
Understanding the Sparse Vector Technique for
Differential Privacy

Min Lyu #
∗

, Dong Su ⋆, Ninghui Li ⋆

University of Science and Technology of China ⋆ Purdue University
lvmin05@ustc.edu.cn {su17, ninghui}@cs.purdue.edu

ABSTRACT
The Sparse Vector Technique (SVT) is a fundamental technique for
satisfying differential privacy and has the unique quality that one
can output some query answers without apparently paying any pri-
vacy cost. SVT has been used in both the interactive setting, where
one tries to answer a sequence of queries that are not known ahead
of the time, and in the non-interactive setting, where all queries are
known. Because of the potential savings on privacy budget, many
variants for SVT have been proposed and employed in privacy-
preserving data mining and publishing. However, most variants of
SVT are actually not private. In this paper, we analyze these errors
and identify the misunderstandings that likely contribute to them.
We also propose a new version of SVT that provides better utility,
and introduce an effective technique to improve the performance of
SVT. These enhancements can be applied to improve utility in the
interactive setting. Through both analytical and experimental com-
parisons, we show that, in the non-interactive setting (but not the
interactive setting), the SVT technique is unnecessary, as it can be
replaced by the Exponential Mechanism (EM) with better accuracy.

1. INTRODUCTION
Differential privacy (DP) is increasingly being considered the

privacy notion of choice for privacy-preserving data analysis and
publishing in the research literature. In this paper we study the
Sparse Vector Technique (SVT), a basic technique for satisfying
DP, which was first proposed by Dwork et al. [7] and later refined
in [18] and [12], and used in [11, 14, 20, 1, 19]. Compared with
other techniques for satisfying DP, SVT has the unique quality that
one can output some query answers without apparently paying any
privacy cost. More specifically, in SVT one is given a sequence
of queries and a certain threshold T , and outputs a vector indicat-
ing whether each query answer is above or below T ; that is, the
output is a vector {⊥,⊤}ℓ, where ℓ is the number of queries an-
swered, ⊤ indicates that the corresponding query answer is above
the threshold, and ⊥ indicates below. SVT works by first perturb-
ing the threshold T and then comparing each perturbed individual
∗The work was partially done while the author was visiting Purdue
University, West Lafayette, IN USA.

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 6
Copyright 2017 VLDB Endowment 21508097/17/02.

query answer against the noisy threshold. When one expects that
the predominant majority of queries are on one side, e.g., below the
threshold, one can use SVT so that while each output of ⊤ (which
we call a positive outcome) consumes some privacy budget, each
output of ⊥ (negative outcome) consumes none. That is, with a
fixed privacy budget and a given level of noise added to each query
answer, one can keep answering queries as long as the number of
⊤’s does not exceed a pre-defined cutoff point.

This ability to avoid using any privacy budget for queries with
negative outcomes is very powerful for the interactive setting,
where one answers a sequence of queries without knowing ahead
of time what these queries are. Some well-known lower-bound re-
sults [3, 5, 6, 10] suggest that “one cannot answer a linear, in the
database size, number of queries with small noise while preserving
privacy” [7]. This limitation can be bypassed using SVT, as in the
iterative construction approach in [11, 12, 18]. In this approach,
one maintains a history of past queries and answers. For each new
query, one first uses this history to derive an answer for the query,
and then uses SVT to check whether the error of this derived an-
swer is below a threshold. If it is, then one can use this derived
answer for this new query without consuming any privacy budget.
Only when the error of this derived answer is above the threshold
would one need to spend the privacy budget accessing the database
to answer the query.

With the power of SVT comes the subtlety of why it is private
and the difficulty of applying it correctly. The version of SVT used
in [11, 12], which was abstracted into a generic technique and de-
scribed in Roth’s 2011 lecture notes [17], turned out to be not dif-
ferentially private as claimed. This error in [11, 12] is arguably not
critical because it is possible to use a fixed version of SVT without
affecting the main asymptotic results. Since 2014, several vari-
ants of SVT were developed; they were used for frequent itemset
mining [14], for feature selection in private classification [20], and
for publishing high-dimensional data [1]. These usages are in the
non-interactive setting, where all the queries are known ahead of
the time, and the goal is to find c queries that have large answers,
e.g., finding the c most frequent itemsets. Unfortunately, these vari-
ants do not satisfy DP, as pointed out in [2]. When using a correct
version of SVT in these papers, one would get significantly worse
accuracy. Since these papers seek to improve the tradeoff between
privacy and utility, the results in them are thus invalid.

The fact that many usages of SVT are not private, even when
proofs of their privacy were given, is already known [2, 22]; how-
ever, we feel that what led to the erroneous proofs were not clearly
explained, and such an explanation can help researchers to avoid
similar errors in the future. One piece of evidence of the continu-
ing confusion over SVT appears in [2], the first paper that identifies
errors in some SVT variants. In [2], the SVT variants in [14, 20, 1]

637

were modeled as a generalized private threshold testing algorithm
(GPTT), and a proof showing that GPTT does not satisfy ϵ-DP for
any finite ϵ (which we use ∞-DP to denote in this paper) was given.
However, as we show in this paper, the proof in [2] was incorrec-
t. This error was not reported in the literature. One goal of this
paper is to clearly explain why correct usages of SVT are private,
and what are the most likely confusions that caused the myriad of
incorrect usages of SVT.

