devices update their local models and send them to

the master device; and the master device aggregates the local

models to obtain the new global model [39]. We note that,

for the aggregation rules we study in this paper, sending local

models to the master device is equivalent to sending gradients

to the master device, who aggregates the gradients and uses

them to update the global model.

2.2 Byzantine-robust Aggregation Rules

A naive aggregation rule is to average the local model param-

eters as the global model parameters. This mean aggregation

rule is widely used under non-adversarial settings [16, 32, 39].

However, mean is not robust under adversarial settings. In

particular, an attacker can manipulate the global model param-

eters arbitrarily for this mean aggregation rule when compro-

mising only one worker device [9,66]. Therefore, the machine

learning community has recently developed multiple aggrega-

tion rules that aim to be robust even if certain worker devices

exhibit Byzantine failures. Next, we review several such ag-

gregation rules.

Krum [9] and Bulyan [42]: Krum selects one of the m local

models that is similar to other models as the global model.

The intuition is that even if the selected local model is from a

compromised worker device, its impact may be constrained

since it is similar to other local models possibly from be-

nign worker devices. Suppose at most c worker devices are

compromised. For each local model wi, the master device

computes the m− c− 2 local models that are the closest to

wi with respect to Euclidean distance. Moreover, the master

device computes the sum of the distances between wi and its

closest m− c−2 local models. Krum selects the local model

with the smallest sum of distance as the global model. When

c< m−2
2 , Krum has theoretical guarantees for the convergence

for certain objective functions.

Euclidean distance between two local models could be

substantially influenced by a single model parameter. There-

fore, Krum could be influenced by some abnormal model

parameters [42]. To address this issue, Mhamdi et al. [42]

proposed Bulyan, which essentially combines Krum and a

variant of trimmed mean (trimmed mean will be discussed

next). Specifically, Bulyan first iteratively applies Krum to se-

lect θ (θ ≤ m−2c) local models. Then, Bulyan uses a variant

of trimmed mean to aggregate the θ local models. In particular,

for each jth model parameter, Bulyan sorts the jth parameters

of the θ local models, finds the γ (γ ≤ θ−2c) parameters that

are the closest to the median, and computes their mean as the

jth parameter of the global model. When c ≤ m−3
4 , Bulyan

has theoretical guarantees for the convergence under certain

assumptions of the objective function.

Since Bulyan is based on Krum, our attacks for Krum can

transfer to Bulyan (see Appendix A). Moreover, Bulyan is

not scalable because it executes Krum many times in each

iteration and Krum computes pairwise distances between

local models. Therefore, we will focus on Krum in the paper.

Trimmed mean [66]: This aggregation rule aggregates each

model parameter independently. Specifically, for each jth
model parameter, the master device sorts the jth parameters

of the m local models, i.e., w1 j,w2 j, · · · ,wm j, where wi j is the

jth parameter of the ith local model, removes the largest and

smallest β of them, and computes the mean of the remaining

m−2β parameters as the jth parameter of the global model.

Suppose at most c worker devices are compromised. This

trimmed mean aggregation rule achieves order-optimal error

rate when c ≤ β < m
2 and the objective function to be mini-

mized is strongly convex. Specifically, the order-optimal error

rate is Õ(c
m
√

n +
1√
mn),

1 where n is the number of training

data points on a worker device (worker devices are assumed

to have the same number of training data points).

Median [66]: In this median aggregation rule, for each jth
model parameter, the master device sorts the jth parameters of

the m local models and takes the median as the jth parameter

of the global model. Note that when m is an even number,

median is the mean of the middle two parameters. Like the

trimmed mean aggregation rule, the median aggregation rule

also achieves an order-optimal error rate when the objective

function is strongly convex.

2.3 Problem Definition and Threat Model

Attacker’s goal: Like many studies on poisoning attacks [7,

8, 30, 33, 50, 62, 65], we consider an attacker’s goal is to ma-

nipulate the learnt global model such that it has a high error

rate indiscriminately for testing examples. Such attacks are

known as untargeted poisoning attacks, which make the learnt

model unusable and eventually lead to denial-of-service at-

tacks. For instance, an attacker may perform such attacks to

its competitor’s federated learning system. Some studies also

considered other types of poisoning attacks (e.g., targeted
poisoning attacks [56]), which we will review in Section 6.

We note that the Byzantine-robust aggregation rules dis-

cussed above can asymptotically bound the error rates of the

learnt global model under certain assumptions of the objec-

tive functions, and some of them (i.e., trimmed mean and

median) even achieve order-optimal error rates. These theo-

retical guarantees seem to imply the difficulty of manipulating

the error rates. However, the asymptotic guarantees do not

precisely characterize the practical performance of the learnt

models. Specifically, the asymptotic error rates are quantified

using the Õ notation. The Õ notation ignores any constant,

e.g., Õ(1√
n)=Õ(100√

n). However, such constant significantly in-

fluences a model’s error rate in practice. As we will show,

although these asymptotic error rates still hold for our local

model poisoning attacks since they hold for Byzantine fail-

ures, our attacks can still significantly increase the testing

error rates of the learnt models in practice.

Attacker’s capability: We assume the attacker has control

of c worker devices. Specifically, like Sybil attacks [17] to

distributed systems, the attacker could inject c fake worker

devices into the federated learning system or compromise c
benign worker devices. However, we assume the number of

worker devices under the attacker’s control is less than 50%

(otherwise, it would be easy to manipulate the global models).

We assume the attacker can arbitrarily manipulate the local

models sent from these worker devices to the master device.

For simplicity, we call these worker devices compromised
worker devices no matter whether they are fake devices or

compromised benign ones.

1Õ is a variant of the O notation, which ignores the logarithmic terms.

Attacker’s background knowledge: The attacker knows

the code, local training datasets, and local models on the

compromised worker devices. We characterize the attacker’s

background knowledge along the following two dimensions:

Aggregation rule. We consider two scenarios depending

on whether the attacker knows the aggregation rule or not.

In particular, the attacker could know the aggregation rule in

various scenarios. For instance, the service provider may make

the aggregation rule public in order to increase transparency

and trust of the federated learning system [39]. When the

attacker does not know the aggregation rule, we will craft

local model parameters for the compromised worker devices

based on a certain aggregation rule. Our empirical results

show that such crafted local models could also attack other

aggregation rules. In particular, we observe different levels of

transferability of our local model poisoning attacks between

different aggregation rules.

Training data. We consider two cases (full knowledge and

partial knowledge) depending on whether the attacker knows

the local training datasets and local models on the benign

worker devices. In the full knowledge scenario, the attacker

knows the local training dataset and local model on every

worker device. We note that the full knowledge scenario has

limited applicability in practice for federated learning as the

training dataset is decentralized on many worker devices, and

we use it to estimate the upper bound of our attacks’ threats for

a given setting of federated learning. In the partial knowledge

scenario, the attacker only knows the local training datasets

and local models on the compromised worker devices.

Our threat model is inspired by multiple existing stud-

ies [30, 47, 48, 56] on adversarial machine learning. For in-

stance, Suciu et al. [56] recently proposed to characterize an

attacker’s background knowledge and capability for data poi-

soning attacks with respect to multiple dimensions such as

Feature, Algorithm, and Instance. Our aggregation rule and

training data dimensions are essentially the Algorithm and

Instance dimensions, respectively. We do not consider the

Feature dimension because the attacker controls some worker

devices and already knows the features in our setting.

Some Byzantine-robust aggregation rules (e.g., Krum [9]

and trimmed mean [66]) need to know the upper bound of the

number of compromised worker devices in order to set pa-

rameters appropriately. For instance, trimmed mean removes

the largest and smallest β local model parameters, where β is

at least the number of compromised worker devices (other-

wise trimmed mean can be easily manipulated). To calculate a

lower bound for our attack’s threat, we consider a hypothetical,

strong service provider who knows the number of compro-

mised worker devices and sets parameters in the aggregation

rule accordingly.

3 Our Local Model Poisoning Attacks

We focus on the case where the aggregation rule is known.

When the aggregation rule is unknown, we craft local models

based on an assumed one. Our empirical results in Section 4.3

show that our attacks have different levels of transferability

between aggregation rules.

