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Abstract 
With the increasing occurrence of temporal and 
spatial data in present-day database applications, 
the interval data type is adopted by more and 
more database systems. For an efficient support 
of queries that contain selections on interval 
attributes as well as simple-valued attributes 
(e. g. numbers, strings) at the same time, special 
index structures are required supporting both 
types of predicates in combination. Based on the 
Relational Interval Tree, we present various 
indexing schemes that support such combined 
queries and can be integrated in relational 
database systems with minimum effort. Experi-
ments on different query types show superior 
performance for the new techniques in compari-
son to competing access methods. 

1. Introduction 
In recent years, many special-purpose data types got 
available in relational databases. Instead of providing ap-
plication-specific systems such as spatial, multimedia, or 
XML databases for each conceivable domain, database 
implementors more and more introduce new data types 
and corresponding management functions directly into 
relational systems, either by a direct integration into the 
database kernel or – much more common – by providing 
extensible interfaces allowing users to define the required 
complex types together with appropriate operations. 

One of the simplest complex types is the interval data 
type. While intervals occur in various application areas, 
e. g. as tolerance ranges for imprecisely measured values 

in scientific databases, as line segments on a space-filling 
curve in spatial applications [1] [11], or as finite domain 
constraints in declarative systems [18] [26], the typical 
domain for intervals are temporal applications where they 
are used as transaction time and valid time ranges [30].  

In a relational database system adopting the SQL:2003 
[16] period data type (defined as a compound row object 
with starting and ending datetimes), we could define, e. g., 
a contracts table storing the contract identifier c_no, the 
available budget c_budget and the interval-valued period 
c_period of a contract tuple by the following DDL state-
ment: 

In practice, queries on such tables often contain selections 
on the interval-valued as well as on the simple attributes 
at the same time, as in the following query: 

Present-day relational database systems still provide a 
very limited selection of access structures, normally just 
indexes for simple data types (e. g. B-trees, hash tables) 
and sometimes also for spatial data types (e. g. R-trees). 
To support combined queries as in Figure 2, one could 
create a B-tree index on the simple attribute and an R-tree 
or composite index on the interval attribute. Unfortu-
nately, interval queries are not very well supported by 
spatial access structures or composite indexes, especially 
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Figure 1: Statement to create a table with an interval 
attribute 

CREATE TABLE contracts ( 
 c_no VARCHAR(10), 
 c_budget DECIMAL(10,2), 
 c_period ROW (c_start DATE, c_end DATE))

Figure 2: Query selecting single- and interval-valued 
attributes in combination

SELECT c_no 
FROM contracts 
WHERE c_budget BETWEEN :v1 AND :v2 
 AND c_period OVERLAPS 

(DATE '2005-01-01', DATE '2005-01-31')
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in the presence of intervals with long durations and high 
overlaps. Furthermore, the combined query has to be 
evaluated by an intersection of the inverted lists provided 
by the single indexes which results in additional overhead. 
Using a single spatial or composite index on the simple 
attribute and the interval bounds avoids the final intersec-
tion step, but disregards the individual characteristics of 
the different data types. 

Several different approaches to support overlap que-
ries on interval data exist in the literature, some of them 
also admitting the combined evaluation of selections on 
simple attributes (cf. Section 2). However, these algo-
rithms usually are based either on the augmentation of 
existing indexes or on the definition of new access struc-
tures, providing hardly any support for an integration into 
existing database systems. 

In [22], an efficient access structure has been intro-
duced to process interval intersection queries on top of 
any existing relational database system. Instead of access-
ing raw disc blocks directly, the Relational Interval Tree 
(RI-tree) manages data objects by common built-in rela-
tional indexes following the paradigm of relational index-
ing [20] [9] [5]. 

In order to support combined queries on single- and 
interval-valued attributes, we propose several new tech-
niques based on the structure of the Relational Interval 
Tree. Inheriting the easy implementation of the RI-tree 
and the superior performance of built-in database indexes, 
the new techniques have major advantages over former 
approaches. As experimental results on an Oracle10g 
server show, the new algorithms outperform existing rela-
tional methods for combined queries on interval-and-
value tuples significantly. 

The remainder of the paper is organized as follows: 
Section 2 surveys related work on interval intersection 
techniques that support a combined evaluation of simple 
selections. After recalling the Relational Interval Tree in 
Section 3, we present our new approaches in Section 4. 
Section 5 describes the results of our experimental evalua-
tions, and the paper is concluded in Section 6. 

2. Related Work 
A straight-forward solution for supporting combined se-
lections on different attributes is to create separate indexes 
on each of the queried attributes. To evaluate the query, 
the optimizer commonly uses the indexes to determine the 
results of the single selections separately and calculates 
the final query result by intersecting these inverted lists. 
In cases where, e. g., index accesses are very cheap and/or 
combined selections are rarely used, this solution is effi-
cient, in general. But if one or both index accesses are 
also rather expensive, as is usually the case when evaluat-
ing specific predicates on complex data types, this ap-
proach may be suboptimal. Using a pipelined technique, 
i. e. first evaluating one (usually the more selective) 
predicate and then checking the filtered result on the sec-

ond predicate, may help in some scenarios, e. g. if one 
predicate is very selective (i. e. a good filter) and the used 
access structures admit this pipelined fashion of evalua-
tion. 