A second goal of this paper is to improve the accuracy of SVT.
A version of SVT with a correct privacy proof appeared in Dwork
and Roth’s 2014 book [8], and was used in some recent work, e.g.,
[19]. In this paper, we present a version of SVT that adds less noise
for the same level of privacy. In addition, we develop a novel tech-
nique that optimizes the privacy budget allocation between that for
perturbing the threshold and that for perturbing the query answers,
and experimentally demonstrates its effectiveness.

A third goal of this paper is to point out that usage of SVT can
be replaced by the Exponential Mechanism (EM) [16] when used
in the non-interactive setting. Most recent usages of SVT in [1, 14,
19, 20] are in the non-interactive setting, where the goal is to select
up to c queries with the highest answers. In this setting, one could
also use EM [16] c times to achieve the same objective, each time
selecting the query with the highest answer. Using analysis as well
as experiments, we demonstrate that EM outperforms SVT.

In summary, this paper has the following novel contributions.
First, we propose a new version of SVT that provides better util-
ity. We also introduce an effective technique to improve the per-
formance of SVT. These enhancements achieve better utility than
previous SVT algorithms and can be applied to improve utility in
the interactive setting. Second, while previous papers have pointed
out most of the errors in usages of SVT, we identify the misun-
derstandings that likely caused the different non-private versions.
We also point out a previously unknown error in the proof in [2]
of the non-privacy of some SVT variants. Finally, through analysis
and experiments on real datasets, we have evaluated the effects of
various SVT optimizations and compared them to EM. Our results
show that for non-interactive settings, one should use EM instead
of SVT.

The rest of the paper is organized as follows. Section 2 gives
background information on DP. We analyze six variants of SVT in
Section 3. In Section 4, we present our optimizations of SVT. We
compare SVT with the Exponential Mechanism in Section 5. The
experimental results are shown in Section 6. Related works are
summarized in Section 7. Section 8 concludes our work.

2. BACKGROUND

DEFINITION 1 (ϵ-DP [4, 5]). A randomized mechanism A
satisfies ϵ-differential privacy (ϵ-DP) if for any pair of neighbor-
ing datasets D and D′, and any S ∈ Range(A),

Pr[A(D) = S] ≤ eϵ · Pr
[
A(D′) = S

]
.

Typically, two datasets D and D′ are considered to be neighbors
when they differ by only one tuple. We use D ≃ D′ to denote this.

There are several primitives for satisfying ϵ-DP. The Laplacian
mechanism [5] adds a random noise sampled from the Laplace dis-
tribution with the scale parameter proportional to ∆f , the global
sensitivity of the function f . That is, to compute f on a dataset D,
one outputs

Af (D) = f(D) + Lap
(

∆f

ϵ

)
,

where ∆f = max
D≃D′

|f(D)− f(D′)|,
and Pr[Lap (β) = x] = 1

2β
e−|x|/β .

In the above, Lap (β) denotes a random variable sampled from the
Laplace distribution with scale parameter β.

The Exponential Mechanism [16] samples the output of the data
analysis mechanism according to an exponential distribution. The
mechanism relies on a quality function q : D×R → R that assigns
a real valued score to one output r ∈ R when the input dataset is
D, where higher scores indicate more desirable outputs. Given the
quality function q, its global sensitivity ∆q is defined as:

∆q = max
r

max
D≃D′

|q(D, r)− q(D′, r)|.

Outputting r using the following distribution satisfies ϵ-DP:

Pr[r is selected] ∝ exp

(
ϵ

2∆q
q(D, r)

)
.

In some cases, the changes of all quality values are one-
directional. For example, this is the case when the quality function
counts the number of tuples that satisfy a certain condition, and two
datasets are considered to be neighboring when one is resulted from
adding or deleting a tuple from the other. When adding one tuple,
all quality values either stay unchanged or increase by one; the sit-
uation where one quality increases by 1 and another decreases by
1 cannot occur. In this case, one can make more accurate selection
by choosing each possible output with probability proportional to
exp

(
ϵ

∆q
q(D, r)

)
, instead of exp

(
ϵ

2∆q
q(D, r)

)
.

DP is sequentially composable in the sense that combining mul-
tiple mechanisms A1, · · · ,Am that satisfy DP for ϵ1, · · · , ϵm re-
sults in a mechanism that satisfies ϵ-DP for ϵ =

∑
i ϵi. Because of

this, we refer to ϵ as the privacy budget of a privacy-preserving data
analysis task. When a task involves multiple steps, each step uses a
portion of ϵ so that the sum of these portions is no more than ϵ.

3. VARIANTS OF SVT
In this section, we analyze variants of SVT; six of them are listed

in Figure 1. Alg. 1 is an instantiation of our proposed SVT. Alg. 2
is the version taken from [8]. Alg. 3, 4, 5, and 6 are taken from [17,
14, 20, 1] respectively.

The table in Figure 2 summarizes the differences among these
algorithms. Their privacy properties are given in the last row of the
table. Alg. 1 and 2 satisfy ϵ-DP, and the rest of them do not. Alg. 3,
5, 6 do not satisfy ϵ-DP for any finite ϵ, which we denote as ∞-DP.

