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Abstract

In recent years, many researchers have focused on
finding efficient solutions to the nearest neighbor
(i.e. NN) problem. While there have been many
efforts to find faster than linear scan processing
strategies for these tasks, there has been no suc-
cess at solving the problem for high dimensional-
ity.

‘While previous work shows that the problem can’t
be solved efficiently in general, we present a tech-
nique for either in-memory or secondary storage
that is guaranteed to perform well in the “good”
situations previously described. Furthermore, it
is the first NN strategy that allows a database
administrator to easily trade space for execution
time. In addition, the space/time performance
for a particular dataset can be easily predicted by
examining one characteristic the data. Finally,
there are variants of the strategy that perform far
better than the tested alternative techniques in
all tested scenarios.

1 Introduction

In recent years, many researchers have focused on finding
efficient solutions to the nearest neighbor (NN) problem,
defined as follows: Given a collection of data points and
a query point in a d-dimensional metric space, find the
data point that is closest to the query point. Particular in-
terest has focused on solving this problem in high dimen-
sional spaces, which arise from techniques that approxi-
mate (e.g., see [32]) complex data—such as images (e.g.,
[18, 37, 38, 28, 38, 30, 34, 21, 4]), sequences (e.g., [3, 2]),
video (e.g., [18]), and shapes (e.g., [18, 39, 34, 29])—with
long “feature” vectors. Similarity queries are performed
by taking a given complex object, approximating it with
a high dimensional vector to obtain the query point, and
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determining the data point closest to it in the underlying
feature space.

While there have been many efforts to find faster than
linear scan processing strategies for these tasks, there has
been no success at solving the problem for arbitrary high
dimensional workloads. The reasons for this lack of suc-
cess have, in the past several years, become more clearly
understood.

Indeed, in [13], we prove that there is no faster than lin-
ear scan processing strategy to solve the problem for a wide
variety of high dimensional workloads. We also establish
workload based performance bounds for the problem it-
self. They show that a performance limiting feature of the
problem is the tendency, in high dimensionality, of data
and query points to all become equidistant. This effect
can be summarized visually by examining the distribution
of the distances between data points and a typical query
point. We will call such distributions contrast distribu-
tions and graphs of such distance distributions contrast
plots.

This paper introduces several NN processing techniques.
These techniques are all predicated on a very important re-
quirement: that a random sample of the query distribution
is available at index build time. Exploiting this require-
ment, we create a class of NN processing techniques with
new properties and capabilities. For instance, the tech-
niques presented in this paper have performance that is
easy to characterize in terms of contrast distributions. In
addition, having sample query points allows us to integrate
redundancy into the index itself to easily trade space for
time; a tradeoff that is necessary to overcome problems
associated with dimensionality for range queries ([23]).
This redundancy, when used with a non-deterministic (but
highly accurate) variant of the techniques presented here,
allows unparalleled search performance on the “hard cases”
identified in [13]. Our techniques can be used with any
distance metric and speed up NN processing over both in
memory and disk based data.

The nature of the easily characterizable behavior of our
techniques has an interesting repercussion. With the addi-
tional assumption that query distribution follows data dis-
tribution, we can prove that contrast distribution spread
is the primary performance limiting feature of the nearest
neighbor problem. We do this by relating the behavior of
the strictly worst performing variant of our techniques to
the theoretical performance bounds established in [13] for
the problem.

In [13], we showed that as the spread of the contrast
distribution for a particular workload narrows, a sub linear
NN strategy for processing that workload becomes harder
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and harder to find, until a threshold is reached at which
there is no sub linear NN strategy. The strategy described
in this paper can be viewed as a constructive proof of
the implication proven in [13] going the opposite direc-
tion. When combined, the two results create an “if and
only if” relationship between contrast distribution spread
and attainable performance. There are two important as-
pects of this result, the first is that it establishes contrast
as not only a limiting factor, but the primary limiting fac-
tor of NN processing techniques in situations where data
and query distributions are equivalent. The second is that
it shows that the techniques presented in this paper per-
form according to the inherent difficulty of the problem
(i.e. there is no unnecessary “bad” behavior).

This paper is divided into 7 sections. Section 2 de-
scribes the two simplest and worst performing variants of
the algorithm. The better performing of these variants al-
lows one to trade some user controlled level of accuracy
for improved performance. Section 3 contains the high-
lights of our theoretical analysis of the worst performing of
the algorithm variants. Section 4 contains a description of
the best performing variant of our NN processing strategy.
Section 5 contains a performance analysis of all variants
of the algorithm presented in the previous sections while
Section 6 discusses related work. This paper finishes with
the conclusions in Section 7.

2 P-Sphere Trees

The query processing strategy presented in this paper in-
volves building and searching a structure called a P-Sphere
tree (probabilistic sphere tree). This structure is built us-
ing the entire dataset and assumes that a set of sample
query points () is available at index build time.

Note that in situations where query distribution follows
the data distribution, we can use a random sample of the
data points themselves as our sample query points. This
is frequently a valid assumption for high dimensional sim-
ilarity /matching problems. For instance, if we are trying
to match fingerprints or retina prints for building security,
queries will typically be a random sample of the people
that work in the building, whose fingerprints were used to
generate the database in the first place.

The structure will be built in such a manner that ap-
proximately some user specified percentage of the time, a
search of the structure will yield a provably (at query run
time) correct answer. More precisely, the user can specify
the 95% confidence interval for the percentage of the time
that a search of the structure yields a provably correct an-
swer. The narrower the interval, the longer index construc-
tion takes. From now on, we will describe the accuracy of
such trees as ugs9; accurate since the user can control a 95%
confidence interval around some desired level of accuracy
u.