3.1 Optimization Problem
Our idea is to manipulate the global model via carefully craft-

ing the local models sent from the compromised worker de-

vices to the master device in each iteration of federated learn-

ing. We denote by s j the changing direction of the jth global

model parameter in the current iteration when there are no

attacks, where s j = 1 or −1. s j = 1 (or s j =−1) means that

the jth global model parameter increases (or decreases) upon

the previous iteration. We consider the attacker’s goal (we

call it directed deviation goal) is to deviate a global model

parameter the most towards the inverse of the direction along

which the global model parameter would change without at-

tacks. Suppose in an iteration, wi is the local model that the ith
worker device intends to send to the master device when there

are no attacks. Without loss of generality, we assume the first

c worker devices are compromised. Our directed deviation

goal is to craft local models w′
1,w

′
2, · · · ,w′

c for the compro-

mised worker devices via solving the following optimization

problem in each iteration:

max
w′

1,··· ,w′
c

sT (w−w′),

subject to w = A(w1, · · · ,wc,wc+1, · · · ,wm),

w′ = A(w′
1, · · · ,w′

c,wc+1, · · · ,wm), (1)

where s is a column vector of the changing directions of

all global model parameters, w is the before-attack global

model, and w′ is the after-attack global model. Note that s, w,

and w′ all depend on the iteration number. Since our attacks

manipulate the local models in each iteration, we omit the

explicit dependency on the iteration number for simplicity.

In our preliminary exploration of formulating poisoning

attacks, we also considered a deviation goal, which does not

consider the global model parameters’ changing directions.

We empirically find that our attacks based on both the directed

deviation goal and the deviation goal achieve high testing error

rates for Krum. However, the directed deviation goal substan-

tially outperforms the deviation goal for trimmed mean and

median aggregation rules. Appendix B shows our deviation

goal and the empirical comparisons between deviation goal

and directed deviation goal.

3.2 Attacking Krum
Recall that Krum selects one local model as the global model

in each iteration. Suppose w is the selected local model in

the current iteration when there are no attacks. Our goal is

to craft the c compromised local models such that the local

model selected by Krum has the largest directed deviation

from w. Our idea is to make Krum select a certain crafted

local model (e.g., w′
1 without loss of generality) via crafting

the c compromised local models. Therefore, we aim to solve

the optimization problem in Equation 1 with w′ = w′
1 and the

aggregation rule is Krum.

Full knowledge: The key challenge of solving the optimiza-

tion problem is that the constraint of the optimization problem

is highly nonlinear and the search space of the local models

w′
1, · · · ,w′

c is large. To address the challenge, we make two

approximations. Our approximations represent suboptimal

solutions to the optimization problem, which means that the

attacks based on the approximations may have suboptimal

performance. However, as we will demonstrate in our experi-

ments, our attacks already substantially increase the error rate

of the learnt model.

First, we restrict w′
1 as follows: w′

1 = wRe −λs, where wRe
is the global model received from the master device in the cur-

rent iteration (i.e., the global model obtained in the previous

iteration) and λ> 0. This approximation explicitly models the

directed deviation between the crafted local model w′
1 and the

received global model. We also explored the approximation

w′
1 = w−λs, which means that we explicitly model the di-

rected deviation between the crafted local model and the local

model selected by Krum before attack. However, we found

that our attacks are less effective using this approximation.

Second, to make w1 more likely to be selected by Krum,

we craft the other c−1 compromised local models to be close

to w′
1. In particular, when the other c−1 compromised local

models are close to w′
1, w′

1 only needs to have a small distance

to m− 2c− 1 benign local models in order to be selected

by Krum. In other words, the other c−1 compromised local

models “support” the crafted local model w′
1. In implementing

our attack, we first assume the other c−1 compromised local

models are the same as w′
1, then we solve w′

1, and finally we

randomly sample c− 1 vectors, whose distance to w′
1 is at

most ε, as the other c−1 compromised local models. With our

two approximations, we transform the optimization problem

as follows:

max
λ

λ

subject to w′
1 = Krum(w′

1, · · · ,w′
c,w(c+1), · · · ,wm),

w′
1 = wRe −λs,

w′
i = w′

1, for i = 2,3, · · · ,c. (2)

More precisely, the objective function in the above opti-

mization problem should be sT (w−wRe)+λsT s. However,

sT (w−wRe) is a constant and sT s = d where d is the number

of parameters in the global model. Therefore, we simplify the

objective function to be just λ. After solving λ in the opti-

mization problem, we can obtain the crafted local model w′
1.

Then, we randomly sample c−1 vectors whose distance to

w′
1 is at most ε as the other c−1 compromised local models.

We will explore the impact of ε on the effectiveness of our

attacks in experiments.

Solving λ. Solving λ in the optimization problem in Equa-

tion 2 is key to our attacks. First, we derive an upper bound

of the solution λ to the optimization problem. Formally, we

have the following theorem.

Theorem 1. Suppose λ is a solution to the optimization prob-
lem in Equation 2. λ is upper bounded as follows:

λ ≤ 1

(m−2c−1)
√

d
· min

c+1≤i≤m

⎛
⎝ ∑

l∈Γ̃m−c−2
wi

D(wl ,wi)

⎞
⎠

+
1√
d
· max

c+1≤i≤m
D(wi,wRe), (3)

where d is the number of parameters in the global model,
D(wl ,wi) is the Euclidean distance between wl and wi,
Γ̃m−c−2

wi
is the set of m− c−2 benign local models that have

the smallest Euclidean distance to wi.

Proof. See Appendix C.

Given the upper bound, we use a binary search to solve

λ. Specifically, we initialize λ as the upper bound and check

whether Krum selects w′
1 as the global model; if not, then

we half λ; we repeat this process until Krum selects w′
1 or

λ is smaller than a certain threshold (this indicates that the

optimization problem may not have a solution). In our experi-

ments, we use 1×10−5 as the threshold.

Partial knowledge: In the partial knowledge scenario, the

attacker does not know the local models on the benign worker

devices, i.e., w(c+1), · · · ,wm. As a result, the attacker does

not know the changing directions s and cannot solve the opti-

mization problem in Equation 2. However, the attacker has

access to the before-attack local models on the c compromised

worker devices. Therefore, we propose to craft compromised

local models based on these before-attack local models. First,

we compute the mean of the c before-attack local models as

w̃ = 1
c ∑c

i=1 wi. Second, we estimate the changing directions

using the mean local model. Specifically, if the mean of the

jth parameter is larger than the jth global model parameter

received from the master device in the current iteration, then

we estimate the changing direction for the jth parameter to

be 1, otherwise we estimate it to be −1. For simplicity, we

denote by s̃ the vector of estimated changing directions.

Third, we treat the before-attack local models on the com-

promised worker devices as if they were local models on

benign worker devices, and we aim to craft local model w′
1

such that, among the crafted local model and the c before-

attack local models, Krum selects the crafted local model.

Formally, we have the following optimization problem:

max
λ

λ

subject to w′
1 = Krum(w′

1,w1, · · · ,wc),

w′
1 = wRe −λs̃. (4)

Similar to Theorem 1, we can also derive an upper bound

of λ for the optimization problem in Equation 4. Moreover,

similar to the full knowledge scenario, we use a binary search

to solve λ. However, unlike the full knowledge scenario, if

we cannot find a solution λ until λ is smaller than a threshold

(i.e., 1× 10−5), then we add one more crafted local model

w′
2 such that among the crafted local models w′

1, w′
2, and the

c before-attack local models, Krum selects the crafted local

model w′
1. Specifically, we solve the optimization problem

in Equation 4 with w′
2 added into the Krum aggregation rule.

Like the full knowledge scenario, we assume w′
2 = w′

1. If

we still cannot find a solution λ until λ is smaller than the

threshold, we add another crafted local model. We repeat this

process until finding a solution λ. We find that such iterative

searching process makes our attack more effective for Krum

in the partial knowledge scenario. After solving λ, we obtain

the crafted local model w′
1. Then, like the full knowledge

scenario, we randomly sample c−1 vectors whose distance

to w′
1 is at most ε as the other c−1 compromised local models.

3.3 Attacking Trimmed Mean

Suppose wi j is the jth before-attack local model parameter on

the ith worker device and w j is the jth before-attack global

model parameter in the current iteration. We discuss how we

craft each local model parameter on the compromised worker

devices. We denote by wmax, j and wmin, j the maximum and

minimum of the jth local model parameters on the benign

worker devices, i.e., wmax, j=max{w(c+1) j,w(c+2) j, · · · ,wm j}
and wmin, j=min{w(c+1) j,w(c+2) j, · · · ,wm j}.

Full knowledge: Theoretically, we can show that the follow-

ing attack can maximize the directed deviations of the global

model (i.e., an optimal solution to the optimization problem

in Equation 1): if s j = −1, then we use any c numbers that

are larger than wmax, j as the jth local model parameters on

the c compromised worker devices, otherwise we use any c
numbers that are smaller than wmin, j as the jth local model

parameters on the c compromised worker devices.