An important input parameter to any SVT algorithm is the num-
ber c, i.e., how many positive outcomes one can answer before
stopping. This number can be quite large. For example, in private-
ly finding top-c frequent itemsets [14], c ranges from 50 to 400.
To understand the differences between these variants, one can view
SVT as having the following four steps:

1. Generate the threshold noise ρ (Line 1 in each algorithm),
which will be added to the threshold during the comparison
between each query and the threshold (line 5). In all except
Alg. 2, ρ scales with ∆/ϵ1. In Alg. 2, however, ρ scales with
c∆/ϵ1. This extra factor of c causes Alg. 2 to be much less
accurate than Alg. 1.

2. For each query qi, generate noise νi to be added to the query
(Line 4), which should scale with 2c∆/ϵ2. In Alg. 4 and
6, νi scales with ∆/ϵ2. Removing the factor of c from the
magnitude of the noise will result in better utility; however,
this is done at the cost of being non-private. Alg. 5 adds no
noise to qi at all, and is also non-private.

3. Compare the perturbed query answer with the noisy thresh-
old and output whether it is above or below the threshold
(Lines 5, 6, 9). Here Alg. 3 differs in that it outputs the noisy

638

Input/Output shared by all SVT Algorithms
Input: A private database D, a stream of queries Q = q1, q2, · · · each with sensitivity no more than ∆, either a sequence of thresholds
T = T1, T2, · · · or a single threshold T (see footnote ∗), and c, the maximum number of queries to be answered with ⊤.
Output: A stream of answers a1, a2, · · · , where each ai ∈ {⊤,⊥} ∪ R and R denotes the set of all real numbers.

Algorithm 1 An instantiation of the SVT proposed in this paper.

Input: D,Q,∆,T = T1, T2, · · · , c.
1: ϵ1 = ϵ/2, ρ = Lap (∆/ϵ1)
2: ϵ2 = ϵ− ϵ1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (2c∆/ϵ2)
5: if qi(D) + νi ≥ Ti + ρ then
6: Output ai = ⊤
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 2 SVT in Dwork and Roth 2014 [8].

Input: D,Q,∆, T, c.
1: ϵ1 = ϵ/2, ρ = Lap (c∆/ϵ1)
2: ϵ2 = ϵ− ϵ1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (2c∆/ϵ2)
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = ⊤, ρ = Lap (c∆/ϵ1)
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 3 SVT in Roth’s 2011 Lecture Notes [17].

Input: D,Q,∆, T, c.
1: ϵ1 = ϵ/2, ρ = Lap (∆/ϵ1),
2: ϵ2 = ϵ− ϵ1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (c∆/ϵ2)
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = qi(D) + νi
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 4 SVT in Lee and Clifton 2014 [14].

Input: D,Q,∆, T, c.
1: ϵ1 = ϵ/4, ρ = Lap (∆/ϵ1)
2: ϵ2 = ϵ− ϵ1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (∆/ϵ2)
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = ⊤
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 5 SVT in Stoddard et al. 2014 [20].

Input: D,Q,∆, T .
1: ϵ1 = ϵ/2, ρ = Lap (∆/ϵ1)
2: ϵ2 = ϵ− ϵ1
3: for each query qi ∈ Q do
4: νi = 0
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = ⊤
7:
8: else
9: Output ai = ⊥

Algorithm 6 SVT in Chen et al. 2015 [1].

Input: D,Q,∆,T = T1, T2, · · · .
1: ϵ1 = ϵ/2, ρ = Lap (∆/ϵ1)
2: ϵ2 = ϵ− ϵ1
3: for each query qi ∈ Q do
4: νi = Lap (∆/ϵ2)
5: if qi(D) + νi ≥ Ti + ρ then
6: Output ai = ⊤
7:
8: else
9: Output ai = ⊥

Figure 1: A selection of SVT variants

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6
ϵ1 ϵ/2 ϵ/2 ϵ/2 ϵ/4 ϵ/2 ϵ/2

Scale of threshold noise ρ ∆/ϵ1 c∆/ϵ1 ∆/ϵ1 ∆/ϵ1 ∆/ϵ1 ∆/ϵ1
Reset ρ after each output of ⊤ (unnecessary) Yes

Scale of query noise νi 2c∆/ϵ2 2c∆/ϵ2 c∆/ϵ2 ∆/ϵ2 0 ∆/ϵ2
Outputting qi + νi instead of ⊤ (not private) Yes

Outputting unbounded ⊤’s (not private) Yes Yes
Privacy Property ϵ-DP ϵ-DP ∞-DP

(
1+6c

4
ϵ
)
-DP ∞-DP ∞-DP

Figure 2: Differences among Algorithms 1 ∼ 6.

∗ Algorithms 1 and 6 use a sequence of thresholds T = T1, T2, · · · , allowing different thresholds for different queries. The other
algorithms use the same threshold T for all queries. We point out that this difference is mostly syntactical. In fact, having an SVT where
the threshold always equals 0 suffices. Given a sequence of queries q1, q2, · · · , and a sequence of thresholds T = T1, T2, · · · , we can
define a new sequence of queries ri = qi − Ti, and apply the SVT to ri using 0 as the threshold to obtain the same result. In this paper,
we decide to use thresholds to be consistent with the existing papers.