When a search of the structure doesn’t yield a provably
correct answer, the next best strategy (possibly a linear
scan) will be performed. Thus, while we may sometimes
need to perform a search using some alternate, worse per-
forming technique, assuming there is acceptable contrast,
on average we will get much better performance.

2.1 The Anatomy of a P-Sphere Tree

All P-Sphere trees have the same basic two level structure
(see Figure 1). The top level is a single large node that
contains a series of <sphere descriptor, leaf page pointer>
pairs. Each leaf of the index contains all data points that
lie within the sphere described in the corresponding sphere
descriptor from the top level. All leaves cover the same
amount of data (not the same amount of hypervolume).
For instance, each sphere in Figure 1 covers LS data points.
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Leaf 1 Leaf m

Figure 1: Anatomy of a P-Sphere Tree

Note that since each leaf contains all points that lie
within a spherical subsection of the data space, spatial
overlap amongst the leaves may lead to redundancy. Also,
there is no guarantee that the entire data space will be cov-
ered by the sphere descriptors in the top level. As a result,
there is no guarantee that all data points of the original
data set will be in the generated P-Sphere tree.

2.2 Searching P-Sphere Trees

Q.- Proveable
NN NN

S Centerpoint

Q- Maybe
NN NN

S Centerpoint

NN could be here

Figure 3: Unprovable
Figure 2: Provable NN NN
The search algorithm for P-sphere trees is very simple
and involves finding the closest point to the query point in
the sphere whose center is closest to the query point. More
precisely:

1. Search the root node for the sphere/pointer pair <
Si, LP; > whose centerpoint is closest to the query
point Q.

2. Return the point Qnn in leaf L (pointed to by LFP;)
that is closest to Q.

In order to determine with certainty that the point gen-
erated from the algorithm above is the correct one, we de-
termine if S; contains the sphere C with centerpoint ) and
radius Distance(Q, @nn). If S; contains C, then we know
that there is no closer point in the dataset or it would have
been in L (See Figures 2 and 3). More precisely, the final
search algorithm is shown in Figure 4

2.3 Creating a P-Sphere tree

This section describes the manner in which a P-sphere tree
is generated from a dataset such that some specified ugsy
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1. Search the root node for the sphere/pointer pair <
S;, LP; > whose centerpoint is closest to the query
point Q.

2. Find the point Qu v in leaf L (pointed to by LP;) which
is closest to Q.

3. If S; contains the sphere with centerpoint @ and radius
Dist(Q,QnNnN), return Q.

4. Otherwise return the result using the next best strategy.

Figure 4: Deterministic P-Sphere Tree Search Algorithm

accuracy during search is met. Note that the width of the
CI is controlled by one of the algorithm inputs, | @ |, and
that the relationship between | @ | and CI is presented in
Section 2.3.1.

There are three parameters to adjust in the tree: the
fanout of the root, the centerpoints in the sphere descrip-
tors, and the leaf size. We will fix the fanout of the root
to be some constant greater than one. While we assume
in this section that the fanout is constant, it is, in fact,
a parameter that must be determined at index build time.
Chapters 3 and 5 contain a further discussion on the choice
of fanout. The centerpoints will be generated by taking a
random sample of the data set. This is useful for theo-
retical analysis as it implies that the sphere centerpoint
distribution follows the data distribution. Note that the
only parameter to determine is the leaf size. This param-
eter is the most difficult to determine. The problem of
determining leaf size can be summarized as follows:

Given a data set, sample query points, user specified
ugsy accuracy, and fanout and centerpoints of the final P-
Sphere Tree, determine the leaf size of the P-Sphere tree
such that the user specified ugsy accuracy is met.

The strategy we employ to determine leaf size involves
“reverse engineering” our tree to work correctly for query
distributions like the one we set aside from the original data
set. This is done by observing that for every query, there is
an associated leaf size that is just large enough, given the
centerpoints of the P-sphere tree, to return the provably
correct answer when searching the resulting tree. In other
words, there is an associated distribution of leaf sizes for a
given workload such that the area under the curve between
0 and a given leaf size LS is the expected accuracy of the
P-Tree with leaf size LS. We use our queries to sample
this leaf size distribution. Based on this sample and our
accuracy goal, we decide on an appropriate leaf size.

More precisely, the algorithm in Figure 5 empirically
samples the implicit leaf size distribution using the query
points as the basis of those samples. Note that the number
of queries determines the number of samples taken of the
distribution of leaf sizes and is the basis for the 95% con-
fidence interval for accuracy established in Section 2.3.1.

The first loop simply calculates the nearest neighbor of
every query in a manner that insures we make only 1 pass
over the data. This is useful in reducing I/O if your query
points and their nearest neighbors fit in memory, which is
typically the case.

The second loop determines, for each query, the leaf
that would have been searched had that query been run
on the P-Sphere tree being constructed. In addition, the
algorithm determines the minimum radius of the found leaf
needed to ensure that the leaf, when searched, contains the
provably nearest neighbor for that query.

The last loop simply counts, for each query, the number

1. Initialize all Qn N
2. For each data point D
(a) For each query point Q
i. If Qnn is further from @ then D
A. QNN =D
3. For each query Q

(a) Qcenter = the center point of the leaf closest to

(b) QRadius = DiSt(QCenter: Q) + DiSt(Qv QNN)
4. For each data point D
(a) For each query Q

i. If @ falls inside the sphere described by
Qcenter and QRadius
A. Increment the Qreqfsize

Figure 5: Determining Leaf Size Distribution

of data points that lie within the sphere whose centerpoint
is Qcenter and radius Qrodivs.- Once again, the loop is
performed such that one pass over the data is all the I/O
typically needed to perform the computation.