Intuitively, our attack crafts the compromised local models

based on the maximum or minimum benign local model pa-

rameters, depending on which one deviates the global model

towards the inverse of the direction along which the global

model would change without attacks. The sampled c numbers

should be close to wmax, j or wmin, j to avoid being outliers

and being detected easily. Therefore, when implementing

the attack, if s j =−1, then we randomly sample the c num-

bers in the interval [wmax, j,b ·wmax, j] (when wmax, j > 0) or

[wmax, j,wmax, j/b] (when wmax, j ≤ 0), otherwise we randomly

sample the c numbers in the interval [wmin, j/b,wmin, j] (when

wmin, j > 0) or [b ·wmin, j,wmin, j] (when wmin, j ≤ 0). Our attack

does not depend on b once b > 1. In our experiments, we set

b = 2.

Partial knowledge: An attacker faces two challenges in the

partial knowledge scenario. First, the attacker does not know

the changing direction variable s j because the attacker does

not know the local models on the benign worker devices.

Second, for the same reason, the attacker does not know the

maximum wmax, j and minimum wmin, j of the benign local

model parameters. Like Krum, to address the first challenge,

we estimate the changing direction variables using the local

models on the compromised worker devices.

One naive strategy to address the second challenge is to use

a very large number as wmax, j or a very small number as wmin, j.

However, if we craft the compromised local models based on

wmax, j or wmin, j that are far away from their true values, the

crafted local models may be outliers and the master device

may detect the compromised local models easily. Therefore,

we propose to estimate wmax, j and wmin, j using the before-

attack local model parameters on the compromised worker

devices. In particular, the attacker can compute the mean

μ j and standard deviation σ j of each jth parameter on the

compromised worker devices.

Based on the assumption that each jth parameters of the be-

nign worker devices are samples from a Gaussian distribution

with mean μ j and standard deviation σ j, we can estimate that

wmax, j is smaller than μ j + 3σ j or μ j + 4σ j with large prob-

abilities; and wmin, j is larger than μ j −4σ j or μ j −3σ j with

large probabilities. Therefore, when s j is estimated to be −1,

we sample c numbers from the interval [μ j +3σ j,μ j +4σ j] as

the jth parameter of the c compromised local models, which

means that the crafted compromised local model parameters

are larger than the maximum of the benign local model pa-

rameters with a high probability (e.g., 0.898 – 0.998 when

m = 100 and c = 20 under the Gaussian distribution assump-

tion). When s j is estimated to be 1, we sample c numbers from

the interval [μ j − 4σ j,μ j − 3σ j] as the jth parameter of the

c compromised local models, which means that the crafted

compromised local model parameters are smaller than the

minimum of the benign local model parameters with a high

probability. The jth model parameters on the benign worker

devices may not accurately follow a Gaussian distribution.

However, our attacks are still effective empirically.

3.4 Attacking Median
We use the same attacks for trimmed mean to attack the me-

dian aggregation rule. For instance, in the full knowledge

scenario, we randomly sample the c numbers in the inter-

val [wmax, j,b ·wmax, j] or [wmax, j,wmax, j/b] if s j = −1, oth-

erwise we randomly sample the c numbers in the interval

[wmin, j/b,wmin, j] or [b ·wmin, j,wmin, j].

4 Evaluation

We evaluate the effectiveness of our attacks using multiple

datasets in different scenarios, e.g., the impact of different

parameters and known vs. unknown aggregation rules. More-

over, we compare our attacks with existing attacks.

4.1 Experimental Setup

Datasets: We consider four datasets: MNIST, Fashion-

MNIST, CH-MNIST [31]2 and Breast Cancer Wisconsin (Di-

agnostic) [18]. MNIST and Fashion-MNIST each includes

60,000 training examples and 10,000 testing examples, where

each example is an 28×28 grayscale image. Both datasets

are 10-class classification problems. The CH-MNIST dataset

consists of 5000 images of histology tiles from patients with

colorectal cancer. The dataset is an 8-class classification prob-

lem. Each image has 64×64 grayscale pixels. We randomly

select 4000 images as the training examples and use the re-

maining 1000 as the testing examples. The Breast Cancer

Wisconsin (Diagnostic) dataset is a binary classification prob-

lem to diagnose whether a person has breast cancer. The

dataset contains 569 examples, each of which has 30 features

describing the characteristics of a person’s cell nuclei. We

randomly select 455 (80%) examples as the training examples,

and use the remaining 114 examples as the testing examples.

Machine learning classifiers: We consider the following

classifiers.

Multi-class logistic regression (LR). The considered ag-

gregation rules have theoretical guarantees for the error rate

of LR classifier.

Deep neural networks (DNN). For MNIST, Fashion-

MNIST, and Breast Cancer Wisconsin (Diagnostic), we use a

DNN with the architecture described in Table 7a in Appendix.

We use ResNet20 [28] for CH-MNIST. Our DNN architecture

does not necessarily achieve the smallest error rates for the

considered datasets, as our goal is not to search for the best

DNN architecture. Our goal is to show that our attacks can

increase the testing error rates of the learnt DNN classifiers.

Compared attacks: We compare the following attacks.

Gaussian attack. This attack randomly crafts the local

models on the compromised worker devices. Specifically,

for each jth model parameter, we estimate a Gaussian dis-

tribution using the before-attack local models on all worker

devices. Then, for each compromised worker device, we sam-

ple a number from the Gaussian distribution and treat it as the

jth parameter of the local model on the compromised worker

device. We use this Gaussian attack to show that crafting com-

promised local models randomly can not effectively attack

the Byzantine-robust aggregation rules.

2We use a pre-processed version from https://www.kaggle.com/
kmader/colorectal-histology-mnist#hmnist_64_64_L.csv.

Table 1: Default setting for key parameters.

Parameter Description Value

m Number of worker devices. 100

c Number of compromised worker devices. 20

p Degree of Non-IID. 0.5

ε Distance parameter for Krum attacks. 0.01

β Parameter of trimmed mean. c

Label flipping attack. This is a data poisoning attack that

does not require knowledge of the training data distribution.

On each compromised worker device, this attack flips the

label of each training instance. Specifically, we flip a label l as

L− l−1, where L is the number of classes in the classification

problem and l = 0,1, · · · ,L−1.

Back-gradient optimization based attack [43]. This is

the state-of-the-art untargeted data poisoning attack for multi-

class classifiers. We note that this attack is not scalable and

thus we compare our attacks with this attack on a subset of

MNIST separately. The results are shown in Section 4.4.

Full knowledge attack or partial knowledge attack. Our

attack when the attacker knows the local models on all worker

devices or the compromised ones.

Parameter setting: We describe parameter setting for the

federated learning algorithms and our attacks. Table 1 sum-

marizes the default setting for key parameters. We use

MXNet [12] to implement federated learning and attacks.

We repeat each experiment for 50 trials and report the average

results. We observed that the variances are very small, so we

omit them for simplicity.

Federated learning algorithms. By default, we assume

m = 100 worker devices; each worker device applies one

round of stochastic gradient descent to update its local model;

and the master device aggregates local models from all worker

devices. One unique characteristic of federated learning is

that the local training datasets on different devices may not be

independently and identically distributed (i.e., non-IID) [39].

We simulate federated learning with different non-IID training

data distributions. Suppose we have L classes in the classifica-

tion problem, e.g., L= 10 for the MNIST and Fashion-MNIST

datasets, and L = 8 for the CH-MNIST dataset. We evenly

split the worker devices into L groups. We model non-IID

federated learning by assigning a training instance with label

l to the lth group with probability p, where p > 0. A higher

p indicates a higher degree of non-IID. For convenience, we

call the probability p degree of non-IID. Unless otherwise

mentioned, we set p = 0.5.

We set 500 iterations for the LR classifier on MNIST; we

set 2,000 iterations for the DNN classifiers on all four datasets;

and we set the batch size to be 32 in stochastic gradient de-

scent, except that we set the batch size to be 64 for Fashion-

MNIST as such setting leads to a more accurate model. The

trimmed mean aggregation rule prunes the largest and small-

est β parameters, where c ≤ β < m
2 . Pruning more parameters

Table 2: Testing error rates of various attacks.