639

query answer qi(D) + νi, instead of an indicator ⊤. This
makes it non-private.

4. Keep track of the number of ⊤’s in the output, and stop when
one has outputted c⊤’s (Line 7). This step is missed in Alg. 5
and 6. Without this limitation, one is answering a potentially
unbounded number of queries with a fixed accuracy level for
each query. This is not private.

3.1 Privacy Proof for Alg. 1
Before proving that Alg. 1 is private, we first give a “fake proof”

of privacy for Alg. 6 to illustrate both the power of SVT and the
misunderstandings behind Alg. 4, 5, and 6. While this “proof” is
incorrect, the correct portion of it is used in the proof for Alg. 1.

For any output vector a = {⊤,⊥}ℓ, let ai denote the i-th com-
ponent of a, I⊤ = {i : ai = ⊤}, and I⊥ = {i : ai = ⊥}. We
have the probability of outputting a over D as follows:

Pr[A(D) = a] =

∫ ∞

−∞
Pr[ρ=z]

∏
i∈I⊤

Pr[qi(D)+νi≥Ti+z]

∏
i∈I⊥

Pr[qi(D)+νi<Ti+z] dz (1)

=

∫ ∞

−∞
Pr[ρ=z]

∏
i∈I⊤

Pr[qi(D)+νi≥Ti+z] dz

×
∫ ∞

−∞
Pr[ρ=z]

∏
i∈I⊥

Pr[qi(D)+νi<Ti+z] dz (2)

That is, to compute the probability Pr[A(D) = a], we integrate
over all possible values for ρ, the noise added to the threshold. Con-
ditioned on ρ taking a particular value z, the probability that a is
the output is the product of the probabilities that per-query noise νi
takes an appropriate value to cause the corresponding query qi to
result in the output (⊤ or ⊥) indicated by a.

Of course, the step from (1) to (2), which breaks one integration
into two, is incorrect. This is the main mistake made in the thinking
behind Alg. 4, 5, and 6. However, accepting (2), we can then prove
that Alg. 6 is private. For any neighboring D,D′, we have:

Pr[A(D) = a]

Pr[A(D′) = a]
=

∫ ∞
−∞ Pr[ρ=z]

∏
i∈I⊤

Pr[qi(D)+νi≥Ti+z] dz∫ ∞
−∞ Pr[ρ=z]

∏
i∈I⊤

Pr[qi(D′)+νi≥Ti+z] dz
(3)

×

∫ ∞
−∞ Pr[ρ=z]

∏
i∈I⊥

Pr[qi(D)+νi<Ti+z] dz∫ ∞
−∞ Pr[ρ=z]

∏
i∈I⊥

Pr[qi(D′)+νi<Ti+z] dz
(4)

We now prove that (4) is bounded by e
ϵ
2 , and the same logic

applies to (3). This then completes the “proof”.∫∞
−∞ Pr[ρ=z]

∏
i∈I⊥

Pr[qi(D)+νi<Ti+z] dz∫∞
−∞ Pr[ρ=z]

∏
i∈I⊥

Pr[qi(D′)+νi<Ti+z] dz
(5)

=

∫∞
−∞ Pr[ρ=z−∆]

∏
i∈I⊥

Pr[qi(D)+νi<Ti+z−∆] dz∫∞
−∞ Pr[ρ=z]

∏
i∈I⊥

Pr[qi(D′)+νi<Ti+z] dz
(6)

≤

∫∞
−∞ e

ϵ
2 Pr[ρ=z]

∏
i∈I⊥

Pr[qi(D)+νi<Ti+z−∆] dz∫∞
−∞ Pr[ρ=z]

∏
i∈I⊥

Pr[qi(D′)+νi<Ti+z] dz
(7)

≤e
ϵ
2

∫∞
−∞ Pr[ρ=z]

∏
i∈I⊥

Pr[qi(D
′)−∆+νi<Ti+z−∆] dz∫∞

−∞ Pr[ρ=z]
∏

i∈I⊥

Pr[qi(D′)+νi<Ti+z] dz
(8)

=e
ϵ
2

The step from (5) to (6) is by a change of integration variable
from z to z − ∆. The next step is because of Pr[ρ=z−∆] ≤

e
ϵ
2Pr[ρ=z], due to ρ = Lap (2∆/ϵ) and the property of the

Laplace distribution. The step from (7) to (8) is by replacing qi(D)
with qi(D

′)−∆, which is ≤ qi(D) because the global sensitiv-
ity of all queries is ∆. Replacing the left hand of the condition
“qi(D)+νi < Ti+ z−∆” with a smaller term cannot decrease
the probability for the condition to hold. After (8), the integration
terms on the numerator and denominator cancel out.

The power of SVT comes from the above derivation. By
adding a noise to the threshold, one can compare what happens
with D′ and threshold noise z with what happens under input D
and threshold noise z−∆, and bound the probability ratio for all ⊥
outputs, no matter how many such outputs there are.