In general, to support combined selections efficiently, 
one has to find an access structure that allows also a com-
bined evaluation of several predicates. In our case, where 
comparison predicates on simple types and intersection 
predicates on intervals have to be calculated, an adequate 
access structure should integrate the different evaluation 
approaches of the separate indexes and use the (presuma-
bly cheap) selection of the simple type to prevent expen-
sive intersection calculations. Various different access 
structures to support intersection queries on intervals exist 
in the literature [28], and some of them also allow a com-
bined evaluation of simple selections. 

The Time Index of Elmasri, Wuu, and Kim [8] is an 
access structure for storing intervals that can be combined 
with a conventional attribute indexing scheme. A set of 
linearly ordered indexing points is maintained by a B+-
tree, and for each point, a bucket of pointers refers to the 
associated set of intervals. To support additional attrib-
utes, a two-level indexing scheme is proposed: The top-
level index is a B+-tree for a (simple) search attribute, and 
each leaf node entry of the top-level index tree includes a 
value of the search attribute and a pointer to a time index, 
i. e. there is a time index tree for each attribute value! 
Answering a combined query involves traversing the first 
B+-tree to identify the leaf entry corresponding to the 
searched attribute value, followed by an interval search on 
the time index found there. In general, this approach is 
reasonably applicable on attributes with very narrow do-
mains only. 

Gunadhi and Segev [14] propose a related approach, 
the ST-index (surrogate and time index), that facilitates a 
two-level method whose top level indexes the key attrib-
ute of the interval objects (using a B+-tree), while the 
second level indexes the intervals that share the same key 
attribute. For the second level, a so-called AP-tree (ap-
pend-only tree) is used, an extension of the B+-tree for 
indexing append-only periods. The AP-tree indexes the 
start times of all intervals sharing a distinct key attribute 
value. The problem with this approach is that pure interval 
queries will have to check all stored intervals to see 
whether they intersect the query interval. Besides that, this 
augmentation of the B-tree structure is not supported by 
commercial relational databases. 

Blankenagel and Güting present the external segment 
tree (ES-tree) [3] which is a paginated version of the 
main-memory segment tree [2]. By embedding B-trees, 
the ES-tree can also be modified to address queries with 
additional predicates. The original ES-tree structure 
guides the search to a subset of intervals that intersect the 
query interval while an embedded B-tree allows searching 
this subset for whether the simple predicate is also satis-
fied. Unfortunately, this augmentation also isn't supported 
by present-day relational databases. 
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The Interval-Spatial Transformation (IST) of Goh et 
al. [13] is based on encoding intervals by space-filling 
curves called D-, V- and H-ordering that map the bound-
ary points into a linear space. The structure reveals a 
strong correspondence to relational composite indexes. 
Aside from quantization aspects, the D-ordering is equiva-
lent to a composite index on the interval bounds (end, 
start), the V-ordering corresponds to an index on (start, 
end), and the H-ordering simulates an index on (end–start, 
start). To support combined selections, additional attrib-
utes can be included into the composite indexes. As men-
tioned above, this approach may result in poor query per-
formance if the selectivity relies on the "wrong" bound or 
attribute. 

The Window-List technique of Ramaswamy [26] is a 
static solution for the interval management problem and 
employs built-in B+-trees. The optimal space and I/O 
complexity for stabbing queries is achieved. For com-
bined indexing, a composite B+-tree index is proposed, 
consisting of a window's starting point and the additional 
attribute (key). Unfortunately, updates do not seem to 
have non-trivial upper bounds, and adding as well as de-
leting arbitrary intervals can deteriorate the query effi-
ciency of this structure. 

As an alternative, multi-dimensional or spatial access 
structures may be used for combined indexing. The prob-
lem of this approach is that, in general, all dimensions 
stored in the index are handled in the same way, and the 
characteristics of the single attributes' types aren't re-
spected. So, depending on the respective query, some of 
the dimensions/predicates may be supported very effi-
ciently while other cannot profit by the index at all. 

If only multidimensional points are supported, as in 
the k-d-B-tree [27], mapping an (interval, value) pair to a 
triplet consisting of lower bound, upper bound, and value 
allows the intervals to be represented by points in three-
dimensional space. If intervals are represented more natu-
rally, as line segments in a two-dimensional value-interval 
space, Guttman's R-tree [15] or one of its variants includ-
ing R+-tree [29] and R*-tree [1] could be used. Such so-
lutions sometimes provide good average-case perform-
ance, but overlapping still remains a severe problem, es-
pecially if the interval distribution is highly nonuniform. 

The Segment R-tree (SR-tree) of Kolovson and Stone-
braker [19] is a combination of the main memory-based 
segment tree with the secondary storage-oriented R-tree. 
The split algorithm cuts long intervals into spanning por-
tions and remnant portions thus producing some redun-
dance but being less sensitive to overlapping intervals. 
However, the method may suffer if there are many inter-
val deletions, since all remnants (segments) of a deleted 
interval have to be found and physically deleted. Further-
more, implementing the SR-tree requires an adaption of 
the R-tree structure. 

