Crimson: A Data Management System to Support
Evaluating Phylogenetic Tree Reconstruction Algorithms -

Yifeng Zheng, Stephen Fisher, Shirley Cohen,

Sheng Guo, Junhyong Kim,

and Susan B. Davidson

University of Pennsylvania

yifeng@cis.upenn.edu, safisher@sas.upenn.edu, shirleyc@cis.upenn.edu,
sheng@mail.med.upenn.edu, junhyong@sas.upenn.edu, susan@cis.upenn.edu

ABSTRACT

Evolutionary and systems biology increasingly rely on tha-c
struction of large phylogenetic trees which represent #dation-
ships between species of interest. As the number and sizelof s
trees increases, so does the need for efficient data storaquery
capabilities. Although much attention has been focusedMh s
atree data model, phylogenetic trees differ from docunoeietited
applications in their size and depth, and their need for ctute-
based queries rather than path-based queries.

This paper focuses on Crimson, a tree storage system foogéy!
netic trees used to evaluate phylogenetic tree reconstruetigo-
rithms within the context of the NSF CIPRes project. A goahef
modeling component of the CIPRes project is to constructge hu
simulation tree representing a “gold standard” of evolut&ry his-
tory against which phylogenetic tree reconstruction altfons can
be tested.

In this demonstration, we highlight our storage and indegpstrate-
gies and show how Crimson is used for benchmarking phyldigene
tree reconstruction algorithms. We also show how our desam
be used to support more general queries over phylogenets tr

1. INTRODUCTION

Phylogenetics — the science of identifying and understandio-
lutionary relationships between different species — hasine in-
creasingly important in biomedical research, and a vaagphylo-
genetic tree reconstruction algorithms have been prop@sed].
As the use of these algorithms spreads and the number andfsize
phylogenetic trees that are generated increases, a numbees
tions arise. First, how do we design efficient data storadejaery
capabilities for managing phylogenetic trees; and secood,can
these algorithms be evaluated? Both of these questiond #re a
core of the NSF funded Cyberinfrastructure for PhylogenBi-
search (CIPRes) effort.

* This work was funded by NSF ITR EF 03-31654 entitled
"BUILDING THE TREE OF LIFE: A National Resource for Phy-
loinformatics and Computational Phylogenetics”.

Permission to copy without fee all or part of this materigranted provided
that the copies are not made or distributed for direct coriamleadvantage,
the VLDB copyright notice and the title of the publicatiortéts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to postesvers
or to redistribute to lists, requires a fee and/or speciangsion from the
publisher, ACM.

VLDB ‘06, September 12-15, 2006, Seoul, Korea.

Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

1231

Evaluating phylogenetic tree reconstruction algorithemains elu-
sive since evolutionary history is not known. Under the dtad
paradigm for phylogeny algorithm experiments, a branchieg
model is generated by some method (usually a stochasticljnode
and the evolution of a bio-molecular sequence is simulagiagu
the tree as a guide. A typical experiment will consist of meani-
ations of the tree model as well as variations of the bio-mdbe
sequence evolution model. However, the possible modeksioec
both trees and sequences is extremely large, resultingdngoc
perimental design by non-evolutionary biologists (e.¢godthm
developers).

The key idea behind the modeling component of the CIPreggiroj
is to generate very large tree models and very complex sequen
evolution models that are carefully curated by experts.[Tblese
“gold standards” can then be sampled to evaluate phylogealet
gorithms in a manner analogous to how actual empirical data i
collected. The Crimson system focuses on providing dataagen
ment support for this component of CIPres.

An important concern in phylogenetic tree management, lgret
trees are constructed by an algorithm or generated as a @old s
dard, is scalability. Phylogenetic trees contain milli@fispecies.
Species may also have species data associated with theie$Spe
data is typically gene sequences representing some plpénohar-
acteristic (such as eyecolor), and may contain millionsdiiidual
sequences each with thousands of characters. Due to thesshee
of the phylogenetic trees, the issue of how to efficiently aggn
and query this data is important.