Observe that in the above reasoning we have not used any prop-
erty of νi. In fact, even if νi = 0, as in Alg. 5, the proof will go
through. This underlies Alg. 5’s design of setting νi = 0.

Also, one can similarly bound the term in (3) by using ρ = z+
∆ to change the integration variable. This “proves” the privacy
of Alg. 6, assuming that the step from (1) to (2) is correct.

However, when one cannot use (2) for Pr[A(D) = a], the prob-
abilities for ⊤ outputs and ⊥ outputs are under one integration; one
has to choose whether to use ρ = z−∆ or ρ = z+∆ when chang-
ing the integration variable, and cannot do both. Typically, one
chooses the former to bound all ⊥ outputs, and then rely on adding
sufficient noises to each query to bound the ⊤ outputs.

THEOREM 1. Alg. 1 is ϵ-DP.

PROOF. Consider any a ∈ {⊥,⊤}ℓ. Let a = ⟨a1, · · · , aℓ⟩,
I⊤ = {i : ai = ⊤}, and I⊥ = {i : ai = ⊥}. Let

fi(D, z) = Pr[qi(D)+νi<Ti+z] (9)
gi(D, z) = Pr[qi(D)+νi≥Ti+z] . (10)

We have

Pr[A(D) = a]

Pr[A(D′) = a]

=

∫∞
−∞ Pr[ρ=z]

∏
i∈I⊥

fi(D, z)
∏

i∈I⊤

gi(D, z) dz∫∞
−∞ Pr[ρ=z]

∏
i∈I⊥

fi(D′, z)
∏

i∈I⊤

gi(D′, z) dz
(11)

=

∫∞
−∞ Pr[ρ=z−∆]

∏
i∈I⊥

fi(D, z−∆)
∏

i∈I⊤

gi(D, z−∆) dz∫∞
−∞ Pr[ρ=z]

∏
i∈I⊥

fi(D′, z)
∏

i∈I⊤

gi(D′, z) dz
(12)

≤

∫∞
−∞ eϵ1Pr[ρ=z]

∏
i∈I⊥

fi(D
′, z)

∏
i∈I⊤

gi(D, z−∆) dz∫∞
−∞ Pr[ρ=z]

∏
i∈I⊥

fi(D′, z)
∏

i∈I⊤

gi(D′, z) dz
(13)

≤

∫∞
−∞ eϵ1Pr[ρ=z]

∏
i∈I⊥

fi(D
′, z)

∏
i∈I⊤

e
ϵ2
c gi(D

′, z) dz∫∞
−∞ Pr[ρ=z]

∏
i∈I⊥

fi(D′, z)
∏

i∈I⊤

gi(D′, z) dz
(14)

≤eϵ1
(
e

ϵ2
c

)c
= eϵ1+ϵ2 = eϵ

From (11) to (13) uses the same logic as from (5) to (8). The step
to (14) is because gi(D, z−∆) ≤ e

ϵ2
c gi(D

′, z), proven below.
This step uses the fact that noise νi added to each query answer.
The last step is because |I⊤| ≤ c, i.e., there are at most c positive
outcomes.

gi(D, z−∆) = Pr[qi(D)+νi≥Ti+z−∆]

≤ Pr
[
qi(D

′)+∆+νi ≥ Ti+z−∆
]

(15)

= Pr
[
qi(D

′)+νi ≥ Ti+z−2∆
]

≤ e
ϵ2
c Pr

[
qi(D

′)+νi ≥ Ti + z
]

(16)

640

= e
ϵ2
c gi(D

′, z).

Eq. (15) is because qi(D) ≤ ∆+qi(D
′), and Eq. (16) is because

νi is sampled from the distribution Lap
(

2c∆
ϵ2

)
.

3.2 Privacy Properties of Other Variants
Alg. 2 is taken from the differential privacy book published in
2014 [8]. It satisfies ϵ-DP. It has two differences when compared
with Alg. 1. First, ρ follows Lap (c∆/ϵ1) instead of Lap (∆/ϵ1).
This causes Alg. 2 to have significantly worse accuracy than Alg. 1,
as we show in Section 6. Second, Alg. 2 refreshes the threshold
noise ρ after each output of ⊤. We note that making the threshold
noise scale with c is necessary only if one refreshes the this noise
after each output of ⊤; however, such refreshing is unnecessary.
Alg. 3 is taken from [17], which in turn was abstracted from the
algorithms used in [11, 12]. It has two differences from Alg. 1.
First, νi follows Lap (c∆/ϵ2) instead of Lap (2c∆/ϵ1); this is not
enough for ϵ-DP (even though it suffices for 3ϵ

2
-DP). Second, it

actually outputs the noisy query answer instead of ⊤ for a query
above the threshold. This latter fact causes Alg. 3 to be not ϵ′-DP
for any finite ϵ′. A proof for this appeared in Appendix A of [22];
for completeness, see Appendix (Section 11.1) for the proof. The
error in the proof for Alg. 3’s privacy in [17] occurs in the following
steps:

Pr[A(D) = a]

=

∫ ∞

−∞
Pr[ρ=z]

∏
i∈I⊥

fi(D, z)
∏

i∈I⊤

Pr[qi(D)+νi≥T+z∧qi(D)+νi=ai] dz

=

∫ ∞

−∞
Pr[ρ=z]

∏
i∈I⊥

fi(D, z)
∏

i∈I⊤

Pr[qi(D)+νi = ai] dz (17)

The error occurs when going to (17), which is implicitly done
in [17]. This step removes the condition qi(D)+νi ≥ T+z.