(a) LR classifier, MNIST

NoAttack Gaussian LabelFlip Partial Full

Krum 0.14 0.13 0.13 0.72 0.80

Trimmed mean 0.12 0.11 0.13 0.23 0.52

Median 0.13 0.13 0.15 0.19 0.29

(b) DNN classifier, MNIST

NoAttack Gaussian LabelFlip Partial Full

Krum 0.11 0.10 0.10 0.75 0.77

Trimmed mean 0.06 0.07 0.07 0.14 0.23

Median 0.06 0.06 0.16 0.28 0.32

(c) DNN classifier, Fashion-MNIST

NoAttack Gaussian LabelFlip Partial Full

Krum 0.16 0.16 0.16 0.90 0.91

Trimmed mean 0.10 0.10 0.12 0.26 0.28

Median 0.09 0.12 0.12 0.21 0.29

(d) DNN classifier, CH-MNIST

NoAttack Gaussian LabelFlip Partial Full

Krum 0.29 0.30 0.43 0.73 0.81

Trimmed mean 0.17 0.25 0.37 0.69 0.69

Median 0.17 0.20 0.17 0.57 0.63

(e) DNN classifier, Breast Cancer Wisconsin (Diagnostic)

NoAttack Gaussian LabelFlip Partial Full

Krum 0.03 0.04 0.14 0.17 0.17

Trimmed mean 0.02 0.03 0.05 0.14 0.15

Median 0.03 0.03 0.04 0.17 0.18

leads to larger testing error rates without attacks. By default,

we consider β = c as the authors of trimmed mean did [66].

Our attacks. Unless otherwise mentioned, we consider 20

worker devices are compromised. Our attacks to Krum have

a parameter ε, which is related to the distance between the

crafted compromised local models. We set ε = 0.01 (we will

study the impact of ε on our attack). We do not set ε = 0

because ε = 0 makes the c compromised local models exactly

the same, making the compromised local models easily de-

tected by the master device. Our attacks to trimmed mean and

median have a parameter b in the full knowledge scenario,

where b > 1. Our attacks do not depend on b once b > 1.

We set b = 2. Unless otherwise mentioned, we assume that

attacker manipulates the local models on the compromised

worker devices in each iteration.

4.2 Results for Known Aggregation Rule
Our attacks are effective: Table 2 shows the testing error

rates of the compared attacks on the four datasets. First, these

results show that our attacks are effective and substantially

outperform existing attacks, i.e., our attacks result in higher er-

(a) Krum (b) Trimmed mean (c) Median

(d) Krum (e) Trimmed mean (f) Median

Figure 2: Testing error rates for different attacks as we have more compromised worker devices on MNIST. (a)-(c): LR classifier

and (d)-(f): DNN classifier.

ror rates. For instance, when dataset is MNIST, classifier is LR,

and aggregation rule is Krum, our partial knowledge attack in-

creases the error rate from 0.14 to 0.72 (around 400% relative

increase). Gaussian attacks only increase the error rates in sev-

eral cases, e.g., median aggregation rule for Fashion-MNIST,

and trimmed mean and median for CH-MNIST. Label flip-

ping attacks can increase the error rates for DNN classifiers

in some cases but have limited success for LR classifiers.

Second, Krum is less robust to our attacks than trimmed

mean and median, except on Breast Cancer Wisconsin (Di-

agnostic) where Krum is comparable to median. A possible

reason why trimmed mean and median outperform Krum is

that Krum picks one local model as the global model, while

trimmed mean and median aggregate multiple local models to

update the global model (the median selects one local model

parameter for each model parameter, but the selected parame-

ters may be from different local models). Trimmed mean is

more robust to our attacks in some cases while median is more

robust in other cases. Third, we observe that the error rates

may depend on the data dimension. For instance, MNIST and

Fashion-MNIST have 784 dimensions, CH-MNIST has 4096

dimensions, and Breast Cancer Wisconsin (Diagnostic) has

30 dimensions. For the DNN classifiers, the error rates are

higher on CH-MNIST than on other datasets in most cases,

while the error rates are lower on Breast Cancer Wisconsin

(Diagnostic) than on other datasets in most cases.

We note that federated learning may have higher error rate

than centralized learning, even if robustness feature is not

considered (i.e., mean aggregation rule is used). For instance,

the DNN classifiers respectively achieve testing error rates

0.01, 0.08, 0.07, and 0.01 in centralized learning on the four

datasets, while they respectively achieve testing error rates

0.04, 0.09, 0.09, and 0.01 in federated learning with the mean

aggregation rule on the four datasets. However, in the sce-

narios where users’ training data can only be stored on their

edge/mobile devices, e.g., for privacy purposes, centralized

learning is not applicable and federated learning may be the

only option even though its error rate is higher. Compared to

the mean aggregation rule, Byzantine-robust aggregation rule

increases the error rate without attacks. However, if Byzantine-

robust aggregation rule is not used, a single malicious device

can make the learnt global model totally useless [9, 66]. To

summarize, in the scenarios where users’ training data can

only be stored on their edge/mobile devices and there may

exist attacks, Byzantine-robust federated learning may be the

best option, even if its error rate is higher.

Impact of the percentage of compromised worker de-
vices: Figure 2 shows the error rates of different attacks

as the percentage of compromised worker devices increases

on MNIST. Our attacks increase the error rates significantly

as we compromise more worker devices; label flipping only

slightly increases the error rates; and Gaussian attacks have

no notable impact on the error rates. Two exceptions are that

Krum’s error rates decrease when the percentage of compro-

mised worker devices increases from 5% to 10% in Figure 2a

and from 10% to 15% in Figure 2d. We suspect the reason is

(a) Krum (b) Trimmed mean (c) Median

(d) Krum (e) Trimmed mean (f) Median

Figure 3: Testing error rates for different attacks as we increase the degree of non-IID on MNIST. (a)-(c): LR classifier and

(d)-(f): DNN classifier.

that Krum selects one local model as a global model in each

iteration. We have similar observations on the other datasets.

Therefore, we omit the corresponding results for simplicity.

Impact of the degree of non-IID in federated learn-
ing: Figure 3 shows the error rates for the compared attacks

for different degrees of non-IID on MNIST. Error rates of

all attacks including no attacks increase as we increase the

degree of non-IID, except that the error rates of our attacks to

Krum fluctuate as the degree of non-IID increases. A possible

reason is that as the local training datasets on different worker

devices are more non-IID, the local models are more diverse,

leaving more room for attacks. For instance, an extreme ex-

ample is that if the local models on the benign worker devices

are the same, it would be harder to attack the aggregation

rules, because their aggregated model would be more likely

to depend on the benign local models.

Impact of different parameter settings of federated learn-
ing algorithms: We study the impact of various parame-

ters in federated learning including the number of rounds

of stochastic gradient descent each worker device performs,

number of worker devices, number of worker devices selected

to update the global model in each iteration, and β in trimmed

mean. In these experiments, we use MNIST and the LR clas-

sifier for simplicity. Unless otherwise mentioned, we consider

median, as median is more robust than Krum and does not

require configuring extra parameters (trimmed mean requires

configuring β). Moreover, for simplicity, we consider partial

knowledge attacks as they are more practical.

Worker devices can perform multiple rounds of stochastic

gradient descent to update their local models. Figure 4a shows

the impact of the number of rounds on the testing error rates

of our attack. The testing error rates decrease as we use more

rounds of stochastic gradient descent for both no attack and

our partial knowledge attack. This is because more rounds

of stochastic gradient descent lead to more accurate local

models, and the local models on different worker devices

are less diverse, leaving a smaller attack space. However, our

attack still increases the error rates substantially even if we use

more rounds. For instance, our attack still increases the error

rate by more than 30% when using 10 rounds of stochastic

gradient descent. We note that a large number of rounds result

in large computational cost for worker devices, which may be

unacceptable for resource-constrained devices such as mobile

phones and IoT devices.

Figure 4b shows the testing error rates of our attack as the

number of worker devices increases, where 20% of worker

devices are compromised. Our attack is more effective (i.e.,

testing error rate is larger) as the federated learning system

involves more worker devices. We found a possible reason

is that our partial knowledge attacks can more accurately

estimate the changing directions with more worker devices.

For instance, for trimmed mean of the DNN classifier on

MNIST, our partial knowledge attacks can correctly estimate

the changing directions of 72% of the global model param-

eters on average when there are 50 worker devices, and this

fraction increases to 76% when there are 100 worker devices.

(a) (b) (c)

Figure 4: (a) Impact of the number of rounds of stochastic gradient descent worker devices use to update their local models in

each iteration on our attacks. (b) Impact of the number of worker devices on our attacks. (c) Impact of the number of worker

devices selected in each iteration on our attacks. MNIST, LR classifier, and median are used.

(a) (b) (c)

Figure 5: (a) Testing error rates of the trimmed mean aggregation rule when using different β. (b) Testing error rates of the Krum

aggregation rule when our attack uses different ε. (c) Testing error rates of the median aggregation rule when our attacks poison a

certain fraction of randomly selected iterations of federated learning. MNIST and LR classifier are used.