Although XML, a standard tree data model, is a natural caatdid
for representing phylogenetic trees, the data managenerées
gies developed for XML are not suitable due to the size andhdep
of phylogenetic trees, as well as the type of queries, whieh a
structure-based rather than path-oriented.

According to a study of about 200,000 XML documents [7], most
XML documents are relatively shallow: the average depth was
reported to be 4, and the deepest document was 135 levels. In
contrast, simulation phylogenetic trees have an averapgth de
greater than 1000, and the deepest tree can be more tharidnmill
levels.

The queries used with phylogenetic tree are also very diffiefrom

the path-oriented or restructuring queries supported bgtixand
XQuery, and include structure-based queries sudbass common
ancestorminimal spanning claddree pattern matchandtree pro-

jection(see [10] for details of these operations).

Bha Lla Spy Syn

Figure 1: A sample phylogenetictree

Figure 2: The projection subtree for leaf set { Bha, Lla, Syn}
from the sample phylogenetic tree

To benchmark phylogenetic algorithms using the “gold stadtl
trees, we must also support a varietysaimpling queries Since
the phylogenetic reconstruction problem is NP-hard [Sirent al-
gorithms can only handle a relative small input set (i.e. essv
hundred to several thousand species). To benchmark these-re
struction algorithms, we must therefore be able to effityesam-
ple a subset of species according to various criteriapaojgctthe
tree pattern induced by the sample in the simulation tree.

To illustrate tree projection, Figure 1 shows an example vta

Input Sampling Species Projection Simulation
Query with Sequences Tree Tree
Query Tree Viewer
History GUI |
Manager,
Benchmark
! Manager !

Query
Repository

| Repository
3 Manager

Figure 3: Architectureof Crimson

marking manager characterizes and evaluates a tree inéegdn
gorithm by comparing its output to a set of projection treesnf
the relational database. The GUI manager provides a usedfyi
interface.

2.1 Repository Manager

NEXUS [6] is the standard data format for representing pigito
netic data. While it is efficient for exchanging phylogenetata,
NEXUS is not well suited for querying. Crimson thereforersto
trees in relational form, and uses indexes based on Dewey-lab
ing [11] to speed up queries.

in which the leaves have species names, and edges are labeled

with the evolutionary time from the parent species to childaes
(species data is omitted in this figure). Randomly samplimget
species from the simulation tree in Figure 1 could yield the s
{Bha, Lla, Syn}. Projecting the tree induced §yBha, Lla, Syn}
yields the subtree in Figure 2. Since all nodes in trees pediby
phylogenetic tree reconstruction algorithms have outslegreater
than 1, if any such node occurs in the projection tree we miérge
with its child and take the new edge weight as the sum of the two
edge weights (as is the case with the parent of nade.

In this demonstration, we highlight the design of our steragd in-
dexing strategy to efficiently support sampling and stestased
operations on phylogenetic trees, and show how this is used t
support benchmarking phylogenetic tree reconstructigorahms.

We also discuss how these strategies can be used for suggporti
more general queries over phylogenetic trees. The indestiiag-

egy is based on an extension of the Dewey labeling scheme [11]
in which the input tree is decomposed into a set of subtreds wi
bounded depth; each subtree is then labeled using the Dalvely |

ing scheme.

The rest of paper is organized as follows: Section 2 desctibe
architecture and each module of Crimson. Section 3 presieats
key features of Crimson included in the demonstration.

2. CRIMSON ARCHITECTURE

In this section, we present the main highlights of the Crimsgs-
tem. As shown in Figure 3, the system consists of three compo-
nents: arepository managerabenchmarking managemd aGUI
manager Crimson loads the trees into a relational database via
the loading query provided by the repository manager. Timelbe

1232

The idea behind Dewey labels is as follows: For each nodee
randomly order the outgoing edges and use the order as tae lab
of the edge. Since there is a unique patinom the root to a given
noden, we concatenate the labels of edges appearing irsing
the resulting string as the Dewey label for nade For example,
the label of the leaf nodela in Figure 1 would be (2.1.1), and that
of Spywould be (2.1.2). As shown in [10], using Dewey labels
for structure-based queries is very efficient. For exantpke)east
common ancestor dfla andSpycould be found by computing the
longest common prefix of their labels, yielding the (interioode
with label (2.1).