Outputting the positive query answers reveals information about
the noisy threshold, since the noisy threshold must be ≤ all the out-
putted query answers. Once information about the noisy threshold
is leaked, the ability to answer each negative query “for free” disap-
pears. Mathematically, the integration is no longer

∫∞
−∞, but

∫m

−∞,
where m is the smallest outputted query answer; and any change
in the integration variable also changes the integration boundary,
making it impossible to cancel out matching terms.

Alg. 4, taken from [14], differs from Alg. 1 in the following ways.
First, it sets ϵ1 to be ϵ/4 instead of ϵ/2. This has no impact on the
privacy. Second, νi does not scale with c. As a result, Alg. 4 is
only

(
1+6c

4

)
ϵ-DP in general. In [14], Alg. 4 is applied for finding

frequent itemsets, where the queries are counting queries and are
monotonic. Because of this monotonicity, the usage of Alg. 4 here
is
(
1+3c

4

)
ϵ-DP. Theorem 2 can be applied to Alg. 4 to establish this

privacy property; we thus omit the proof of this.
Alg. 5 and Alg. 6 do not satisfy ϵ-DP for any finite ϵ. A proof
for Alg. 6 is given in Appendix B of [22]. For completeness, we
include it in Appendix 11.2. While this proof also applies to Alg. 5,
here we give a simpler proof, using a counterexample with T = 0,
∆ = 1, q = ⟨q1, q2⟩ such that q(D) = ⟨0, 1⟩ and q(D′) = ⟨1, 0⟩,
and a = ⟨⊥,⊤⟩. From Eq. (1), we have

Pr[A(D) = a] =

∫ ∞

−∞
Pr[ρ = z]Pr[0 < z]Pr[1 ≥ z] dz

=

∫ 1

0

Pr[ρ = z] dz > 0,

Pr
[
A(D

′
) = a

]
=

∫ ∞

−∞
Pr

[
ρ = z

′]Pr[1 < z
′]Pr[0 ≥ z

′]
dz

′
,

which is zero. So the probability ratio Pr[A(D)=a]
Pr[A(D′)=a]

= ∞.

Other Variants. Some usages of SVT aim at satisfying (ϵ, δ)-
DP [5], instead of ϵ-DP. These often exploit the advanced compo-
sition theorem for DP [9], which states that applying k instances of
ϵ-DP algorithms satisfies (ϵ′, δ′)-DP, where ϵ′ =

√
2k ln(1/δ′)ϵ+

kϵ(eϵ − 1). In this paper, we limit our attention to SVT variants
to those satisfying ϵ-DP, which are what have been used in the data
mining community [1, 14, 19, 20].

The SVT used in [12, 18] has another difference from Alg. 3.
In [12, 18], the goal of using SVT is to determine whether the error
of using an answer derived from past queries/answers is below a
threshold T . This check takes the form of “if |q̃i − qi(D) + νi| ≥
T + ρ then output i,” where q̃i gives the estimated answer of
a query obtained using past queries/answers, and qi(D) gives the
true answer. This is incorrect because the noise νi should be out-
side the absolute value sign. In the usage in [12, 18], the left hand
of the comparison is always ≥ 0; thus whenever the output in-
cludes at least one ⊤, one immediately knows that the threshold
noise ρ≥−T . This leakage of ρ is somewhat similar to Alg. 3’s
leakage caused by outputting noisy query answers that are found to
be above the noisy threshold. This problem can be fixed by using
“if |q̃i − qi(D)|+ νi ≥ T + ρ then output i” instead. By view-
ing ri = |q̃i − qi(D)| as the query to be answered, this becomes a
standard application of SVT.

3.3 Error in Privacy Analysis of GPTT
In [2], the SVT variants in [14, 20, 1] were modeled as a gen-

eralized private threshold testing algorithm (GPTT). In GPTT, the
threshold T is perturbed using ρ = Lap (∆/ϵ1) and each query
answer is perturbed using Lap (∆/ϵ2) and there is no cutoff; thus
GPTT can be viewed as a generalization of Algorithm 6. When
setting ϵ1 = ϵ2 = ϵ

2
, GPTT becomes Alg. 6.

There is a constructive proof in [2] to show that GPTT is not
ϵ′-DP for any finite ϵ′. However, this proof is incorrect. This er-
ror is quite subtle. We discovered the error only after observing
that the technique of the proof can be applied to show that Alg. 1
(which we have proved to be private) to be non-private. The de-
tailed discussion of this error is quite technical, and is included in
Appendix 11.3.

4. OPTIMIZING SVT
Alg. 1 can be viewed as allocating half of the privacy budget for

perturbing the threshold and half for perturbing the query answer-
s. This allocation is somewhat arbitrary, and other allocations are
possible. Indeed, Alg. 4 uses a ratio of 1 : 3 instead of 1 : 1.
In this section, we study how to improve SVT by optimizing this
allocation ratio and by introducing other techniques.