Upon termination of the algorithm, there is associated
with each query a leaf size (¢reqfsize) Which when divided
by the number of data points, is a sample of the leaf size
distribution discussed above. To meet the accuracy goal,
we determine the correct leaf size of our P-Sphere tree by
sorting the calculated leaf sizes and picking the one whose
percentile matches the user defined level of correctness. For
instance, if there were 100 queries, and the user wanted
90% accuracy, we would sort the 100 leaf sizes and pick
the 90th leaf size in the list.

We now have all the param-
eters needed to build our P-
Sphere Tree. The first level of
the tree is trivial to build since it
) simply consists of <centerpoint,
pointer> pairs. The pointers to
appropriate size chunks of disk
space can be set up ahead of
time since the sizes of the chunks
are known in advance (See Fig-
ure 6).

Setting up the second level
is harder. Since each leaf must
contain the LS closest data
points to that leaf’s centerpoint,
a scan of the data must be made
in order to calculate that list.
Figure 6: Layout of In addition, we want to avoid as
a P-Sphere Tree in a many disk I/Os as possible since
File the entire tree is not likely to fit
in memory. As a result, we must calculate these leaves a
group at a time, such that for each group, one pass is made
over the data set. During these passes, a priority queue for
each leaf with LS entries is used to keep track of the LS
closest points encountered during the pass. The number
of leaves calculated during each pass is chosen to minimize
construction time. More precisely, Figure 7 shows how the
tree is constructed from its parameters.

Sphere 1
Root :

Sphere F

Leaf 1

Lesf F

The full algorithm (making use of the previously listed
algorithms) for computing the P-Sphere tree is given in
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1. Write out the first level

2. For each group of leaves

(a) Populate the priority queues associated with the
current group’s leaves with the first LeafSize
data points

(b) For each data point D beyond the first LeafSize
data points

i. For each leaf L within the current group
A. If D is closer to the centerpoint of L
than the furthest point in the associated
priority queue Q
e Remove the furthest point from @
e Insert D into @

(c) Write out the priority queues to the appropriate
places on disk

Figure 7: Building the Actual P-Sphere Tree
Figure 8.

1. Set aside some random number of data points to be
query points, removing them from the data point list.

2. Randomly sample the data points to determine leaf cen-
terpoints

3. Determine, for each query, Qreafsize (See Figure 5)
4. Make a sorted list LeafSizeList out of all QLeqfsize
5. LeafSize = LeafSizeList[UserAccuracy * ListSize]
6. Write out the tree (see Figure 7)

Figure 8: Full Algorithm for P-Sphere Tree Construction

2.3.1 Determining the Number of Queries

One important parameter to the P-Sphere tree algorithm
is the number of query points | @ | used to build the tree.
This number determines the confidence interval for the ac-
curacy of the resulting P-Sphere tree. This confidence in-
terval is established by mapping the problem into a classic
problem in probability theory.

This mapping is the result of thinking of every query as
a coin flip, where the coin comes up heads if the P-Sphere
tree search algorithm results in a provably correct answer,
and comes up tails if it doesn’t produce a provably correct
answer. We can then think of the confidence interval for
the P-Sphere tree accuracy as the confidence interval for
the bias of a coin which was flipped as many times as we
have queries, and resulted in the user specified accuracy
percent heads.

Another way to state the problem is that we want a
confidence interval on the p-value of a Bernoulli process
that was independently sampled as many times as we have
queries. More precisely, if p is the user specified accuracy
goal (and also, as a result, the estimator for the likelihood
of success for the coin flip), the 95% confidence interval for
the actual accuracy is approximately

et z\/’% [14] W

Note that this analysis will apply to all variants of P-
Sphere trees.

3 Theoretical analysis of Deter-
ministic P-Sphere Trees

This section contains highlights from the theoretical anal-
ysis of deterministic P-Sphere trees found in [22]. For ease
of reading, all references in this section to P-Sphere trees
are, more specifically, deterministic P-Sphere trees. In this
analysis, the overall behavior of P-Sphere trees is described
by examining the effect of datasets on the parameters of P-
Sphere trees that have a known level of accuracy (not just a
CI). Among the qualities examined are run time and space
requirements as well as various upper and lower bounds.
Note that these results apply equally to both CPU and
disk costs.

3.1 Contrast Plots

The contrast plot of a query with respect to a dataset is
a histogram of distance between points in the dataset and
that query point. A plot of the integral of the function in
a contrast plot is the cumulative contrast plot. Normal-
ized contrast plots are contrast plots where distances are
normalized so that the distance to the nearest neighbor is
1. For instance, the normalized contrast plot displayed in
Figure 9 indicates that half the points in the dataset are
less than twice as far as the nearest neighbor.

Note that contrast plots are constructed about a par-
ticular query point and are therefore unique to each query.
As a result, every workload has an associated distribution
of contrast plots. This distribution is implicitly sampled
in P-Sphere tree construction by using multiple queries to
determine leaf size. It is useful to note, however, that [13]
shows that as the workload becomes harder and harder to
index, the distribution of contrast plots converge to the
same constant distribution.

3.2 Analysis of the P-Sphere Tree with
Respect to Contrast Plots

Area=0.5

o

8 | NN Distance Furthest Data Point
5

§°7

3

w

1 2 3

Distance

Figure 9: Sample Contrast Plot

Interestingly, if we make the simplifying assumption
that all queries have a contrast plot identical to some “typ-
ical” contrast plot, the contrast plot is enough to precisely
determine the median space and time behavior of P-Sphere
trees applied to that workload. While such an analysis is
not strictly accurate (because of the simplifying assump-
tion), it lends much insight into the conditions under which
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this algorithm does and does not perform well. In addi-
tion, the upper and lower bounds described in this paper
are completely accurate (the simplifying assumption is not
needed).