In federated learning [39], the master device could ran-

domly sample some worker devices and send the global model

to them; the sampled worker devices update their local mod-

els and send the updated local models to the master device;

and the master device updates the global model using the

local models from the sampled worker devices. Figure 4c

shows the impact of the number of worker devices selected in

each iteration on the testing error rates of our attack, where

the total number of worker devices is 100. Since the master

device randomly selects a subset of worker devices in each

iteration, a smaller number of compromised worker devices

are selected in some iterations, while a larger number of com-

promised worker devices are selected in other iterations. On

average, among the selected worker devices, c
m of them are

compromised ones, where c is the total number of compro-

mised worker devices and m is the total number of worker

devices. Our Figure 2 shows that our attacks become effective

when c
m is larger than 10%-15%. Note that an attacker can

inject a large number of fake devices to a federated learning

system, so c
m can be large.

The trimmed mean aggregation rule has a parameter β,

which should be at least the number of compromised worker

devices. Figure 5a shows the testing error rates of no attack

and our partial knowledge attack as β increases. Roughly

speaking, our attack is less effective (i.e., testing error rates

are smaller) as more local model parameters are trimmed.

This is because our crafted local model parameters on the

compromised worker devices are more likely to be trimmed

when the master device trims more local model parameters.

However, the testing error of no attack also slightly increases

as β increases. The reason is that more benign local model

parameters are trimmed and the mean of the remaining local

model parameters becomes less accurate. The master device

may be motivated to use a smaller β to guarantee performance

when there are no attacks.

Impact of the parameter ε in our attacks to Krum: Fig-

ure 5b shows the error rates of the Krum aggregation rule

when our attacks use different ε, where MNIST dataset and

LR classifier are considered. We observe that our attacks

can effectively increase the error rates using a wide range

of ε. Moreover, our attacks achieve larger error rates when ε
is smaller. This is because when ε is smaller, the distances

between the compromised local models are smaller, which

makes it more likely for Krum to select the local model crafted

by our attack as the global model.

Impact of the number of poisoned iterations: Figure 5c

shows the error rates of the median aggregation rule when our

attacks poison the local models on the compromised worker

Table 3: Testing error rates of attacks on the DNN classifier

for MNIST when the master device chooses the global model

with the lowest testing error rate.

NoAttack Gaussian LabelFlip Partial Full

Krum 0.10 0.10 0.09 0.69 0.70

Trimmed mean 0.06 0.06 0.07 0.12 0.18

Median 0.06 0.06 0.06 0.11 0.32

devices in a certain fraction of randomly selected iterations

of federated learning. Unsurprisingly, the error rate increases

when poisoning more iterations.

Alternative training strategy: Each iteration results in a

global model. Instead of selecting the last global model as

the final model, an alternative training strategy is to select

the global model that has the lowest testing error rate.3 Ta-

ble 3 shows the testing error rates of various attacks on the

DNN classifier for MNIST, when such alternative training

strategy is adopted. In these experiments, our attacks attack

each iteration of federated learning, and the column “NoAt-

tack” corresponds to the scenarios where no iterations are

attacked. Compared to Table 2b, this alternative training strat-

egy is slightly more secure against our attacks. However, our

attacks are still effective. For instance, for the Krum, trimmed

mean, and median aggregation rules, our partial knowledge

attacks still increase the testing error rates by 590%, 100%,

and 83%, respectively. Another training strategy is to roll

back to a few iterations ago if the master device detects an

unusual increase of training error rate. However, such training

strategy is not applicable because the training error rates of

the global models still decrease until convergence when we

perform our attacks in each iteration. In other words, there

are no unusual increases of training error rates.

4.3 Results for Unknown Aggregation Rule

We craft local models based on one aggregation rule and show

the attack effectiveness for other aggregation rules. Table 4

shows the transferability between aggregation rules, where

MNIST and LR classifier are considered. We observe different

levels of transferability between aggregation rules. Specifi-

cally, Krum based attack can well transfer to trimmed mean

and median, e.g., Krum based attack increases the error rate

from 0.12 to 0.15 (25% relative increase) for trimmed mean,

and from 0.13 to 0.18 (38% relative increase) for median.

Trimmed mean based attack does not transfer to Krum but

transfers to median well. For instance, trimmed mean based

attack increases the error rates from 0.13 to 0.20 (54% relative

increase) for median.

3We give advantages to the alternative training strategy since we use

testing error rate to select the global model.

Table 4: Transferability between aggregation rules. “Krum

attack” and “Trimmed mean attack” mean that we craft the

compromised local models based on the Krum and trimmed

mean aggregation rules, respectively. Partial knowledge at-

tacks are considered. The numbers are testing error rates.

Krum Trimmed mean Median

No attack 0.14 0.12 0.13

Krum attack 0.70 0.15 0.18

Trimmed mean attack 0.14 0.25 0.20

4.4 Comparing with Back-gradient Optimiza-
tion based Attack

Back-gradient optimization based attack (BGA) [43] is state-

of-the-art untargeted data poisoning attack for multi-class clas-

sifiers such as multi-class LR and DNN. BGA formulates a

bilevel optimization problem, where the inner optimization is

to minimize the training loss on the poisoned training data and

the outer optimization is to find poisoning examples that maxi-

mize the minimal training loss in the inner optimization. BGA

iteratively finds the poisoned examples by alternately solving

the inner minimization and outer maximization problems. We

implemented BGA and verified that our implementation can

reproduce the results reported by the authors. However, BGA

is not scalable to the entire MNIST dataset. Therefore, we

uniformly sample 6,000 training examples in MNIST, and

we learn a 10-class LR classifier. Moreover, we assume 100

worker devices, randomly distribute the 6,000 examples to

them, and assume 20 worker devices are compromised.

Generating poisoned data: We assume an attacker has full
knowledge about the training datasets on all worker devices.

Therefore, the attacker can use BGA to generate poisoned

data based on the 6,000 examples. In particular, we run the

attack for 10 days on a GTX 1080Ti GPU, which generates

240 (240/6000 = 4%) poisoned examples. We verified that

these poisoned data can effectively increase the testing error

rate if the LR classifier is learnt in a centralized environment.

In particular, the poisoned data can increase the testing error

rate of the LR classifier from 0.10 to 0.16 (60% relative in-

crease) in centralized learning. However, in federated learning,

the attacker can only inject the poisoned data to the compro-

mised worker devices. We consider two scenarios on how

the attacker distributes the poisoned data to the compromised

worker devices:

Single worker. In this scenario, the attacker distributes the

poisoned data on a single compromised worker device.

Uniform distribution. In this scenario, the attacker dis-

tributes the poisoned data to the compromised worker devices

uniformly at random.

We consider the two scenarios because they represent two

extremes for distributing data (concentrated or evenly dis-

tributed) and we expect one extreme to maximize attack effec-

tiveness. Table 5 compares BGA with our attacks. We observe

Table 5: Testing error rates of back-gradient optimization

based attacks (SingleWorker and Uniform) and our attacks

(Partial and Full).

NoAttack SingleWorker Uniform Partial Full

Mean 0.10 0.11 0.15 0.54 0.69

Krum 0.23 0.24 0.25 0.85 0.89

Trimmed mean 0.12 0.12 0.13 0.27 0.32

Median 0.13 0.13 0.14 0.19 0.21

that BGA has limited success at attacking Byzantine-robust

aggregation rules, while our attacks can substantially increase

the testing error rates. We note that if the federated learning

uses the mean aggregation rule BGA is still successful. For

instance, when the mean aggregation rule is used, BGA can

increase the testing error rate by 50% when distributing the

poisoned data to the compromised worker devices uniformly

at random. However, when applying our attacks for trimmed

mean to attack the mean aggregation rule, we can increase the

testing error rates substantially more (see the last two cells in

the second row of Table 5).

5 Defenses

We generalize RONI [4] and TRIM [30], which were designed

to defend against data poisoning attacks, to defend against

our local model poisoning attacks. Both generalized defenses

remove the local models that are potentially malicious before

computing the global model in each iteration of federated

learning. One generalized defense removes the local models

that have large negative impact on the error rate of the global

model (inspired by RONI that removes training examples that

have large negative impact on the error rate of the model),

while the other defense removes the local models that result

in large loss (inspired by TRIM that removes the training

examples that have large negative impact on the loss). In both

defenses, we assume the master device has a small validation
dataset. Like existing aggregation rules such as Krum and

trimmed mean, we assume the master device knows the upper

bound c of the number of compromised worker devices. We

note that our defenses make the global model slower to learn

and adapt to new data as that data may be identified as from

potentially malicious local models.

Error Rate based Rejection (ERR): In this defense, we

compute the impact of each local model on the error rate for

the validation dataset and remove the local models that have

large negative impact on the error rate. Specifically, suppose

we have an aggregation rule. For each local model, we use

the aggregation rule to compute a global model A when the

local model is included and a global model B when the local

model is excluded. We compute the error rates of the global

models A and B on the validation dataset, which we denote as

EA and EB, respectively. We define EA −EB as the error rate
impact of a local model. A larger error rate impact indicates

Table 6: Defense results. The numbers are testing error rates.