4.1 A Generalized SVT Algorithm
We present a generalized SVT algorithm in Alg. 7, which uses

ϵ1 to perturb the threshold and ϵ2 to perturb the query answers.
Furthermore, to accommodate the situations where one wants the
noisy counts for positive queries, we also use ϵ3 to output query
answers using the Laplace mechanism.

We now prove the privacy for Alg. 7; the proof requires only
minor changes from the proof of Theorem 1.

THEOREM 2. Alg. 7 is (ϵ1 + ϵ2 + ϵ3)-DP.

PROOF. Alg. 7 can be divided into two phases, the first phase
outputs a vector to mark which query is above the threshold and the
second phase uses the Laplace mechanism to output noisy counts
for the queries found to be above the threshold in the first phase.

641

Algorithm 7 Our Proposed Standard SVT

Input: D,Q,∆,T = T1, T2, · · · , c and ϵ1, ϵ2 and ϵ3.
Output: A stream of answers a1, a2, · · ·
1: ρ = Lap

(
∆
ϵ1

)
, count = 0

2: for Each query qi ∈ Q do
3: νi = Lap

(
2c∆
ϵ2

)
4: if qi(D) + νi ≥ Ti + ρ then
5: if ϵ3 > 0 then
6: Output ai = qi(D) + Lap

(
c∆
ϵ3

)
7: else
8: Output ai = ⊤
9: count = count + 1, Abort if count ≥ c.

10: else
11: Output ai = ⊥

Since the second phase is ϵ3-DP, it suffices to show that the first
phase is (ϵ1 + ϵ2)-DP, which can be obtained by Theorem 1.

4.2 Optimizing Privacy Budget Allocation
In Alg. 7, one needs to decide how to divide up a total privacy

budget ϵ into ϵ1, ϵ2, ϵ3. We note that ϵ1 + ϵ2 is used for outputting
the indicator vector, and ϵ3 is used for outputting the noisy counts
for queries found to be above the threshold; thus the ratio of (ϵ1 +
ϵ2) : ϵ3 is determined by the domain needs and should be an input
to the algorithm.

On the other hand, the ratio of ϵ1 : ϵ2 affects the accuracy of
SVT. Most variants use 1 : 1, without a clear justification. To
choose a ratio that can be justified, we observe that this ratio affects
the accuracy of the following comparison:

qi(D) + Lap

(
2c∆

ϵ2

)
≥ T + Lap

(
∆

ϵ1

)
.

To make this comparison as accurate as possible, we want to min-
imize the variance of Lap

(
∆
ϵ1

)
− Lap

(
2c∆
ϵ2

)
, which is

2

(
∆

ϵ1

)2

+ 2

(
2c∆

ϵ2

)2

,

when ϵ1 + ϵ2 is fixed. This is minimized when

ϵ1 : ϵ2 = 1 : (2c)2/3. (18)

We will evaluate the improvement resulted from this optimization
in Section 6.

4.3 SVT for Monotonic Queries
In some usages of SVT, the queries are monotonic. That is, when

changing from D to D′, all queries whose answers are different
change in the same direction, i.e., there do not exist qi, qj such that
(qi(D) > qi(D

′)) ∧ (qj(D) < qj(D
′)). That is, we have either

∀i qi(D) ≥ qi(D
′), or ∀i qi(D

′) ≥ qi(D). This is the case when
using SVT for frequent itemset mining in [14] with neighboring
datasets defined as adding or removing one tuple. For monotonic
queries, adding Lap

(
c∆
ϵ2

)
instead of Lap

(
2c∆
ϵ2

)
suffices for pri-

vacy.

THEOREM 3. Alg. 7 with νi = Lap
(

c∆
ϵ2

)
in line 3 satisfies

(ϵ1 + ϵ2 + ϵ3)-DP when all queries are monotonic.
PROOF. Because the second phase of Alg. 7 is still ϵ3-DP, we

just need to show that for any output vector a ∈ {⊤,⊥}ℓ,

Pr[A(D) = a] =

∫ ∞

−∞
Pr[ρ=z]

∏
i∈I⊥

fi(D, z)
∏
i∈I⊤

gi(D, z) dz

≤ eϵ1+ϵ2Pr
[
A(D′) = a

]
.

First consider the case that ∀i qi(D) ≥ qi(D
′). In this case, we

always have fi(D,z)
fi(D′,z) ≤ 1 and do not need to change the integration

variable to bound the ratio of the fi terms. Because of this, having
νi = Lap

(
c∆
ϵ2

)
suffices to bound the ratio of the gi terms. That is,

fi(D, z) = Pr[qi(D) + νi < Ti + z] =

≤ Pr
[
qi(D

′) + νi < Ti + z
]
= fi(D

′, z),

gi(D, z) = Pr[qi(D) + νi ≥ Ti + z] ≤ Pr
[
qi(D

′) + νi +∆ ≥ Ti + z
]

≤ e
ϵ2
c Pr

[
qi(D

′) + νi ≥ Ti + z
]
= e

ϵ2
c gi(D

′, z).