However, since the size of a Dewey label is proportional ® th
length of the path from the root to the node and phylogenegiest

are very deep, the Dewey labels of nodes may become largglenou
to hurt query performance. Crimson therefore uses a higitaic
labeling scheme which bounds the size of labels to a congtant
The idea is as follows: Given a phylogenetic tree, we decaapo

it into a set of subtrees with bounded depgthWe call the set of
subtrees “layer 0”. If there is more than one subtree in l@yave
build one or more “layer 1" trees, each of which has boundgdde

f; each node in a layer 1 tree corresponds to a subtree in layer 0
and the relationship between nodes in a layer 1 tree is the aam
the relationship between the subtrees in layer 0. If layesritains
more than one subtree, we recursively build higher layeti$ wa
reach a layer with only one subtree. Each node is then given a
Dewey label which is local to its tree, and therefore the sfzsach
label is bounded by.

The LCA! of two nodesm andn inside the same subtree can be
calculated as the longest common prefix of the labelsnoénd

,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4: Index structure of the sample tree 1 with bounded
depth 3

n, as illustrated before. If the nodes are not in the same eaibtr
we go up one layer, find the two nodes andr,, that represent the
subtrees in whichn andn are located, and compute the LCAGf
andr,, denoted’. (Note that this may imply traversing recursively
up through the layers of the tree structure.) Then the L@Am
andn must be located in the subtree thiarepresents. To find

in this subtree, we find for each a node which is their ancestor
nodesm’ andn’ such thatn’ is an ancestor-or-self af, andn’ is

an ancestor-or-self of. Ancestors are found using source nodes.
Thenl is the LCA ofm’ andn/'.

For example, Figure 4 shows the index structure of the tréégn
ure 1. The subtrees rooted at nodesnd4 are in the partition of
the original tree, which is layer 0. The tree rooted at ndde in
layer 1. The dotted edge from noddo node3 indicates that the
tree represented by has been split off from nodg, i.e. that the
subtree rooted at nodewas split off from node3. We call node3
the source nod®f node6.

Continuing our example, suppose we want to find the LCA of sode
SynandLla, which are not in the same subtree. We must therefore
go up a layer and find the nodes which represent the treesiconta
ing SynandLla (5 and6). We then compute the LCA of nodes
5 and6, obtaining nodes which represents the subtree rooted by
nodel. Then the LCA ofLla andSynmust be located in the subtree
rooted byl. We then find thaSynis itself in this subtree, and that
node3 is an ancestor dfla (node3 is the source of node, node

6 is an ancestor-or-self of node andLla is in the tree represented
by node6). Thus the LCA ofLla andSynis the LCA of3 andSyn
which is node2.

Since queries are structure-based, we separate the sufrége
tree structure from the species data. In our architectheeTiiee
Repositoryand Species Repositorgontain the tree structure and
species data, respectively. In addition to these data itepies,
the system also records a history of user input queries iQtrery
Repository Used in conjunction with the Crimson GUI, the Query
Repository makes it convenient for users to recall and rbistor-
ical queries.

2.2 Benchmark Manager

The Benchmark Manager tests and evaluates tree inferegoe al
rithms against the gold-standard simulation tree. Sincenstruct-
ing phylogenetic trees is an inherently hard problem, curtee
reconstruction algorithms do not scale to the size of theikition
tree. We therefore provide the ability to sample a subsepefies

in the simulation tree to create an input set against whiefatpo-

1233

rithm can be tested. To recreate the tree structure comgeitte
sampled species in the simulation tree, we must then prtject
tree over the sampled set.