In [21], Kriegel, Pfeifle, Pötke, and Seidl present an-
other spatial index structure. Similar to the approach pre-
sented here, it is based on the Relational Interval Tree and 

can be easily embedded in modern extensible indexing 
frameworks. Extended objects are mapped to interval se-
quences by means of space-filling curves, and the RI-tree 
is slightly modified to support sequences of intervals thus 
enabling the search for spatial objects. The (interval, 
value) pairs are regarded as line segments in a two-
dimensional value-interval space and are mapped to cor-
responding interval sequences. The RI-Tree used to man-
age these interval sequences is twice as high as the RI-
Tree that would have been used for storing the original 
intervals. Each interval is mapped on a sequence of inter-
vals, thus increasing the required space and time for stor-
ing and accessing the data. 

3. The Relational Interval Tree 
For the paper to be self-contained, we give an overview of 
the Relational Interval Tree developed in our previous 
work [22]. The RI-tree is a relational storage structure 
based on Edelsbrunner’s main-memory interval tree [7] 
and can be built on top of the SQL layer of any RDBMS 
[20] [5]. It guarantees an optimal complexity for storage 
space and I/O operations when updating or querying large 
sets of interval data (start, end). 

The RI-tree strictly follows the paradigm of relational 
access structures since its implementation is restricted to 
(procedural and declarative) SQL but does not assume any 
lower-level interfaces to the database system. In particu-
lar, the built-in index structures of a DBMS are used as 
they are, and no intrusive augmentations or modifications 
of the database kernel are required. So this approach will 
directly profit by any enhancements of the underlying 
system’s index implementation. 

3.1 Dynamic Data Structure 

The structure of the RI-tree consists of a binary tree of 
height h which makes the range [1, 2h−1] of potential in-
terval bounds accessible. It is called the virtual backbone 
of the RI-tree since it is not materialized but only the root 
value 2h−1 is stored persistently in a metadata table. Tra-
versals of the virtual backbone are performed purely arith-
metically without causing any I/O operation. 

For the relational storage of the intervals, the node 
values of the tree are used as artificial keys: Each interval 
is assigned to a fork node, which is the first node that hits 
the interval when descending the tree from the root node 
down to the interval location. 

In the context of temporal databases, the special values 
now [6] and infinity can occur as upper bounds of the in-
tervals. Such temporal intervals can be managed by the 
RI-tree using artificial exclusive node values for the cor-
responding intervals. Now-ending intervals, for example, 
are all assigned to a special node forknow when being in-
serted. 

Figure 4 illustrates an example of the RI-tree for the 
five sample intervals of the contracts table in Figure 3. 
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The intervals (1,5) for contract 1, (2,9) for contract 2, 
(8,17) for contract 3, (14,19) for contract 4 and (21,26) for 
contract 5 are pictured in Figure 4a. The virtual backbone 
with root value 16 covers the data space from 1 to 31 
(Figure 4b). The five intervals are registered at the nodes 
4, 8, 16, and 24, respectively. The interval (1,5) for con-
tract 1 is represented by the entries (4, 1, C1) in the lower-
Index and (4, 5, C1) in the upperIndex since 4 is the regis-
tration node, and 1 and 5 are the start and end points of 
the interval, respectively (Figure 4c). 

3.2 Intersection Query Processing 

For processing an interval intersection query (start, end) 
based on the RI-Tree, we distinguish two phases, the pro-
cedural query preparation phase and the declarative query 
processing phase. The first phase descends the virtual 
backbone from the root node down to start and to end, re-
spectively (Figure 6). The traversal is performed arith-
metically without causing any I/O operations, and the 
visited nodes are collected in two different main-memory 
tables leftQueries and rightQueries both obeying the 
unary relational schema (node). Nodes to the left of start 
may contain intervals which overlap start and are inserted 
into leftQueries. Analogously, nodes to the right of end 
may contain intervals which overlap end and are inserted 
into rightQueries. Whereas these nodes are taken from the 
paths, the set of all nodes between start and end belongs 
to the so-called innerQuery which is represented by a sin-
gle range query on the node values. All intervals regis-
tered at nodes from the innerQuery are guaranteed to in-
tersect the query and, therefore, will be reported without 
any further comparison. The query preparation phase is 
entirely performed in main memory and requires no I/O 
operations. 

In the second phase, the transient tables are joined 
with the relational indexes upperIndex and lowerIndex by 
a single, three-fold SQL statement (Figure 5). The end 
point of each interval registered at nodes in leftQueries is 
compared to start, and the start point of intervals in 
rightQueries is compared to end. The innerQuery corre-
sponds to a simple range scan over the intervals with 
nodes in (start, end). 

Because intervals are organized by the node value, the 
significant intervals which intersect the query interval are 
stored in contiguous ranges on disk. For a tree height of h, 
there are at most 2·h different ranges which have to be 
considered when processing the query interval. Since the 
output from the relational indexes is fully blocked for 
each join partner, the SQL query requires O(h·logbn+r/b) 
I/Os to report r results from an RI-tree with n stored inter-
vals (block size b). Therefore, the RI-tree has optimal I/O 
complexity for processing temporal stabbing and interval 
queries. 