3.2.1 General Space and Time Analysis

Since the fanout of the P-Sphere Tree is fixed at index con-
struction time, the only parameter that determines space
and time is the leaf size. Determining the leaf size is the
purpose of Lemma 1. In this lemma, we assume that we
are given the top level of a P-sphere tree, and a level of
accuracy that we meet exactly (not a CI), and wish to
determine leaf size.

In this lemma, we construct a cumulative distribution
F(z), which is the percent of data which is at most = dis-
tance away from a particular query point. Note that this
function corresponds to a cumulative contrast plot. As
mentioned earlier in this chapter, we will make the simpli-
fying assumption that all random query points @ produce
identical contrast plots, and therefore, F'(z) is independent
of @. While this is not generally true, the resulting anal-
ysis gives us insight into the relationship between contrast
plots and leaf sizes. The fact that different queries have
different contrast plots is a second order averaging effect
that happens “on top of” the one described in this analy-
sis. Furthermore, experimental results in [13] found that, in
practice, contrast plots do not vary widely amongst query
points.

Lemma 1 Given:

e A dataset D with n datapoints.

e A P-Sphere tree T over D with fanout m (we assume
in this proof that each of the m centerpoints were
sampled with replacement) which returns the prov-
ably correct answer (u¥100)% of the time and whose
leaf size is S percent of the entire dataset.

o A random gquery point Q.

o A set of cumulative distributions Fgo(x), such that
for a particularly query point Q, Fg(z) equals the
percent of data which is at most x distance away from
Q. Because of an assumption we make later, Fo(x)
is identical for any assignment of Q. We will there-
fore refer only to F(x), which is the distribution for
any assignment of Q.

e A random wvariable Bc, or mearest bucket center-
point, which s, by definition of the P-Sphere tree
algorithms, the closest of m points sampled from the
original dataset.

o NN, the nearest neighbor of Q, which is DMIN dis-
tance away from Q.

and assuming that Q and F(z) are independent, the leaf
size S of T as a fraction of the total dataset is

F(F'(1—[1—u]"™) + DMIN) (2)
With the above lemma, we can now produce the main

result of this theoretical analysis, which is the following
theorem about the behavior of P-Sphere Trees:

Theorem 1 Given all assumptions and symbol definitions
of Lemma 1, the space/time (tree search time) requirements
(as a fraction of linear scan space/time) for the P-Sphere
tree (disregarding space/time overhead incurred by stor-
ing/reading pointers in the root) are:

Space = % + S *m, Time' = % + S, (3)

S=FF1-[1-uY™)+ DMIN) (4)

Furthermore, the best possible space/time (tree search)
behavior of P-Sphere trees over all datasets (assuming no
duplicates) is:

Space = %+S*m, Time = %+S, S=1-[1—um™

(5)
Also, the worst possible space/time behavior of P-Sphere
trees over all datasets is:

Space:%—l—m, Time=%+1, S=1 (6)

3.2.2 Leaf Size and Contrast Plots

It is clear from the above theorem that leaf size is the
determining factor of overall P-Sphere Tree behavior. It is
interesting to note that the formula for leaf size,

S=FF'1-[1-4"™)+ DMIN) (7)

Areafrom Sample Size

Areafrom Dataset

Fraction of Data
o

Normalized Distance

Figure 10: The affect of DMIN on Leaf Size

can be intuitively understood in terms of normalized
contrast plots. One way of interpreting the above ex-
pression is that the leaf size is 1 — [1—u]"/™+ the
area under the curve of the normalized contrast plot from
1—[1 —u]*™ into the plot and spanning the subsequent
interval of size 1(See Figure 10).

For instance, an example contrast plot that would result
in the minimum possible leaf size, 1 —[1 — u]*/™) is shown
in Figure 11.

In this example, the data is divided into clusters. There
is the cluster which contains the query point that corre-
sponds to the first bump in the plot. The rest of the clus-
ters are contained in the second larger bump. There are
two interesting properties of these bumps:

INote that this equation is tree search time only and does
not include the time for using an alternative strategy when nec-
essary.
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Fraction of Data

1 é 10
Normalized Distance
Figure 11: Contrast Plot of Clustered Data
e The first bump has area under the curve 1 —
[1— u](l/ m)

e The distance between bumps is larger than 1.

As a result of the above two properties, the addition of
DMIN to F~*(1—[1 — u]*/™) has no effect on the value
of F, which is unchanging in the interval between the 2
bumps.

Overall, it is easy to see that the determining factor
of leaf size is the area under the curve of the normalized
contrast plot of a certain interval of size 1. Thus, the leaf
size is determined by the spread of the normalized contrast
plot in that region.

3.3 ND P-Sphere Trees

The P-Sphere trees discussed above find the provably cor-
rect answer with wugyy accuracy. While this approach is
useful if one always needs the correct answer, there are
many cases where the exact answer is not always needed.
In these cases, it is enough to know that with ugsy ac-
curacy, the algorithm returns the correct answer, but cor-
rect and incorrect answers can not be distinguished by the
search algorithm.

For instance, if we are solving an approximate matching
problem such as identifying matching fingerprints, we can
compare the actual fingerprints as part of a postprocess-
ing step to determine correctness outside the algorithm.
Furthermore, if we're performing some kind of similarity
heuristic (document, image, sound), being correct most of
the time is typically sufficient.

We will refer to P-Sphere trees which return the un-
provably correct answer close to some specified percent-
age of the time as ND (non-deterministic) P-Sphere Trees.
The method of construction is straightforward. The only
difference between the construction of deterministic P-
Sphere trees and ND P-Sphere Trees is that, for each
query, we determine the leaf size needed to return the
correct answer, not the provably correct answer. Thus,
in terms of the algorithm in Figure 5, QRradius should be
just large enough to include Qnn, but no larger. Thus,
QRadius = Dist(Qcenter, @nn). The rest of the algorithm
remains unchanged.