We now describe two queries that are heavily used within €sim

Sampling a set of species with respect to a given tinkhe tar-
get of this sampling method is to guarantee that the sampkdts
are derived from an evolutionary time period. As an examale,
user may want to randomly sample four species with respeant to
evolutionary distance of 1 from the sample simulation tieas
in Figure 1. To do this, we use the following strategy: Figg
search for all the nodes of the tree (including the leaves)seh
total weight from the root of the tree exceeds 1. From our exam
ple, there are four nodes which satisfy this condition. They
{Bha,z, Syn, BSU}, wherez is the parent node dfla andSpy.
Then, for each node, we randomly select 4/4=1 leaves frosLthe
tree rooted by the node. The resulf{iBha, Lla, Syn, BSU} or
{Bha, Spy, Syn, BSU}.

Tree projection: As explained in Section 1, given a trdeand a
subsetS of its leaves, the tree projection @fover S is a “subtree”

T in which each edge is a subpath of a path from the rodt t6

a node inS and each node has at least two children. To do this,
we use the following strategy: We sort the input leaf set atiog

to the pre-order of tree T. Starting with an empty tlgewe insert
nodes into the tree in order. In this way, at each point the haihg
inserted will become the rightmost leaf nodeZinafter insertion.
We keep a pointer to the rightmost leaf node in the currem. tre
To determine the parent of the new noden T', we check the
ancestor-descendant relationship between nodes in themagt
path in the current tree and the insert node in bottom-uprtine.
We can check ancestor-descendant relationship by a leasbco
ancestor query: Given two nodes andn in a treeT’, m is an
ancestor of: if and only if LCA(m,n) =m.

Our indexing strategy can also be used to support more denera
structure-based queries over phylogenetic trees, sugaasdom-
mon ancestor, minimal spanning clade and tree pattern riEd¢h

We have already discussed how to answer least common ancesto
and now describe the other two queries.

Minimal spanning cladeGiven a set of input leaf nodes, their min-
imal spanning clade is the set of nodes in the tree rooted diy th
least common ancestor. Since the ancestor-descendatibrela
ship between two nodes can be easily checked using LCA, find-
ing the minimal spanning clade can be efficiently implemertg
LCA[10].

Tree pattern match:Given an input pattern tree and a tree, tree
pattern match determines whether or not the input treerpatiésts

in the input tree. As an example, the tree pattern shown iarEig
will match the tree shown in Figure 1. However if we excharige t
location of specie®ha andLla in the pattern tree, the new pattern
will not match the tree.

To answer a tree pattern match query, we first determine dvese
in the tree pattern. Using this set of leaves as input, we pheject

a subtree from the input tree. We then check whether or nqirtire
jected tree and tree pattern are equal (in the case of anresacih)
or compute the difference between them as a measure of stgnila
(in the case of approximate match). Since tree comparisorbea
done in linear time [10, 1], this can be done very efficiently.

File Edit Tree Model Query Help
Messages:
~
£ Query Editor []
Query: [Fe1TEST Q. Seedt

Tree Selection

Tree: Select

[Forrest

[Random selection

Nurmber of Base Pairs

[5o | ([

Position:

Partitions:

Max Temporal Depth:

E—

Total Sequence Length (o)

[FLTEST_P1 (1000 bp)
[FB1TEST_P2 (1000 bp)

<

2000

Histary:

Figure5: A Snapshot of Crimson System

3. DEMONSTRATION

Crimson has been implemented in C++ and Java. A snapshot of
Crimson is shown in Figure 5. The following features of Crams
will be demonstrated:

Loading Data: Users may choose to load a phylogenetic tree
with species data, load a phylogenetic tree structure amlgp-
pend species data to an existing phylogenetic tree. Messdipet
the loading status as well as errors are dynamically gesb@aid
displayed to the user.