Figure 5: SQL statement for an intersection query 
with bind variables for leftQueries, rightQueries, start 
and end 

SELECT id FROM upperIndex AS i 
 JOIN :leftQueries USING (node) 
 WHERE i.end >= :start 
UNION ALL 
SELECT id FROM lowerIndex AS i 
 JOIN :rightQueries USING (node) 
 WHERE i.start <= :end 
UNION ALL 
SELECT id FROM lowerIndex  // or upperIndex 
 WHERE node BETWEEN :start AND :end 

Period No. Budget (m€) Start End 
C1 2 1 5 
C2 5 2 9 
C3 10 8 17 
C4 6 14 19 
C5 8 21 26 

Figure 3: Sample contracts table 

Figure 6: Query preparation step for the query inter-
val [11,13] (shaded in light gray): leftQueries {8,10}; 
rightQueries {14, 16}; innerQueries {11-13} 
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Figure 4: Example of an RI-tree. a) Five sample in-
tervals. b) Virtual backbone and registration position. 
c) Relational indexes lowerIndex and upperIndex 
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C1:[1-5] C3:[8-17]
C4:[14-19] C5:[21-26]C2:[2-9]

21C5 26C52C2 9C2

8C3 17C3

14C4 19C4

1C1 5C1

lowerIndex (node, start, id):

upperIndex (node, end, id):

4, 1, C1 8, 2, C2 16, 8, C3 16, 14, C4 24, 21, C5

4, 5, C1 8, 9, C2 16, 17, C3 16, 19, C4 24, 26, C5

a)

b)

c)
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4. Managing Interval-and-Value Tuples 
Using the RI-Tree 

In order to engage the RI-tree for managing and querying 
interval-and-value tuples in the presence of combined 
queries, we extend the structure in such a way that both 
the interval data as well as the simple attribute values are 
regarded in an equivalent way. In detail, our goal is to 
support also query mixes as variants of the query in 
Figure 2. In particular, we consider cases where the inter-
val predicate only contains a single point (stabbing query) 
and the value predicate only queries a single value instead 
of a range, as important variants. Altogether, we regard 
the following types of queries: 

• Value-Stabbing Queries 
• Value-Interval Queries 
• Range-Stabbing Queries 
• Range-Interval Queries 

In the next sections, we propose various new techniques 
by enhancing the RI-tree algorithms in such a way that 
selections on simple attributes are also supported. Here 
we restrict our considerations to the most important tem-
poral operator overlaps which currently is the only de-
fined predicate on the SQL:2003 period type. The ap-
proach can be easily extended to other interval relation-
ships according to [23]. 

4.1 Extending the RI-tree Indexes by Simple 
Attributes 

In order to integrate the evaluation of the additional value 
selection predicate into the RI-tree utilization, we start by 
extending the internal RI-tree query of Figure 5 by the 
according predicate (Figure 7). To support the new predi-
cate also by the internal B-tree indexes lowerIndex and 
upperIndex, we investigate different ways to include the 
simple attribute in these composite indexes. 

As mentioned in Section 3, the original index schema 
is (node, start, id) or (node, end, id), respectively. (In the 
following, we will subsume the interval bounds start and 
end by bound.) Now the question is where to insert the 
additional attribute to efficiently evaluate the query of 
Figure 7. To answer this question, we regard the different 
orders to integrate the value attribute into the composite 
index and the access cost caused by these combinations. 
We measure this access cost in contiguous ranges of index 
entries for the different query types of intent. Figure 8 
lists an overview on the number of contiguous index areas 
that have to be accessed when evaluating a certain query 
type with a certain index order. In this table, we use the 
following variables: 
• q: number of nodes in leftQueries or rightQueries 
• i: length of the query interval, i. e. :end – :start 
• n: number of nodes in the index that have to be che-

cked on the query bound (i. e. those nodes in up-
perIndex whose end bound is greater or equal to the 
query interval's start bound, and vice versa for the 
lowerIndex) 

• b: number of bounds in lowerIndex or upperIndex 
• r: length of the query range, i. e. :Value2 – :Value1 

The table in Figure 8 has to be read in the following way: 
For a certain query type (e. g. a Value-Stabbing Query) 
and a certain index order (e. g. (Value, Node, Bound)) 
there are two columns describing the access cost for a 
subquery of type (1)/(2) or (3), respectively. According to 
the given index order, the product of the three numbers or 
variables indicate the number of contiguous index areas 
that have to be accessed when evaluating a subquery. 
From Figure 8, we can read the following results: 
• A Value Query (i. e. a Value-Stabbing or a Value-

Interval Query) certainly profits from a (value, node, 
bound, id) index: In this case, the simple attribute 
predicates of the single subqueries degenerate to point 
queries and the index can be used to first determine a 

Indexes 
Value 
Node 

Bound 

Node 
Value 
Bound 

Node 
Bound 
Value 

Queries (1)/(2) (3) (1)/(2) (3) (1)/(2) (3) 

Value-
Stabbing 

1 
q 
1 

1 
1 
1 

q 
1 
1 

1 
1 
1 

q 
1 
n 

1 
1 
b 

Value-
Interval 

1 
q 
1 

1 
1 
1 

q 
1 
1 

1 
i 
1 

q 
1 
n 

1 
1 

i·b 

Range-
Stabbing 

1 
r·q 
1 

1 
r 
1 

q 
1 
r 

1 
1 
1 

q 
1 
n 

1 
1 
b 

Range-
Interval 

1 
r·q 
1 

1 
r 
1 

q 
1 
r 

1 
i 
1 

q 
1 
n 

1 
1 

i·b 

Figure 8: Number of contiguous index ranges for dif-
ferent query types and index orders. 