The only change to the search algorithm is that we re-
move the verification step that determines if the answer is
provably correct and the subsequent alternate strategy.

Observe that every deterministic P-Sphere tree is also
an ND P-Sphere tree with differing accuracy and vice-
versa. This is obvious when one considers that determin-
istic P-Sphere trees frequently return correct answers that
can’t be proven correct. In addition, ND P-Sphere trees

will sometimes return the provably correct answer, but not
very often. In fact, the only difference between the two
types of P-Sphere trees is the size of the leaves. ND P-
Sphere trees of some given accuracy have smaller leaves
than a deterministic P-Sphere tree of the same accuracy.
Thus the space and time performance of ND P-Sphere trees
is strictly better than P-Sphere trees given the same level
of accuracy over the same data.

Note that since this strategy is a strict performance im-
provement over deterministic P-Sphere trees, all the theo-
retical statements we made about deterministic P-Sphere
trees are upper bounds for ND P-Sphere trees.

4 Pk-Sphere Trees

While P-Sphere trees are simple, and as a result, lend
themselves to analysis, there are variants of the basic algo-
rithm that are more complex but are strictly and signifi-
cantly more efficient. The particular variant of determinis-
tic and non-deterministic P-Sphere trees discussed in this
section involves maintaining the ugsy accuracy discussed
in the previous section using a slightly different search al-
gorithm.

4.1 ND Pk-Sphere Trees

In the original ND search algorithm, we simply returned
the closest point in the closest leaf. In the ND Pk-Sphere
tree search algorithm, we instead return the closest point
in the k closest leaves where k is a given constant. More
precisely, the search algorithm becomes:

1. Search the root node for the k sphere/pointer pairs
< Si, LP; > whose centerpoints are closest to the
query point Q.

2. Return the point Qnn, the point closest to @
amongst the points in the leaves pointed to by the
entries found in the previous step.

While the change in the search algorithm is simple, the
resulting changes in the tree construction are more com-
plex. In particular, the algorithm shown in Figure 5, which
determines, per query, the leafsize needed to return the
correct answer for that query is significantly more compli-
cated. The new version of this algorithm will now deter-
mine, for each query, the size of the leaf, amongst the k
closest, that can best accommodate the nearest neighbor
of the current query. More precisely:

1. Initialize all Qn N

2. For each query point @

(a) QLeafsize =n
(b) For each of the k closest leaves L

i. LRadius = DiSt(LCenteryQNN)
ii. If (leafsize of L assuming radius LRradius)
< QLeafSize
® QrLeafsize = Size of L assuming radius
LRradius

Of course, there is one aspect of this algorithm that is
more complex than it appears. Calculating the size of L
assuming radius Lpeq;us 1S @ very compute intensive task.
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We will therefore create, for each leaf, a histogram of the
dataset with respect to distance from the leaf. These his-
tograms are used to estimate leafsizes given radii. A more
precise description of the search algorithm can be found in
Figure 12.

1. Initialize all Qn N
2. For each leaf L

(a) Create a histogram Ly ;s of distance to Loenter
of the dataset.

3. For each query point Q

(a) QLeafsize =n
(b) For each of the k closest leaves L

i. LRadius = DiSt(LCentera QNN)
ii. If (estimated (using Lp;s¢) leafsize of L as-
Suming radius LRadius) < QLeafSize
® QLecafSize = estimated size of L assum-
ing radius LRgdius

Figure 12: Determining Leafsize Distribution for ND Pk-
Sphere Trees

5 Performance Analysis

This section contains a series of experiments that test the
behavior of P-Sphere trees and the variants described in
this paper. These experiments are used to obtain an un-
derstanding of the following issues:

e The effect of fanout for all P-Sphere tree variants on
space/time performance.

e The effect of k for PK-Sphere tree variants on
space/time performance.

e The performance of the fastest P-Sphere tree vari-
ants on low contrast data.

e How the variants of P-Sphere trees compare to ex-
isting techniques on real data.

To address the first three issues, we used synthetic
datasets. For these datasets, we intentionally chose the
most difficult datasets to index. All datasets were created
using identical and independently distributed dimensions,
which is a very difficult case to handle ([13]). The data
set size was 100,000 tuples. Note that larger datasets per-
form better than smaller ones ([13]), so the really difficult
datasets to handle are the smallest ones. In all experi-
ments, various parameters of the various types of trees were
tested, and dimensionality of the dataset was varied. Space
and search time numbers were collected for each combina-
tion of variables.

To address the last issue, we measured the performance
of P-Sphere trees as compared to the performance of the
SR-Tree([25]) for two real datasets. One of these datasets
was also used to evaluate density based indexing in [24].
We therefore include their results in this paper. In these
experiments, we were able to beat both alternative strate-
gies’ query times by approximately a factor of 20.

For experiments using synthetic data, in memory query
times were measured (although the number of seeks if these
had been I/O times is easily predicted as the number of
leaf pages searched+1), while I/O times were measured for
the real datasets. This allowed us to examine the affect

of seeks (frequently the dominating component of I/O per-
formance) independently from the affect of contrast on leaf
sizes.

5.1 Varying the fanout of P-Sphere
Trees

Effect of Fanout on P-Sphere Tree Time Improvement
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Figure 13: Effect of fanout on time for P-Sphere Trees

The experiments in this section were designed to test
the effect of varying fanout for deterministic and nonde-
terministic P-Sphere Trees. In these experiments, an ac-
curacy goal of 95% was used for 1000 queries. Note that
performance in this section is in terms of in-memory perfor-
mance. The only difference between in-memory and disk
performance is the addition of a seek plus latency for each
leaf being searched (assuming the root stays in memory).
Note that a linear scan of the data on disk also results in
one seek plus latency.