The columns “Krum” and “Trimmed mean” indicate the at-

tacker’s assumed aggregation rule when performing attacks,

while the rows indicate the actual aggregation rules and de-

fenses. Partial knowledge attacks are considered.

No attack Krum Trimmed mean

Krum 0.14 0.72 0.13

Krum + ERR 0.14 0.62 0.13

Krum + LFR 0.14 0.58 0.14

Krum + Union 0.14 0.48 0.14

Trimmed mean 0.12 0.15 0.23

Trimmed mean + ERR 0.12 0.17 0.21

Trimmed mean + LFR 0.12 0.18 0.12

Trimmed mean + Union 0.12 0.18 0.12

Median 0.13 0.17 0.19

Median + ERR 0.13 0.21 0.25

Median + LFR 0.13 0.20 0.13

Median + Union 0.13 0.19 0.14

that the local model increases the error rate more significantly

if we include the local model when updating the global model.

We remove the c local models that have the largest error rate

impact, and we aggregate the remaining local models to obtain

an updated global model.

Loss Function based Rejection (LFR): In this defense, we

remove local models based on their impact on the loss instead

of error rate for the validation dataset. Specifically, like the

error rate based rejection, for each local model, we compute

the global models A and B. We compute the cross-entropy

loss function values of the models A and B on the validation

dataset, which we denote as LA and LB, respectively. More-

over, we define LA −LB as the loss impact of the local model.

Like the error rate based rejection, we remove the c local

models that have the largest loss impact, and we aggregate

the remaining local models to update the global model.

Union (i.e., ERR+LFR): In this defense, we combine ERR

and LFR. Specifically, we remove the local models that are

removed by either ERR or LFR.

Defense results: Table 6 shows the defense results of ERR,

FLR, and Union, where partial knowledge attacks are con-

sidered. We use the default parameter setting discussed in

Section 4.1, e.g., 100 worker devices, 20% of compromised

worker devices, MNIST dataset, and LR classifier. Moreover,

we sample 100 testing examples uniformly at random as the

validation dataset. Each row of the table corresponds to a

defense, e.g., Krum + ERR means that the master device uses

ERR to remove the potentially malicious local models and

uses Krum as the aggregation rule. Each column indicates the

attacker’s assumed aggregation rule when performing attacks,

e.g., the column “Krum” corresponds to attacks that are based

on Krum. We have several observations.

First, LFR is comparable to ERR or much more effective

than ERR, i.e., LFR achieves similar or much smaller testing

error rates than ERR. For instance, Trimmed mean + ERR

and Trimmed mean + LFR achieve similar testing error rates

(0.17 vs. 0.18) when the attacker crafts the compromised

local models based on Krum. However, Trimmed mean +

LFR achieves a much smaller testing error rate than Trimmed

mean + ERR (0.12 vs. 0.21), when the attacker crafts the

compromised local models based on trimmed mean. Second,

Union is comparable to LFR in most cases, except one case

(Krum + LFR vs. Krum and Krum + Union vs. Krum) where

Union is more effective.

Third, LFR and Union can effectively defend against our

attacks in some cases. For instance, Trimmed mean + LFR

(or Trimmed mean + Union) achieves the same testing error

rate for both no attack and attack based on trimmed mean.

However, our attacks are still effective in other cases even if

LFR or Union is adopted. For instance, an attack, which crafts

compromised local models based on Krum, still effectively

increases the error rate from 0.14 (no attack) to 0.58 (314%

relative increase) for Krum + LFR. Fourth, the testing error

rate grows in some cases when a defense is deployed. This is

because the defenses may remove benign local models, which

increases the testing error rate of the global model.

6 Related Work

Security and privacy of federated/collaborative learning are

much less explored, compared to centralized machine learning.

Recent studies [29, 40, 44] explored privacy risks in federated

learning, which are orthogonal to our study.

Poisoning attacks: Poisoning attacks aim to compromise

the integrity of the training phase of a machine learning sys-

tem [5]. The training phase consists of two components, i.e.,

training dataset collection and learning process. Most existing

poisoning attacks compromise the training dataset collec-

tion component, e.g., inject malicious data into the training

dataset. These attacks are also known as data poisoning at-
tacks) [3, 8, 13, 19, 27, 30, 33, 43, 45, 50, 51, 56, 61, 62, 65].

Different from data poisoning attacks, our local model poi-

soning attacks compromise the learning process.

Depending on the goal of a poisoning attack, we can clas-

sify poisoning attacks into two categories, i.e., untargeted
poisoning attacks [8, 30, 33, 50, 62, 65] and targeted poison-
ing attacks [3, 6, 13, 27, 37, 45, 51, 56]. Untargeted poisoning

attacks aim to make the learnt model have a high testing error

indiscriminately for testing examples, which eventually result

in a denial-of-service attack. In targeted poisoning attacks, the

learnt model produces attacker-desired predictions for particu-

lar testing examples, e.g., predicting spams as non-spams and

predicting attacker-desired labels for testing examples with a

particular trojan trigger (these attacks are also known as back-
door/trojan attacks [27]). However, the testing error for other

testing examples is unaffected. Our local model poisoning

attacks are untargeted poisoning attacks. Different from exist-

ing untargeted poisoning attacks that focus on centralized ma-

chine learning, our attacks are optimized for Byzantine-robust

federated learning. We note that Xie et al. [63] proposed in-

ner product manipulation based untargeted poisoning attacks

to Byzantine-robust federated learning including Krum and

median, which is concurrent to our work.

Defenses: Existing defenses were mainly designed for data

poisoning attacks to centralized machine learning. They es-

sentially aim to detect the injected malicious data in the train-

ing dataset. One category of defenses [4, 15, 56, 59] detects

malicious data based on their (negative) impact on the per-

formance of the learnt model. For instance, Barreno et al. [4]

proposed Reject on Negative Impact (RONI), which measures

the impact of each training example on the performance of

the learnt model and removes the training examples that have

large negative impact. Suciu et al. [56] proposed a variant of

RONI (called tRONI) for targeted poisoning attacks. In par-

ticular, tRONI measures the impact of a training example on

only the target classification and excludes training examples

that have large impact.

Another category of defenses [20, 30, 35, 55] proposed new

loss functions, optimizing which obtains model parameters

and detects the injected malicious data simultaneously. For

instance, Jagielski et al. [30] proposed TRIM, which aims

to jointly find a subset of training dataset with a given size

and model parameters that minimize the loss function. The

training examples that are not in the selected subset are treated

as malicious data. These defenses are not directly applicable

for our local model poisoning attacks because our attacks do

not inject malicious data into the training dataset.

For federated learning, the machine learning community

recently proposed several aggregation rules (e.g., Krum [9],

Bulyan [42], trimmed mean [66], median [66], and others [14])

that were claimed to be robust against Byzantine failures of

certain worker devices. Our work shows that these defenses

are not effective in practice against our optimized local model

poisoning attacks that carefully craft local models on the

compromised worker devices. Fung et al. [23] proposed to

compute weight for each worker device according to histori-

cal local models and take the weighted average of the local

models to update the global model. However, their method

can only defend against label flipping attacks, which can al-

ready be defended by existing Byzantine-robust aggregation

rules. We propose ERR and LFR, which are respectively gen-

eralized from RONI and TRIM, to defend against our local

model poisoning attacks. We find that these defenses are not

effective enough in some scenarios, highlighting the needs of

new defenses against our attacks.

Other security and privacy threats to machine learn-
ing: Adversarial examples [5, 57] aim to make a machine

learning system predict labels as an attacker desires via adding

carefully crafted noise to normal testing examples in the test-

ing phase. Various methods (e.g., [2, 11, 25, 36, 46, 47, 52,

54, 57]) were proposed to generate adversarial examples, and

many defenses (e.g., [10,25,26,38,41,48,64]) were explored

to mitigate them. Different from poisoning attacks, adversarial

examples compromise the testing phase of machine learning.

Both poisoning attacks and adversarial examples compro-

mise the integrity of machine learning. An attacker could also

compromise the confidentiality of machine learning. Specif-

ically, an attacker could compromise the confidentiality of

users’ private training or testing data via various attacks such

as model inversion attacks [21, 22], membership inference
attacks [40, 49, 53], and property inference attacks [1, 24].

Moreover, an attacker could also compromise the confiden-

tiality/intellectual property of a model provider via stealing

its model parameters and hyperparameters [34, 58, 60].