SELECT id   //subquery (1) 
FROM upperIndex AS i 
 JOIN :leftQueries USING (node)  
WHERE i.end >= :start 
 AND i.value BETWEEN :Value1 AND :Value2  
UNION ALL 
SELECT id   //subquery (2) 
FROM lowerIndex AS i 
 JOIN :rightQueries USING (node)  
WHERE i.start <= :end 
 AND i.value BETWEEN :Value1 AND :Value2 
UNION ALL 
SELECT id   //subquery (3) 
 FROM lowerIndex  
 WHERE node BETWEEN :start AND :end
 AND value BETWEEN :Value1 AND :Value2 

Figure 7: Adapted RI-tree SQL query supporting a 
simple attribute 
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single contiguous tuple range sorted by (node, bound) 
that can be evaluated as in the original proceeding. 
Like there, we have to access q index ranges for evalu-
ating subquery (1) or (2), and one for subquery (3). 

• A (node, value, bound, id) index will not cause more 
disk accesses for subqueries (1) and (2) but the ac-
cessed disk areas are more dispersed hence reducing 
the positive effect of potential disk caches. Further-
more, for the Value-Interval Query, subquery (3) will 
cause additional overhead (factor i) as the interval 
predicate has to be evaluated before the value predi-
cate (for each point in the interval, the right value has 
to be found). 

• A (node, bound, value, id) index would be the worst 
choice: the simple selections are performed after proc-
essing the basic RI-tree predicates, so each result tuple 
of the interval evaluation has to be checked on the 
simple value. 

• For Range Queries, the indexes have to access q·r or 
q·n areas to evaluate subqueries (1) and (2). For sub-
query (3), the (node, value, bound, id) index behaves 
best for Range-Stabbing queries, having to access only 
a single index area. Subquery (3) of Range-Interval 
Queries can be evaluated by r or i accesses. 

As a first conclusion, Value Queries can be evaluated very 
efficiently by a (value, node, bound, id) index, requiring 
the same number of disk accesses as in the original pro-
ceeding without an additional value predicate. Now the 
question is if Range Queries can be further enhanced. We 
will address this issue in the next section.  

4.2 Improving Range Query Processing 

When using composite indexes for multiple attributes, a 
problem arises if a query contains range predicates on two 
or more of the indexed attributes. As the index is sorted 

first by one attribute and then by the other, all tuples satis-
fying the first predicate can be found in a contiguous disk 
area. However, all tuples also satisfying the second predi-
cate are scattered within this area and for each value of 
the first predicate's range there is an area containing final 
result tuples. 

To handle this sort of problem, space-filling curves as 
Z-order or Hilbert curves, for instance, have been success-
fully engaged for multi-dimensional indexing in recent 
years [11][17][10][4][25][24]. By mapping multi-dimen-
sional data to one-dimensional values, a one-dimensional 
indexing method can be applied. If space-filling curves 
are used, the mapping is distance-preserving, i. e. similar 
values of the original data are mapped on similar index 
data, and that for all dimensions. Thus, if the index data 
are clustered on disk, ranges of an indexed attribute will 
also be found in contiguous disk areas. 

 According to Figure 7, there are different cases where 
a subquery contains two range predicates and thus could 
eventually profit by a space-filling curve. When evaluat-
ing a Range Query, Subqueries (1) and (2) contain range 
predicates for the bound and value attributes. In the spe-
cial case of Range-Interval Queries, subquery (3) contains 
range predicates on the node and value attributes. Thus, in 
order to reduce the access cost, we consider space-filling 
curves on the attributes bound and value and on the attrib-
utes node and value, respectively (without jeopardizing 
the natural order on node and bound). In doing so, we 
receive two new composite indexes: 
• (node, {value, bound}) 
• ({node, value}, bound) 

where the attributes in curly braces denote the combined 
value that is received by applying the space-filling curve 
function on these attributes. The sort order of the single 
attributes of the (node, {value, bound}) index is depicted 
in Figure 9. 

Figure 10 shows the expected number of contiguous 
index ranges that have to be accessed when evaluating a 

Indexes {Node,Value} 
Bound 

Node 
{Value, Bound} 

Queries (1)/(2) (3) (1)/(2) (3) 

Value-
Stabbing 

q 
1 

1 
1 

q 
n 

1 
b 

Value-
Interval 

q 
1 

i 
1 

q 
n 

i 
b 

Range-
Stabbing 

r·q 
1 

r 
1 

q 
< r·n 

1 
< r·b 

Range- 
Interval 

r·q 
1 

< r·i 
1 

q 
< r·n 

i 
< r·i 

Figure 10: Number of contiguous index ranges for dif-
ferent query types and indexes based on space-filling 
curves. 