While the experiments on deterministic P-Sphere trees
indicate that using deterministic P-Sphere trees for
medium to high dimensionality is impractical, they are pre-
sented to highlight the effectiveness of the nondeterministic
algorithms as well as the value of searching multiple leaves.
The importance of P-Sphere trees lies in their theoretical
value. They provide upper bounds (for all P-Sphere tree
variants) that follow the inherent difficulty of the indexing
problem.

Figures 13 and 14 show the effect of varying fanout on
nondeterministic P-Sphere trees on time and space respec-
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Figure 14: Effect of fanout on space for P-Sphere Trees
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tively. There are several interesting features.

In Figure 13, which shows time improvement relative to
linear scan, increasing leafsize helps for a while, but begins
to have a negative impact after a certain point. This is
especially true for lower dimensionality. At first, this seems
odd since we know that increasing the fanout will reduce
the leafsize, and hence the subsequent scan of the leaf. But
we must remember that, especially for low dimensionality,
the leaf sizes are very small, and begin to be dominated
by the time to search the root, which grows linearly with
leaf size. the highest dimensions are less affected since the
leaves are very large in all cases, and the root only grows
in these experiments to one tenth the size of the dataset.

Figure 14, which shows space blowup relative to the
original dataset, is very easy to interpret. Basically, in-
creasing fanout always increases overall size, although very
slowly in low dimensionality and very quickly in high di-
mensionality.

Effect of Fanout on P-Sphere Tree Time Improvement
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Figure 15: Effect of fanout on time for ND P-Sphere Trees
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Figure 16: Effect of fanout on space for ND P-Sphere
Trees

Figures 15 and 16 show corresponding graphs to the
previous two for ND P-Sphere trees. Note that the overall
behavior is identical, except that both space and time are
considerably improved for higher dimensions. In particu-
lar, examine the time improvement of the 30 dimensional
case in Figure 15. In this case, we are actually still achiev-
ing a factor of 8 speedup over linear scan! Even for the 45
dimensional case, we still achieved a factor of 3 speedup
over linear scan. This is very impressive considering that
other techniques fail to beat linear scan at around 10 di-

mensions.

For instance, [40] provides us with information on the
performance of both the SS tree and the R* tree in finding
the 20 nearest neighbors. Conservatively assuming that
linear scans cost 15% of a random examination of the data
pages, linear scan outperforms both the SS tree and the
R* tree at 10 dimensions in all cases. In addition, in [25],
linear scan vastly outperforms the SR tree for all synthetic
datasets of dimensionality greater than 10. Lastly, in [15],
performance numbers are presented for NN queries where
bounds are imposed on the radius used to find the NN.
While the performance in high dimensionality looks good
in some cases, in trying to duplicate their results we found
that the radius was such that few, if any, queries returned
an answer.

While the degree to which we beat other techniques in
query time is impressive, there is a down side. Unfortu-
nately, time improvement isn’t the only factor. Examine
the blowup in space for the same 30 dimensional case (Fig-
ure 16). There is approximately a 100 to 200 times increase
in storage requirements to achieve this 8 fold increase in
performance. The 45 dimensional case is even worse, with
a space blowup of nearly 800. Fortunately, the best per-
forming variant of P-Sphere Trees, ND Pk Sphere Trees,
will address this issue.
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Figure 17: Effect of k on time for ND Pk-Sphere Trees
with Fanout 1000
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Effect of k on ND Pk-Sphere Tree Leaf Size
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Figure 19: Effect of k on Leaf Size for ND Pk-Sphere Trees
with Fanout 1000

5.2 The Performance of Pk-Sphere
Trees

This section examines the performance of ND Pk-Sphere
trees, the best performing NN technique described in this
paper. The experiments involved varying fanout and k.
Since the overall effect of fanout on these trees was identical
to the P-Sphere trees described in the previous section, we
will simply show the effect of varying k for two different
settings of fanout.

The results for the first setting of fanout, 1000, are
shown in Figures 17 and 18, which show the impact of k£ on
time and space respectively. Note that for low dimensional-
ity, k has little impact on space while having a detrimental
impact on time. As dimensionality increases, however, the
detrimental impact that £ has on time becomes much di-
minished. In addition, for higher dimensionality, £ has an
extremely beneficial effect on space.

The reasons behind such behavior are more obvious
when one considers Figure 19, the effect of k on leaf size.
While in low dimensionality, increasing k has little effect
on leaf size, in high dimensionality, increasing k dramati-
cally reduces leaf size. As a result, in low dimensionality,
increasing k has little impact on space, but requires us
to search more leaves, resulting in poor search times. In
higher dimensionality, however, increasing k dramatically
reduces leaf size. As a result, searching additional leaves
incurs little penalty since the leaves become smaller, but
overall space becomes greatly reduced.

The results for a fanout of 3000, shown in Figures 20,
21, and 22 are very similar to those for a fanout of 1000,
except that the larger fanout resulted in smaller leaf sizes.
For low dimensionality, the savings in space and time due
to smaller leaves was dominated by the increase in the num-
ber of leaves and the increase in the size of the root respec-
tively. As a result, neither overall space nor total query
time improved. For higher dimensions and high values of
k, however, the increase in fanout resulted in a noticeable
improvement in time with a slight penalty for space, re-
sulting in a better overall space/time tradeoff.

