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Why binary instrumentation?

@ Binary instrumentation — Modify program without source code.

@ Enables unique capabilities:
e Security without source code:
@ Harden deployed software (almost always binary code)
@ Detect vulnerabilities (fuzzing)

@ Analyze malware
e Program profiling: 1dentify performance bottlenecks.
e Debugging: Bugs that manifest only at runtime (e.g., Valgrind)
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@ Robustness: Handling complex binaries
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SAFER: Static pointer encoding 4+ runtime translation ~ 2% overhead |
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e Pre-translate high confidence code pointers

@ Runtime AT for others.

e How to distinguish at run time?
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SAFER’s pointer translation

@ Pre-translate high confidence code pointers

@ Runtime AT for others.
@ How to distinguish at run time?

1 BIT encoding

Unused
l0o0o0o0[7F94710xxxxX

Flipped MSB
.ooo|7F9471oxxxxx|

Run time checking

If encoded(target) then
target = decode(target)

Else

target = translate(target)
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@ Data pointer misclassified as code pointer?

e Flipped MSB = crash on read
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@ Undetected pointer arithmetic?

e Code pointer used to compute another code pointer
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Error handling

@ Undetected pointer arithmetic?

e Code pointer used to compute another code pointer

e New multiplicative encoding:

e A, B: 64 bit odd numbers
 AxB=1

Encode Decode

P, =PxA 2ret®e, p xB=P \/

ﬂArithmetic
Perct X = (Pg,t X) x B =invalid *

10/35



@ Do programs use computed code pointers?
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@ Do programs use computed code pointers?

@ YES: C/C++ switch-case — Jump tables

Jump_table: {100 | 200 [ 500 |300 |

@ Identify: static analysis (Dyninst, Egalito, Ddisasm, etc).

12/35



@ Do programs use computed code pointers?

@ YES: C/C++ switch-case — Jump tables

Jump_table: {100 | 200 [ 500 |300 |

@ Identify: static analysis (Dyninst, Egalito, Ddisasm, etc).

e As opposed to best effort |
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@ Challenge:

e Runtime translation — high overhead

o In-place update: Incorrect bound = overwrite other data
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Translating jump tables

@ Challenge:
¢ Runtime translation — high overhead
o In-place update: Incorrect bound = overwrite other data

@ Solution:
e Original data intact.
e Recreate jump table
e Change jump table access.
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Translating jump tables

@ Challenge:
¢ Runtime translation — high overhead

o In-place update: Incorrect bound = overwrite other data

@ Solution:

Original data intact.

Recreate jump table
Change jump table access.

challenge: Other use of jump table.

Example: Jump table address used for accessing other data
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@ Taint analysis to detect other use:

e Memory dereferencing
e Move to heap
e call argument

e return value

@ 83% jump tables SAFE — avoid

runtime translation

® Safe

® Retval

@ StoreMem
® Deref

® CallArgs
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Evaluation overview

@ Experimental evaluation
e fail-crash: Can SAFER detect errors at runtime?
e Performance: What is the performance cost of SAFER’s pointer translation

approach?
e Functionality: Can SAFER instrument real world applications?
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Fail crash evaluation: Coreutils with embedded data

@ Linux coreutils: Is, cat, cp, etc.

Code pointer validation method | Success rate | Safe failure
None (always use AT) 105/105 NA
+ Instruction boundary 43/105 62/105
+ ABI validation 74/105 31/105
+ Function prologue matching 105/105 NA
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SAFER optimizations

SPEC 2006 PIE Non PIE
= Full AT: Fully compatible. 2= 35
a 30.8 30.8
= No pointers changed - -
(including return addresses)
= Full enc: All pointers encoded. 25 25
= RA opt: Use current return
20 20
addresses.
= C++ exception incompatible |5 15
= Update exception metadata 106
10 10 )
= Safe jump table: Recreate jump . 45 . 52
- O
2 [ | 7
Full AT Full Enc RA opt Safe jump table Full AT RA opt Safe jump table
W Full AT FullEnc ®mRAopt mSafe jump table W Full AT mRAopt M Safejump table
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Functionality evaluation

@ 16 real world applications with 500+ shared libraries (Size: 473MB).
e gimp, evince, gedit, ffmpeg, clang, Python, etc
@ 6 applications use libraries with embedded data.

e libgcrypt, libgnutls, libavcodec, libcrypto
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Summary

@ SAFrER effectively combines pointer encoding with runtime address

translation to get low overhead of ~ 2%.

@ SAFER’s novel pointer encoding facilitiates runtime error detection

(fail-crash).

@ SAFER’s safe jump table analysis helps improve performance without

compromising correctness and safety.

Artifact URL: http://seclab.cs.sunysb.edu/soumyakant/safer |
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THANK YOU!
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e What if we have error?
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e What if we have error?

e Encoding == crash when used.

@ fail-crash over unexpected behavior
e Prevent data loss or security failure

e lIdentify error prone module
e FIX:full address translation on the module
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@ Why not a 15 bit checksum in leading 16 bits?

e Time-consuming to compute
e Requires many unused bits
e Non-negligible rate of undetected failures
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Why multiplicative encoding?

@ Why not a 15 bit checksum in leading 16 bits?
e Time-consuming to compute
e Requires many unused bits
e Non-negligible rate of undetected failures

@ Benefits of our approach
o Faster: Just one instruction: MULX
@ Does not affect CPU flags

e Negligible rate of undetected arithmetic
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Safe jump table analysis improvement

@ No analysis...all jump tables marked safe: 1.2% overhead.
@ Without function signature analysis: 55% safe (reported in paper)

e Approx. 2% overhead

@ Function signature analysis:
e Helps improve call argument identification accuracy
e More jump tables marked as safe: 83%

e Approx. 1.5% performance overhead

28/35



@ SAFER’s default: ABI validation (2% overhead)

@ Function prologue matching: ~5% overhead.
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Instrumentation overview

Data

Used as code
pointer

No

Encode access

Unmodified ———

Data
access

If encoded(target) then
target = decode(target)

Else

target = translate(target)

invalid

30/35



@ Data misinterpreted as code

e Replication based instrumentation (PSI, BinStir, etc)

Original Instrumented

Unchanged for data
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@ Address taken functions
e PIE: Relocation.

e Non-PIE: Scan code/data sections for 4/8 byte constants
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Address translation

@ Two level hashing scheme:
e Global hash (GTT): <4K aligned Page, LTT>

@ Runtime construction

e Local hash (LTT): Per-module translation <Old Pointer, New Pointer>

@ Customized loader for above.
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Exceptional cases!!

@ Return addresses used as indirect jump target

e Longjmp, C++ exception handling
e Handling: Return addresses added to translation table

@ Supporting stack unwinding
e Special metadata: Return address dependent
e push old RA on stack = performance heavy
e Our approach: Sync metadata with new RA
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@ Average across all 6 optimizations: 2.3%

SPEC 2017
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