Figure 9: Sort order for a (node, {value, bound}) in-
dex 

node

va
lu

e

lower
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certain query type with the new indexes. It provides the 
following results: 
• Range Queries may profit by a (node, {value, bound}) 

index that can be used to save disk accesses for sub-
queries (1) and (2). On a value/bound-plane, the com-
bined values calculated by the space-filling curve are 
clustered in an r·n rectangle. Depending on the cluster-
ing behavior of the space-filling curve, the number of 
contiguous disk areas required to store the queried data 
is much below the upper limit of r·n. However, Sub-
query (3) will not profit by the space-filling index as 
there is no predicate on the bound attribute. 

• Subquery (3) of Range-Interval Queries may profit by 
a ({node, value}, bound) index. On a node/value-
plane, the combined values calculated by the space-
filling curve are clustered in an r·i rectangle. Depend-
ing on the clustering behavior of the space-filling 
curve, the number of contiguous disk areas required to 
store the queried data is much below the upper limit of 
r·i. However, Subqueries (1) and (2) will not profit by 
the space-filling index as there is no predicate on the 
node attribute. 

• Value Queries do not profit by the new indexes as 
there appear no subqueries containing two range 
predicates. 

The results show that space-filling curves may reduce disk 
accesses in certain cases but there does not exist a “uni-
versal” index that supports all queries to the same extent. 
Indeed, even different subqueries would require different 
indexes. We will focus to this aspect in the next section. 

4.3 Employing Index Mixes 

As pointed out in the previous sections, the desire to find 
a single index that is suited for all query types is hard to 
fulfil. If we abandon this attempt, we can try to find the 
best index for each query type. In most applications, the 
occurring query types are predictable and the best index 
type can be chosen accordingly. If the application requires 
different query types, we may create even several indexes 
to support each query in the best possible way. Using a 

common index interface of an object-relational database 
system to implement the proposed extensions, we can 
give hints to the optimizer on how to choose the appropri-
ate index. 

Figure 8 and Figure 10 indicate which index types 
may perform best for a certain query type. Value Queries 
are certainly best supported by a (value, node, bound, id) 
index, requiring the same access cost as in the original 
approach without an additional value predicate. For Range 
Queries, the best index cannot be definitely determined as 
the number of block accesses required to answer a query 
depends on the data and the behavior of the space-filling 
curve (if used). In particular, the different subqueries of 
Range Queries are best supported by different indexes. As 
these subqueries are independent of one another, the 
optimizer is also able to use different indexes. 

Based on that observation, we compile a list of best 
expected indexes for each subquery (Figure 11). For 
Range Queries, the results are based on the assumption 
that an application of space-filling curves provides posi-
tive effects regarding the disk accesses. This assumption 
gets confirmed by the experiments in the next section. 

Creating several different indexes for the same attrib-
utes may enhance response times for the different query 
types but also results in higher costs for index updates and 
storage requirements. As standard B+-trees are used for 
all indexes, estimating these costs is quite straightforward: 
Insertions and deletions for each tree are performed by 
O(logbn) I/Os on a database with block size b and n en-
tries. Storage costs depend on the number of key compo-
nents for each index. We will further investigate various 
index mixes for different types of queries in Section 5. 

4.4 Adapting the RI-tree Algorithms 

In this section, we explain how to adapt the original RI-
tree algorithms to support the indexing of an additional 
simple attribute. 

When using an index without a space-filling curve, 
only minor changes of the original procedures are re-
quired. The composite index is extended by the additional 
attribute and the query is adapted according to Figure 7. 
The preparation step for a query, i.e. collecting left- and 
rightQueries, remains unchanged. 

For indexes based on space-filling curves, the accord-
ing attributes of the original tables are mapped on a single 
value by the space-filling function first. Then the index is 
created on this calculated value and the remaining attrib-
ute. For evaluating the query, the transient tables leftQue-
ries and rightQueries have to be determined as before and 
then have to be recalculated according to the space-filling 
curve. The query has also to be transformed accordingly. 
In the following, we will explain these steps in more de-
tail for the general case of a Range-Interval Query using 
the indexes according to Figure 11. 

Queries Subqueries (1)/(2) Subquery (3) 

Value-
Stabbing (value, node, bound) (value, node, bound) 

Value-
Interval (value, node ,bound) (value, node, bound) 

Range-
Stabbing (node, {value, bound}) (node, value, bound) 

Range 
Interval (node, {value, bound}) ({node, value}) 

Figure 11: Best expected indexes for each subquery 
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Using a space-filling function sfc: T 2→T that maps 
two values of type T to a single value of type T, we first 
have to create the following composite indexes (cf. Figure 
11): 
• index1: (node, sfc(value, end), id) 
• index2: (node, sfc(value, start), id) 
• index3: (sfc(node, value), id) 

The space-filling values can be calculated in advance by 
adding a calculated column sfc to the original tables. In 
this case, the space-filling values are calculated on the 
insert of new tuples (after performing the necessary type 
mappings). 

Furthermore, we assume the existence of a function 
sfcRect:  T 4→2^T 2 that maps a rectangle defined by its 
coordinates (x1, x2, y1, y2) on the space-filling plane to a 
set of pairs (from, to) that represent the bounds of con-
tiguous sequences of the space-filling curve within the 
specified rectangle. Using this function, we can calculate 
the following transient tables with schema (from, to) for a 
given query with a specified range (val1, val2) and inter-
val bounds (start, end): 
• range1 := sfcRect(val1, val2, start, (2^h)-1) 
• range2 := sfcRect(val1, val2, 1, end) 
• range3 := sfcRect(start, end, val1, val2) 

Having also calculated the transient tables leftQueries and 
rightQueries in the usual way, we can compile the final 
query as presented in Figure 12. 