Figure 20: Effect of k on time for ND Pk-Sphere Trees
with Fanout 3000
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Figure 21: Effect of k on space for ND Pk-Sphere Trees
with Fanout 3000

5.3 P-Sphere Tree Performance on
Real Data

This section describes the performance of the three variants
of P-Sphere trees on two real datasets. In each case, the
space and time performance were measured against data
set size and linear scan respectively. Note that time per-
formance in this section refers to the I/O time (including
seeks) for running the queries cold. In all experiments, an
accuracy level of 95% was used with 1000 queries. Note
that the number of queries used was enough to obtain very
close to 95% accuracy (£ 1.5%). The obtained results are
also compared to the SR-Tree [25] applied to the same
dataset.

To determine the best setting of root fanout, all settings
of fanout between 1000 and 3000 were tested at intervals
of 100. The results of varying k are discussed individually
for each dataset.

The first dataset was the astronomy dataset used with
the probabilistic nearest neighbor processing technique de-
scribed in [24]. As a result, we show their performance
results for an accuracy level of 95%. This dataset is a 29
dimensional dataset with over half a million rows. The re-
sults are shown in Figure 23. Note that the speedups over
linear scan are considerable. In addition, ND P-Sphere
trees beat both alternative strategies by a factor of 20 to
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Figure 22: Effect of k on Leaf Size for ND Pk-Sphere Trees
with Fanout 3000
30 for query time.

Technique Blowup | Speedup over LS
P-Sphere 40 52
ND P-Sphere k=1 8 120
Density Based Indexing 1 6.6
SR-Tree 1.4 6.4
Figure 23: Performance Results for Astronomy Data
Technique Blowup | Speedup over LS
P-Sphere 98 7.5
ND P-Sphere k=1 13 27
ND P-Sphere k=2 9 19
ND P-Sphere k=3 8 15
ND P-Sphere k=4 7 12
SR-Tree 1.5 .84

Figure 24: Performance Results for Color Histogram Data

The second dataset was a dataset derived from color
histograms of images. This dataset is a publicly available
dataset available from the University of California at Irvine
Machine Learning Repository. This dataset has 32 dimen-
sions and nearly 70,000 tuples. As we can see from the re-
sults in Figure 24, this is a difficult dataset to index. This is
obvious from the space blowup versus query speedup of the
deterministic P-Sphere tree. Despite this, we still achieved
nearly a factor of 30 speedup over linear scan, and more
than a factor of 30 over the SR-Tree.

Observe that the SR-Tree was outperformed by linear
scan. It is interesting to note that the SR-Tree managed
to prune the search space to less than 10% of the dataset,
but that the cost of performing one seek per node visited
so dominated the cost expression, that the pruning was
irrelevant. As the gap between sequential versus random
disk throughput widens (as it has dramatically done for
the last 10 years), the tendency for the number or seeks to
determine disk throughput will strengthen.

The color histogram dataset clearly shows the benefits
of using a probabilistic search algorithm. Both space and
time were improved considerably over the deterministic
case. In addition, increasing k leads to an overall reduc-
tion in both space blowup and speedup. The decrease in
speedup was caused by the domination of the seek asso-
ciated with accessing each leaf. In this particular case,
the actual amount of data accessed as k increased hardly
changed. Thus, for a larger sample of this dataset, where
the cost of scanning the leaf dominates the seek, increasing
k would have little effect on speedup for small k. For this
particular sample of this dataset, one should use the lowest

setting of k for which the space blowup is acceptable.

While it is difficult to determine exactly how other tech-
niques such as X-Trees([11]) and R*-Trees([7]) would have
performed on these datasets, it is worth noting that the
color histogram dataset was an example of a low contrast
dataset, and was roughly equivalent in contrast to a 15
dimensional 1 million tuple iid uniform dataset. Alter-
native techniques are known to perform poorly on such
datasets. In addition, the performance studies in [25] and
[11] present evidence that R*-Trees perform significantly
worse than both SR-Trees and X-Trees, and that SR-Trees
and X-Trees are within a factor of 2 of one another. It is
therefore likely that we would have beaten both X-Trees
and R*-Trees by at least an order of magnitude.

6 Related Work

There are many processing strategies from the database
community for tackling the high dimensional nearest neigh-
bor problem. These include [40, 11, 25, 15, 10], all of which
were designed with low contrast situations (high dimen-
sionality) in mind. By making use of the assumption that
sample query points are available at index construction
time, the algorithms presented in this paper far outper-
form these strategies (for low contrast cases), all of which
are beaten by linear scan around 10 dimensions ([13], [36]).
Also, none of them provide asymptotic optimality guaran-
tees for the important case where query distribution follows
data distribution.

[16] is of interest in that they provide informal ar-
guments that unnormalized contrast plots are important
in evaluating the difficulty of NN processing on a given
dataset. They also introduce a NN processing strategy for
in-memory NN query processing. They significantly re-
duce the number of distance computations in medium to
low contrast situations, but point out that the technique
is not really suitable for disk based searching. This seems
likely given that the behavior of the stucture would be very
seek time dominated.

A processing strategy called the VA-File ([36]) achieves
improvements over linear scan, even on low contrast
datasets, by using a lossy compression technique on the
entire dataset. Note that this strategy is complementary
to ours and could be used on each leaf in a P-Sphere tree
to further improve performance.

There has recently been interest in hashing based tech-
niques for determining approximate nearest neighbors ([33]
and [1]). Unfortunately, all available experimental results
are for relatively high contrast situations, providing no in-
sight into the cases that are truly difficult to index. In
addition, their notion of approximation requires the user
specified error criteria to decrease with contrast to main-
tain a constant level of discrimination between data points.
For instance, if we used their hashing technique to deter-
mine one of the five closest data points to a random query
point, the necessary level of user specified error would de-
crease with contrast. Thus there is a dependence between
contrast and user specified error that is not made explicit
in their theoretical statements about overall behavior.