7 Conclusion, Limitations, and Future Work

We demonstrate that the federated learning methods, which

the machine learning community claimed to be robust against

Byzantine failures of some worker devices, are vulnerable to

our local model poisoning attacks that manipulate the local

models sent from the compromised worker devices to the

master device during the learning process. In particular, to

increase the error rates of the learnt global models, an attacker

can craft the local models on the compromised worker de-

vices such that the aggregated global model deviates the most

towards the inverse of the direction along which the global

model would change when there are no attacks. Moreover,

finding such crafted local models can be formulated as op-

timization problems. We can generalize existing defenses

for data poisoning attacks to defend against our local model

poisoning attacks. Such generalized defenses are effective in

some cases but are not effective enough in other cases. Our

results highlight that we need new defenses to defend against

our local model poisoning attacks.

Our work is limited to untargeted poisoning attacks. It

would be interesting to study targeted poisoning attacks to

federated learning. Moreover, it is valuable future work to de-

sign new defenses against our local model poisoning attacks,

e.g., new methods to detect compromised local models and

new adversarially robust aggregation rules.

8 Acknowledgements

We thank the anonymous reviewers and our shepherd Nikita

Borisov for constructive reviews and comments. This work

was supported by NSF grant No.1937786.

References

[1] Giuseppe Ateniese, Luigi V Mancini, Angelo Spognardi,

Antonio Villani, Domenico Vitali, and Giovanni Felici.

Hacking smart machines with smarter ones: How to ex-

tract meaningful data from machine learning classifiers.

International Journal of Security and Networks, 10(3),

2015.

[2] Anish Athalye, Logan Engstrom, Andrew Ilyas, and

Kevin Kwok. Synthesizing robust adversarial exam-

ples. In ICML, 2018.

[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deb-

orah Estrin, and Vitaly Shmatikov. How to backdoor

federated learning. In arxiv, 2018.

[4] Marco Barreno, Blaine Nelson, Anthony D Joseph, and

JD Tygar. The security of machine learning. Machine
Learning, 2010.

[5] Marco Barreno, Blaine Nelson, Russell Sears, An-

thony D Joseph, and J Doug Tygar. Can machine learn-

ing be secure? In ACM ASIACCS, 2006.

[6] Arjun Bhagoji, Supriyo Chakraborty, Prateek Mittal, and

Seraphin Calo. Analyzing federated learning through

an adversarial lens. In ICML, 2019.

[7] Battista Biggio, Luca Didaci, Giorgio Fumera, and Fabio

Roli. Poisoning attacks to compromise face templates.

In IEEE ICB, 2013.

[8] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poi-

soning attacks against support vector machines. In

ICML, 2012.

[9] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guer-

raoui, and Julien Stainer. Machine learning with adver-

saries: Byzantine tolerant gradient descent. In NIPS,

2017.

[10] Xiaoyu Cao and Neil Zhenqiang Gong. Mitigating eva-

sion attacks to deep neural networks via region-based

classification. In ACSAC, 2017.

[11] Nicholas Carlini and David Wagner. Towards evaluating

the robustness of neural networks. In IEEE S & P, 2017.

[12] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,

Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,

and Zheng Zhang. Mxnet: A flexible and efficient ma-

chine learning library for heterogeneous distributed sys-

tems. arXiv preprint arXiv:1512.01274, 2015.

[13] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and

Dawn Song. Targeted backdoor attacks on deep learning

systems using data poisoning. In arxiv, 2017.

[14] Yudong Chen, Lili Su, and Jiaming Xu. Distributed sta-

tistical machine learning in adversarial settings: Byzan-

tine gradient descent. In POMACS, 2017.

[15] Gabriela F. Cretu, Angelos Stavrou, Michael E. Locasto,

Salvatore J. Stolfo, and Angelos D. Keromytis. Cast-

ing out demons: Sanitizing training data for anomaly

sensors. In IEEE S & P, 2008.

[16] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai

Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao,

Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker,

Ke Yang, and Andrew Y. Ng. Large scale distributed

deep networks. In NIPS, 2012.

[17] John R. Douceur. The Sybil attack. In IPTPS, 2002.

[18] Dheeru Dua and Casey Graff. UCI machine learning

repository, 2017.

[19] Minghong Fang, Guolei Yang, Neil Zhenqiang Gong,

and Jia Liu. Poisoning attacks to graph-based recom-

mender systems. In ACSAC, 2018.

[20] Jiashi Feng, Huan Xu, Shie Mannor, and Shuicheng Yan.

Robust logistic regression and classification. In NIPS,

2014.

[21] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.

Model inversion attacks that exploit confidence informa-

tion and basic countermeasures. In ACM CCS, 2015.

[22] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon

Lin, David Page, and Thomas Ristenpart. Privacy in

pharmacogenetics: An end-to-end case study of person-

alized warfarin dosing. In USENIX Security Symposium,

2014.

[23] Clement Fung, Chris J.M. Yoon, and Ivan Beschastnikh.

Mitigating sybils in federated learning poisoning. In

arxiv, 2018.

[24] Karan Ganju, Qi Wang, Wei Yang, Carl A. Gunter, and

Nikita Borisov. Property inference attacks on fully con-

nected neural networks using permutation invariant rep-

resentations. In CCS, 2018.

[25] Ian J Goodfellow, Jonathon Shlens, and Christian

Szegedy. Explaining and harnessing adversarial exam-

ples. arXiv, 2014.

[26] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot,

Michael Backes, and Patrick McDaniel. On the (sta-

tistical) detection of adversarial examples. In arXiv,

2017.

[27] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.

Badnets: Identifying vulnerabilities in the machine

learning model supply chain. In Machine Learning
and Computer Security Workshop, 2017.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

CVPR, pages 770–778, 2016.

[29] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-

Cruz. Deep models under the gan: Information leakage

from collaborative deep learning. In CCS, 2017.

[30] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang

Liu, Cristina Nita-Rotaru, and Bo Li. Manipulating ma-

chine learning: Poisoning attacks and countermeasures

for regression learning. In IEEE S & P, 2018.

[31] Jakob Nikolas Kather, Cleo-Aron Weis, Francesco Bian-

coni, Susanne M Melchers, Lothar R Schad, Timo

Gaiser, Alexander Marx, and Frank Gerrit Zöllner.

Multi-class texture analysis in colorectal cancer histol-

ogy. Scientific reports, 2016.

[32] Jakub Konečný, H. Brendan McMahan, Felix X. Yu,

Peter Richtárik, Ananda Theertha Suresh, and Dave Ba-

con. Federated learning: Strategies for improving com-

munication efficiency. In NIPS Workshop on Private
Multi-Party Machine Learning, 2016.

[33] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorob-

eychik. Data poisoning attacks on factorization-based

collaborative filtering. In NIPS, 2016.

[34] Bin Liang, Miaoqiang Su, Wei You, Wenchang Shi, and

Gang Yang. Cracking classifiers for evasion: A case

study on the google’s phishing pages filter. In ACM
WWW, 2016.

[35] Chang Liu, Bo Li, Yevgeniy Vorobeychik, and Alina

Oprea. Robust linear regression against training data

poisoning. In AISec, 2017.

[36] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song.

Delving into transferable adversarial examples and

black-box attacks. In ICLR, 2017.

[37] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,

Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojan-

ing attack on neural networks. In NDSS, 2018.

[38] Aleksander Madry, Aleksandar Makelov, Ludwig

Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards

deep learning models resistant to adversarial attacks.

arXiv preprint arXiv:1706.06083, 2017.

[39] H. Brendan McMahan, Eider Moore, Daniel Ram-

age, Seth Hampson, and Blaise Agüera y Arcas.

Communication-efficient learning of deep networks

from decentralized data. In AISTATS, 2017.

[40] Luca Melis, Congzheng Song, Emiliano De Cristofaro,

and Vitaly Shmatikov. Exploiting unintended feature

leakage in collaborative learning. In IEEE S & P, 2019.

[41] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and

Bastian Bischof. On detecting adversarial perturbations.

In ICLR, 2017.

[42] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien

Rouault. The hidden vulnerability of distributed learning

in byzantium. In ICML, 2018.

[43] Luis Muñoz-González, Battista Biggio, Ambra Demon-

tis, Andrea Paudice, Vasin Wongrassamee, Emil C Lupu,

and Fabio Roli. Towards poisoning of deep learning al-

gorithms with back-gradient optimization. In AISec,

2017.

[44] Milad Nasr, Reza Shokri, and Amir Houmansadr. Com-

prehensive privacy analysis of deep learning: Stand-

alone and federated learning under passive and active

white-box inference attacks. In IEEE S & P, 2019.

[45] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P.

Rubinstein, U. Saini, C. Sutton, J. D. Tygar, and K. Xia.