As an example, we present the evaluation of a Range-
Interval Query by means of index2. In Figure 13, the sam-
ple contracts table of Figure 3 is extended by two addi-
tional columns, one for the node and one for the sfc value 
calculated from the columns budget and start via z-order. 
Index2 is created by building a composite B-tree on (node, 
sfc, id). 

Given a Range-Interval Query with value range (1, 12) 
and a query interval (3, 6), range2 can be determined by 
applying the function sfcRect on the according rectangle 
(1, 12, 1, 6) that is depicted in Figure 14. There, a space-
filling curve on {budget, start} clusters the entries of the 
corresponding index. Each point in the figure represents 
the (budget, start) pair of a tuple in the database (with the 
white points showing the values of Figure 13), while the 
rectangle represents the specified ranges for budget and 
start within a query. As one can see, all qualifying tuples 
are found on three contiguous sequences on the space-
filling curve. In contrast, for an ordinary composite index 
on (budget, start) or (start, budget), we would have to 
read twelve or six sequences (i. e. the rectangle’s side 
lengths), respectively. So, in this case, using a space-
filling curve for the index would be favorable. 

5. Experimental Evaluation 
To analyze the performance of our approach, we imple-
mented the Relational Interval Tree and extended it by our 
new algorithms for the evaluation of Range-Interval Que-
ries. All experiments were executed on a dual Xeon/3 
GHz Server with 4GB main memory and U-SCSI hard 
drive (standard block size of 8KB). The new algorithms 
were implemented in Oracle10g using PL/SQL. 

For generating data, we used the TimeIT [12] soft-
ware, a package for testing and evaluating the effective-
ness of temporal query evaluation algorithms. The ex-

Figure 12: Modified SQL query using space-filling 
curves. 

SELECT id 
FROM index1 
 JOIN :leftQueries USING (node) 
 JOIN :range1 ON (sfc BETWEEN from AND to) 
UNION ALL 
SELECT id 
FROM index2 
 JOIN :rightQueries USING (node) 
 JOIN :range2 ON (sfc BETWEEN from AND to) 
UNION ALL 
SELECT id 
FROM index3 
 JOIN :range3 ON (sfc BETWEEN from AND to) 

Period No. 
Budget 
(m€) Start End 

Node Sfc(budget, start)

C1 2 1 5 4 4 
C2 5 2 9 8 50 
C3 10 8 17 16 221 
C4 6 14 19 16 149 

C5 8 21 26 24 186 

Figure 13: Sample contracts table with additional col-
umns for node and sfc-value 

Figure 14: Query rectangle for the sample contracts 
table
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periments were performed on various relations with dif-
ferent sizes and interval lengths (cf. Figure 15). In all ex-
periments, the bounding points of the intervals and the 
values lie in the domain of [1, 225-1]. Starting points and 
lengths of the intervals are uniformly distributed. 

We compared the performance of our new algorithms 
to the following techniques (Figure 16): 

Composite indexes. For our experiments we used 
compound indexes on the attributes value, start and end. 
We differentiated between two indexation sequences: 
(start, end, value) and (value, start, end). 

Intersection of interval lists. Separate evaluation of 
Interval and Value Queries by creating an Oracle B-tree 
on the simple attribute and two RI-tree indexes lowerIn-
dex, upperIndex on the intervals. 

Pipelining. Sequential evaluation of Value-Interval 
Queries by either preprocessing the Value Queries or the 
Interval Queries.  

R-Tree. We used the Oracle built-in R-tree, so no 
code had to be implemented here. The data, i.e. the inter-
vals combined with the attribute values are represented as 
lines in a 2-D space. 

Spatial RI-tree approach. We evaluated Value-
Interval Queries queries by means of the approach pre-
sented in [21]. 

To investigate the behavior of our newly proposed in-
dex techniques, we firstly performed experiments measur-
ing the access cost of the four different query types. 
Figure 17 to Figure 20 show the average results of 100 
queries for varying table sizes. 

As suspected in Section 4.1, for Value-Stabbing Que-
ries (Figure 17) the indexes (value, node, bound) and 
(node, value, bound) perform best, providing an optimal 
sort order for this kind of query. Value-Interval Queries 
(Figure 18) also profit most by a (value, node, bound) 
index, as expected. 