The nearest neighbor processing technique presented in
[31] is noteworthy in that they use a notion of approxi-
mation (returning the correct answer some percentage of
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the time) similar to the one presented in this paper. Un-
fortunately, they present no precise way of controlling or
predicting the level of accuracy for a particular dataset. A
precise comparison between the effectiveness of their tech-
niques and ours is difficult since they do not present any
information about the behavior of their techniques on iden-
tical and independently distributed data.

[24] also uses a notion of approximation similar to the
one presented in this paper. Their approach consists of
modeling the data as a mixture of Gaussians. This model
guides the construction of their data subdivision (distribu-
tion based rather than space based), and ultimately guides
their search algorithm. In many ways, the difference be-
tween our approaches can be summarized as sampling (our
approach) versus modeling. There are, however, further
important differences between their work and ours. For
instance, we leverage redundancy to improve performance.
In addition, dataset distribution does not affect the confi-
dence interval for our accuracy. We also relate our results
to theoretical bounds established on the overall problem
[13], and not just to a specific kind of workload ([24] evalu-
ate their approach for clustered datasets). Finally, for the
same dataset with the same level of accuracy, ND P-Sphere
trees were nearly 20 times faster with a space blowup of 8.

The computational geometry community has also been
interested in the nearest neighbor problem and has discov-
ered various query processing strategies [5, 6, 9, 12]. Unfor-
tunately, none of these techniques were designed with low
contrast (high dimensionality) in mind. As a result, while
some of them perform quite well and are well understood
in 2 or 3 dimensions, they perform very poorly in higher
dimensionality. In cases where upper and lower bounds are
available, there are constants that scale exponentially with
dimensionality. One noteworthy technique from this com-
munity was published in [17]. Like P-Sphere trees, they
use redundancy and a random sample of query points at
index build time. Their structure is, however, quite dif-
ferent and would require many more seeks than P-Sphere
trees while searching. They also show that for fized dimen-
sionality, their technique scales logarithmically with the
number of data points. But like other techniques from the
computational geometry community, there are constants
in the bounds that scale exponentially with dimensional-
ity. It is worth mentioning that their search time bounds
become asymptotically linear as the spread of the contrast
distribution becomes negligible. However, since there are
no published performance results for this technique, it is
impossible to compare their strategy directly to ours.

There has been much work recently on trying to capture
the properties of a high dimensional dataset that makes
various forms of query processing, including nearest neigh-
bor, difficult [20, 8, 19, 27, 13]. Of these, only principal
components analysis, which led to the TV-Tree ([27]), has
resulted in any new query processing techniques. It is easy
to find situations, however, where principal components
analysis fails to recognize properly whether datasets are
hard to index. As a result, the TV-Tree is not guaranteed
to perform well in all situations that P-Sphere Trees are
guaranteed to perform well. An interesting piece of con-
current related work, ([26]), relates fractal dimensionality,
a concept very similar to contrast, to the performance of
NN queries on R-Trees. They show that under certain con-
ditions, the performance of the queries is directly related

to the fractal dimensionality.

Perhaps the most relevant piece of related work is [13],
which introduced the concept of contrast plots. In ad-
dition, they established asymptotic bounds on the overall
problem that match the behavior of our own strategy. This
is powerful evidence that the type of strategy presented in
this paper is a promising new approach to the problem in
general. [35] is notable in that it further develops the ideas
in [13] by relating contrast to concentration of measure.

7 Conclusions

This paper has introduced several exciting new nearest
neighbor query processing techniques, that by making use
of the assumption that a random sample of the query dis-
tribution is available at index build time, have the following
properties:

e They allow the data administrator to easily trade
redundancy for time.

e Performance improvements apply equally to CPU
and disk. The techniques are therefore suitable for
both in-memory and secondary storage applications

e They can be applied to any scenario where the dis-
tance function is a metric.

e We present variants of the basic algorithm that offer
excellent performance, if the user is willing to ac-
cept the fact that a small (user-specified) percentage
of the time, the returned answer is not the near-
est neighbor. These variants are particularly effec-
tive in low contrast situations. For instance, for 30
dimensional (identically distributed independent di-
mensions) uniform data, one of the techniques pre-
sented in this paper achieves about an 8 fold increase
in speed (relative to linear scan) with about an equal
blowup in space (relative to the dataset). It is well
established that other techniques fail to beat linear
scan at around 10 dimensions ([13], [36]) for the same
datasets.

e P-Sphere trees consistently beat two alternative
strategies’ (SR-Tree [25], Density based indexing
[24]) query times by a factor of 20 to 30 on the real
datasets they were tested on.

e The theoretical results presented in this paper es-
tablish that dimensionality in and of itself is irrel-
evant to the performance of this structure, and in-
stead relate the performance to a simple aspect of the
workload, contrast distribution. This form of anal-
ysis greatly simplifies the task of describing overall
behavior and leads to surprisingly simple and pre-
cise statements about how we can expect particular
workloads to perform.

e For situations in which the query distribution fol-
lows the data distribution, the theoretical results
presented in this paper, when combined with the re-
sults in ([13]) establish contrast as the performance
limiting feature of sub linear strategies for NN query
processing. A corollary of this is that the techniques
presented in this paper are asymptotically optimal
in the sense that their performance scales with the
inherent difficulty of the problem.
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Interesting future work includes theoretical studies that
lead to tighter upper bounds for ND P-Sphere Trees, de-
terministic PK-Sphere Trees, and ND PK-Sphere Trees.
In addition, a more thorough performance study compar-
ing the techniques presented in this paper to a wider vari-
ety of NN processing techniques would definitely be useful.
Handling updates and K-NN searches are also important
extensions to this work.
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