Tree Projection: Crimson supports several ways of selecting species
and projecting a tree: random sampling, random sampliniy reit
spect to time, and user input. Each selection method mayreequ
appropriate input values. If an input value is invalid, a popvin-

dow will be generated to show any error messages.

Visualizing the results:Users may display result trees graphically
or view them as NEXUS files. The graphical interface is based
on Walrus, a Java application developed for 3D viewing oféar
graphs; Python is used to convert a NEXUS file to a Walrus input
file.

Besides demonstrating Crimson, we will describe the indrxcs
tures and algorithms used in the system.

Why don’t weuse XML?

Although XML is a tree structured model, existing XML index-
ing and query evaluation techniques cannot be directlyiegpb
phylogenetic trees for the following reasons:

1. Phylogenetic simulation trees of arbitrary depth, e.gvesl
thousand nodes. However, existing web and commercial tateds
in XML format is typically much shallower, and it is for thigge
of data that XML indexing and query evaluation techniquegeha

1234

been developed.

2. The queries used in phylogenetic tree benchmarking are no
path-oriented or restructuring queries such as those sigupby
XPath and XQuery. For example, finding a tree pattern induced
by a set of nodes is quite different from retrieving a set afe®
following a path pattern.

What are the database challengesin Crimson?
There are several database challenges in Crimson system:

1. Simulation trees are huge, yet the portions retrieved &ingle
query are relatively small. It is important to support ramdaccess
based on species names or evolutionary time, which argassag
using main memory techniques to implement the operations.

2. Existing indexing techniques to support XPath/XQuegtmsed
on paths, which are not important for phylogenetic trees.

3. Various labeling schemes [3, 2] have been designed to &nd r
lationships between nodes, e.g. parent/child, ancessmémhdant.
However, only the Dewey labeling scheme [11] facilitateslifig

the least common ancestor of a set of nodes, which is imgortan
when finding the tree pattern induced by a set of nodes.

4. The Dewey labeling scheme suffers, however, in very desgst
since the Dewey number of a nodeencodes the path from root to
n. How to extend Dewey labeling to answer queries on very deep
tree is another issue addressed in this demo.

Why would this demo be interesting for the database commu-
nity?

Stonebraker recently argued [9] that the traditional datebcon-
cept of “one size fits all” is no longer applicable in the daisd
market. Nowhere is this more true than with scientific datapse
structure and usage differs dramatically from businesa. dahis
demo illustrates the complexity of structure as well as esHgpne
common form of scientific data.

4. REFERENCES

] N. Amenta, F. Clarke, and K. S. John. A linear-time majotiee
algorithm. InProceedings of WABROO03.
D. DeHaan, D. Toman, M. Consens, and M. T. Ozsu. A
comprehensive XQuery to SQL translation using dynamiavale
encoding. InProceedings of SIGMO[®2001.
P. F. Dietz. Maintaining order in a linked list. Proceedings of
STOGC 1982.
[4] Y. Hyun. Walrus - graph visualization tool.
http://www.caida.org/tools/visualization/walrus/.

[5] J. Kim and T. Warnow. Tutorial on phylogenetic tree esttian.
citeseer.nj.nec.com/254275.html.
D. Maddison, D. Swofford, and W. Maddison. NEXUS: an exible
file format for systematic informatiorsyst. Biol 46:590-621, 1997.
L. Mignet, D. Barbosa, and P. Veltri. The XML web: a firstidy. In
Proceeding of WWW2003.
[8] T. Munzner.Interactive Visualization of Large Graphs and Networks
PhD thesis, Stanford University, 2000.
M. Stonebraker. 'One Size Fits All': An Idea Whose TimedHaome
and Gone. IrProceedings of ICDE2005.
Susan B. Davidson and Junyhong Kim and Yifeng Zhengcigfiitly
Supporting Structure Queries on Phylogenetic TreeBraceedings
of SSDBM2005.
[11] V. Vesper. Let's do Dewey.

http://www.mtsu.edu/ vvesper/dewey.html.

(2]

(3]

(6]

(7]

El

[20]