When considering Range Queries, other indexes come 
out on top. While the (node, value, bound) index performs 
well for Range-Stabbing Queries (Figure 19), the space-
filling version (node, {value, bound}) delivers slightly 
better results, though not significantly. To check our as-
sumption that a Range-Stabbing Query may profit from 
using both of these indexes (for different subqueries), we 

Figure 15: Parameters of the table/queries 

Table size n tuples 
Interval domain  [1, 225-1] 
Starting point distribution uniform in [1, 225-1] 
Length distribution uniform in [1, 225-1] 
Attribute domain [1, 225-1] 

no description abbr. 
1 Comp. index: (lower, upper, value) (LUV) 
2 Comp. index: (value, lower, upper) (VLU) 
3 B-tree and RI-tree: intersection B∩RI 
4 B-tree and RI-tree: pipelining B→RI 
5 RI-tree and B-tree: pipelining RI→B 
6 R-tree: 2D lines R-tree 
7 Spatial RI-tree: 2D lines SpatRI 
8 RI-tree: (value, node, bound, id) RI(VNB) 
9 RI-tree: (node, value, bound, id)  RI(NVB) 

10 RI-tree: (node, bound, value, id)  RI(NBV) 
11 RI-tree: ({node, value}, bound, id) H  RI({NV}B)h 
12 RI-tree: ({node, value}, bound, id) Z RI({NV}B)z 
13 RI-tree: (node, {value, bound}, id) H  RI(N{VB})h 
14 RI-tree: (node, {value, bound}, id) Z RI(N{VB})z 

Figure 16: Different types of indexes used for experi-
ments (H: Hilbert curve, Z: Z-order curve) 
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Figure 17: Value-Stabbing Queries: Access cost with 
varying table sizes
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Figure 18: Value-Interval Queries: Access cost with 
varying table sizes
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also performed measurements for this case. As Figure 19 
shows, we indeed receive clearly better results with a two-
index solution. Subqueries (1) and (2) are able to use the 
space-filling index, while subquery (3) adopts the normal 
(node, value, bound) index that is best suited for this case. 

For the general case of Range-Interval Queries (Figure 
20), the space-filling indexes show the best performance. 
The index ({node, value}, bound) achieves significantly 
better results than all other single-index solutions. When 
combining this index with a (node, {value, bound}) index, 
the number of I/Os can be further decreased. This corre-
sponds to the considerations of Section 4.3. 

We also checked the case when one of the query pa-
rameters (range or interval) is undefined. As one may 
expect, best results are achieved in this case for indexes 
where the unspecified parameter has a low “sort priority”.  

Moreover, we performed extensive experiments to in-
vestigate how access cost is influenced by varying the 
query parameters. In the following, all measurements re-
fer to a table size of 106. 

In the first two experiments, we examined Stabbing 
and Interval Queries by varying the length of the query 
range from 0 up to 50 percent of the attribute domain. 
Figure 21 shows the results for Stabbing Queries. While 
we performed experiments for each conceivable index 
combination of the newly proposed indexes, only the most 
interesting data, i. e. the most efficient index combina-
tions are presented. The question is, how many indexes 
are required to expect low access cost. In Figure 21, a 
combination of the three indexes (value, node, bound), 
(node, value, bound) and (node, {value, bound}) performs 
best, requiring the least number of I/Os. But Figure 21 
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Figure 19: Range-Stabbing Queries: Access cost with 
varying table sizes 
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Figure 20: Range-Interval Queries: Access cost with 
varying table sizes 
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also reveals that the access cost doesn’t increase signifi-
cantly if one of the first two indexes is omitted. Even a 
single index ({node, value}, bound) achieves good aver-
age behavior and may suffice if storage and update per-
formance are critical. In contrast, the (value, node, bound) 
index is not competitive for this case. 

Figure 22 shows similar results for Interval queries. 
Again, the threefold index combination (value, node, 
bound), ({node, value}, bound) and (node, {value, 
bound}) delivers best performance, but omitting the index 
(value, node, bound) doesn’t harm really. The best one-
index solution for this case is provided by the ({node, 
value}, bound) index, again. 

In the next experiment, we investigated how Range 
Queries behave for varying lengths of the query interval. 
Figure 23 depicts the results for interval lengths varying 
from 0 up to 50 percent of the interval domain. As in the 
previous cases, many indexes help to reduce access cost, 
but also smaller index sets deliver acceptable perform-
ance. As an exception, Value Queries are best supported 
by (value, node, bound) queries for any length of the 
query interval. 

For an overall comparison, we measured the access 
cost for a uniform distribution of the four query types. 
From Figure 24, we can read the following results: 
• The newly proposed techniques perform clearly better 

than the competing approaches. 
• The indexes enhanced by space-filling curves achieve 

significant improvements in performance. 
• Using index combinations also improves performance, 

especially when applied to a corresponding query mix.  

6. Conclusions 
Following the principle of relational indexing, the Rela-
tional Interval Tree (RI-tree) is an approved access 
method for interval data that is entirely built on top of the 
SQL interface of a relational database system. Based on 

the RI-tree, we propose various indexing schemes to sup-
port queries that contain selections on simple (e. g. num-
bers, strings) as well as interval-valued attributes. By in-
tegrating the simple attribute into the internal B-trees of 
the RI-tree and sorting the multi-dimensional index en-
tries according to space-filling curves, the simple attrib-
utes can be managed and queried in combination with the 
interval data. Our experimental comparisons with compet-
ing methods demonstrate the efficiency of this technique 
depending on the characteristics of the data and queries. 
When using several of the proposed indexes in combina-
tion, additional performance improvements are achieved. 
In our future work, we plan to extend the proposed tech-
niques to more complex queries and to develop cost mod-
els to predict the benefits of indexes for an evolving query 
workload. 
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