Exploiting machine learning to subvert your spam filter.

In LEET, 2008.

[46] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,

Somesh Jha, Z Berkay Celik, and Ananthram Swami.

Practical black-box attacks against machine learning. In

ACM ASIACCS, 2017.

[47] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt

Fredrikson, Z. Berkay Celik, and Ananthram Swami.

The limitations of deep learning in adversarial settings.

In EuroS&P, 2016.

[48] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh

Jha, and Ananthram Swami. Distillation as a defense to

adversarial perturbations against deep neural networks.

In IEEE S & P, 2016.

[49] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De

Cristofaro. Knock knock, who’s there? membership

inference on aggregate location data. In NDSS, 2018.

[50] Benjamin IP Rubinstein, Blaine Nelson, Ling Huang,

Anthony D Joseph, Shing-hon Lau, Satish Rao, Nina

Taft, and JD Tygar. Antidote: understanding and defend-

ing against poisoning of anomaly detectors. In ACM
IMC, 2009.

[51] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian

Suciu, Christoph Studer, Tudor Dumitras, and Tom Gold-

stein. Poison frogs! targeted clean-label poisoning at-

tacks on neural networks. In NIPS, 2018.

[52] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and

K Michael Reiter. Accessorize to a crime: Real and

stealthy attacks on state-of-the-art face recognition. In

ACM CCS, 2016.

[53] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-

taly Shmatikov. Membership inference attacks against

machine learning models. In IEEE S & P, 2017.

[54] Nedim Srndic and Pavel Laskov. Practical evasion of a

learning-based classifier: A case study. In IEEE S & P,

2014.

[55] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Certi-

fied defenses for data poisoning attacks. In NIPS, 2017.

[56] Octavian Suciu, Radu Marginean, Yigitcan Kaya,

Hal Daume III, and Tudor Dumitras. When does ma-

chine learning fail? generalized transferability for eva-

sion and poisoning attacks. In Usenix Security Sympo-
sium, 2018.

[57] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,

Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob

Fergus. Intriguing properties of neural networks. arXiv,

2013.

[58] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter,

and Thomas Ristenpart. Stealing machine learning mod-

els via prediction apis. In USENIX Security Symposium,

2016.

[59] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral

signatures in backdoor attacks. In NIPS, 2018.

[60] Binghui Wang and Neil Zhenqiang Gong. Stealing

hyperparameters in machine learning. In IEEE S & P,

2018.

[61] Binghui Wang and Neil Zhenqiang Gong. Attacking

graph-based classification via manipulating the graph

structure. In CCS, 2019.

[62] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio

Fumera, Claudia Eckert, and Fabio Roli. Is feature se-

lection secure against training data poisoning? In ICML,

2015.

[63] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Fall of

empires: Breaking byzantine-tolerant sgd by inner prod-

uct manipulation. In UAI, 2019.

[64] Weilin Xu, David Evans, and Yanjun Qi. Feature squeez-

ing: Detecting adversarial examples in deep neural net-

works. arXiv preprint arXiv:1704.01155, 2017.

[65] Guolei Yang, Neil Zhenqiang Gong, and Ying Cai. Fake

co-visitation injection attacks to recommender systems.

In NDSS, 2017.

[66] Dong Yin, Yudong Chen, Kannan Ramchandran, and

Peter Bartlett. Byzantine-robust distributed learning:

Towards optimal statistical rates. In ICML, 2018.

Table 7: (a) The DNN architecture (input layer is not shown)

used for MNIST and Fashion MNIST. (b) Testing error rates

when applying attacks for Krum to attack Bulyan.

(a)

Layer Type Size

Convolution + ReLU 3×3×30

Max Pooling 2×2

Convolution + ReLU 3×3×50

Max Pooling 2×2

Fully Connected + ReLU 200

Softmax 10 / 8

(b)

Bulyan

No attack 0.14

Partial Knowledge 0.36

Full Knowledge 0.38

Table 8: Testing error rates of our attacks based on the devia-

tion goal and directed deviation goal.

Krum Trimmed mean Median

Deviation goal 0.87 0.10 0.12

Directed deviation goal 0.80 0.52 0.29

A Attacking Bulyan

Bulyan is based on Krum. We apply our attacks for Krum to

attack Bulyan. Table 7b shows results of attacking Bulyan.

The dataset is MNIST, the classifier is logistic regression,

m = 100, c = 20, θ = m−2c (Bulyan selects θ local models

using Krum), and γ = θ− 2c (Bulyan takes the mean of γ
parameters). Our results show that our attacks to Krum can

transfer to Bulyan. Specifically, our partial knowledge attack

increases the error rate by around 150%, while our full knowl-

edge attack increases the error rate by 165%.

B Deviation Goal

The deviation goal is to craft local models w′
1,w

′
2, · · · ,w′

c for

the compromised worker devices via solving the following

optimization problem in each iteration:

max
w′

1,··· ,w′
c

||w−w′||1,

subject to w = A(w1, · · · ,wc,wc+1, · · · ,wm),

w′ = A(w′
1, · · · ,w′

c,wc+1, · · · ,wm), (5)

where || · ||1 is L1 norm. We can adapt our attacks based on the

directed deviation goal to the deviation goal. For simplicity,

we focus on the full knowledge scenario.

Krum: Similar to the directed deviation goal, we make two

approximations, i.e., w′
1 = wRe−λ and the c compromised lo-

cal models are the same. Then, we formulate an optimization

problem similar to Equation 2, except that w′
1 = wRe −λs is

changed to w′
1 = wRe −λ. Like Theorem 1, we can derive an

upper bound of λ, given which we use binary search to solve

λ. After solving λ, we obtain w′
1. Then, we randomly sample

c− 1 vectors whose Euclidean distances to w′
1 are smaller

than ε as the other c−1 compromised local models.
Trimmed mean: Theoretically, we can show that the follow-

ing attack can maximize the deviation of the global model: we

use any c numbers that are larger than wmax, j or smaller than

wmin, j, depending on which one makes the deviation larger, as

the jth local model parameters on the c compromised worker

devices. Like the directed deviation goal, when implementing

the attack, we randomly sample the c numbers in the inter-

val [wmax, j,b ·wmax, j] (when wmax, j > 0) or [wmax, j,wmax, j/b]

(when wmax, j ≤ 0), or in the interval [wmin, j/b,wmin, j] (when

wmin, j > 0) or [b ·wmin, j,wmin, j] (when wmin, j ≤ 0), depending

on which one makes the deviation larger.

Median: We apply the attack for trimmed mean to median.

Experimental results: Table 8 empirically compares the de-

viation goal and directed deviation goal, where MNIST and

LR classifier are used. For Krum, both goals achieve high test-

ing error rates. However, for trimmed mean and median, the

directed deviation goal achieves significantly higher testing

error rates than the deviation goal.

C Proof of Theorem 1

We denote by Γa
w the set of a local models among the crafted c

compromised local models and m−c benign local models that

are the closest to the local model w with respect to Euclidean

distance. Moreover, we denote by Γ̃a
w the set of a benign local

models that are the closest to w with respect to Euclidean

distance. Since w′
1 is chosen by Krum, we have the following:

∑
l∈Γm−c−2

w′
1

D(wl ,w′
1)≤ min

c+1≤i≤m
∑

l∈Γm−c−2
wi

D(wl ,wi), (6)

where D(·, ·) represents Euclidean distance. The distance be-

tween w′
1 and the other c− 1 compromised local models is

0, since we assume they are the same in the optimization

problem in Equation 2 when finding w′
1. Therefore, we have:

∑
l∈Γ̃m−2c−1

w′
1

D(wl ,w′
1)≤ min

c+1≤i≤m
∑

l∈Γm−c−2
wi

D(wl ,wi). (7)

According to the triangle inequality D(wl ,w′
1) ≥

D(w′
1,wRe)−D(wl ,wRe), we get:

(m−2c−1) ·D(w′
1,wRe)

≤ min
c+1≤i≤m

∑
l∈Γm−c−2

wi

D(wl ,wi)+ ∑
l∈Γ̃m−2c−1

w′
1

D(wl ,wRe)

≤ min
c+1≤i≤m

∑
l∈Γ̃m−c−2

wi

D(wl ,wi)+(m−2c−1) · max
c+1≤i≤m

D(wi,wRe).

Since D(w′
1,wRe) = ‖λ · s‖2 =

√
d ·λ, we have:

λ ≤ 1

(k− c+1)
√

d
· min

c+1≤i≤m
∑

l∈Γ̃k
wi

D(wl ,wi)

+
1√
d
· max

c+1≤i≤m
D(wi,wRe). (8)

The bound only depends on the before-attack local models.