Thus, noting that |I⊤| ≤ c,

Pr[A(D) = a] ≤
∫ ∞

−∞
Pr[ρ=z]

∏
i∈I⊥

fi(D
′, z)

∏
i∈I⊤

e
ϵ2
c gi(D

′, z) dz

≤
(
e

ϵ2
c

)c
Pr

[
A(D′) = a

]
< eϵ1+ϵ2Pr

[
A(D′) = a

]
.

Then consider the case in which ∀i qi(D) ≤ qi(D
′). Noting that

qi(D) ≥ qi(D
′)−∆, we can have

fi(D, z −∆) = Pr[qi(D) + νi < Ti + z −∆]

≤ Pr
[
qi(D

′)−∆+ νi < Ti + z −∆
]
= fi(D

′, z),

and Pr[ρ=z −∆] ≤ eϵ1Pr[ρ=z] .

With the constraint qi(D) ≤ qi(D
′), we have

gi(D, z −∆) = Pr[qi(D) + νi ≥ Ti + z −∆]

≤ Pr
[
qi(D

′) + νi ≥ Ti + z −∆
]

≤ e
ϵ2
c Pr

[
qi(D

′) + νi ≥ Ti + z
]
= e

ϵ2
c gi(D

′, z).

Thus, with a change of integration variable from z to z −∆,

Pr[A(D) = a]

=

∫ ∞

−∞
Pr[ρ=z −∆]

∏
i∈I⊥

fi(D, z −∆)
∏
i∈I⊤

gi(D, z −∆) dz

≤
∫ ∞

−∞
eϵ1Pr[ρ=z]

∏
i∈I⊥

fi(D
′, z)

∏
i∈I⊤

e
ϵ2
c gi(D

′, z) dz

≤ eϵ1+ϵ2Pr
[
A(D′) = a

]
.

For monotonic queries, the optimization of privacy budget allo-
cation (18) becomes ϵ1 : ϵ2 = 1 : c2/3.

5. SVT VERSUS EM
We now discuss the application of SVT in the non-interactive

setting, where all the queries are known ahead of time. We note that
most recent usages of SVT, e.g., [1, 14, 19, 20, 21], are in the non-
interactive setting. Furthermore, these applications of SVT aim at
selecting up to c queries with the highest answers. In [14], SVT
is applied to find the c most frequent itemsets, where the queries
are the supports for the itemsets. In [1], the goal of using SVT is
to determine the structure of a Bayesian network that preserves as
much information of the dataset as possible. To this end, they select
attribute groups that are highly correlated and create edges for such
groups in the network. While the algorithm in [1] takes the form
of selecting attribute groups with a score above a certain threshold,
the real goal is to select the groups with the highest scores. In [19],
SVT is used to select parameters to be shared when trying to learn
neural-network models in a private fashion. Once selected, noises

642

are added to these parameters before they are shared. The selection
step aims at selecting the parameters with the highest scores.

EM or SVT. In a non-interactive setting, one can also use the
Exponential Mechanism (EM) [16] to achieve the same objective of
selecting the top c queries. More specifically, one runs EM c times,
each round with privacy budget ϵ

c
. The quality for each query is its

answer; thus each query is selected with probability proportion to
exp

(
ϵ

2c∆

)
in the general case and to exp

(
ϵ

c∆

)
in the monotonic

case. After one query is selected, it is removed from the pool of
candidate queries for the remaining rounds.

An intriguing question is which of SVT and EM offers higher
accuracy. Theorem 3.24 in [8] regarding the utility of SVT with
c = ∆ = 1 states: For any sequence of k queries f1, . . . , fk such
that |{i < k : fi(D) ≥ T − α}| = 0 (i.e. the only query close
to being above threshold is possibly the last one), SVT is (α, β)
accurate (meaning that with probability at least 1 − β, all queries
with answers below T −α result in ⊥ and all queries with answers
above T − α result in ⊤) for: αSVT = 8(log k + log(2/β))/ϵ.

In the case where the last query is at least T + α, being (α, β)-
correct ensures that with probability at least 1−β, the correct selec-
tion is made. For the same setting, we say that EM is (α, β)-correct
if given k − 1 queries with answer ≤ T − α and one query with
answer ≥ T + α, the correct selection is made with probability
at least 1 − β. The probability of selecting the query with answer
≥ T + α is at least eϵ(T+α)/2

(k−1)eϵ(T−α)/2+eϵ(T+α)/2 by the definition of
EM. To ensure this probability is at least 1− β,

αEM = (log(k − 1) + log((1− β)/β))/ϵ,

which is less than 1/8 of the αSVT, which suggests that EM is more
accurate than SVT.

The above analysis relies on assuming that the first k−1 queries
are no more than T − α. When that is not assumed, it is difficult
to analyze the utility of either SVT or EM. Therefore, we will use
experimental methods to compare SVT with EM.

SVT with Retraversal. We want to find the most optimized ver-
sion of SVT to compare with EM, and note that another interest-
ing parameter that one can tune when applying SVT is that of the
threshold T . When T is high, the algorithm may select fewer than
c queries after traversing all queries. Since roughly each selected
query consumes 1

c
’th of the privacy budget, outputting fewer than

c queries “wastes” the remaining privacy budget. When T is low,
however, the algorithm may have selected c queries before encoun-
tering later queries. No matter how large some of these later query
answers are, they cannot be selected.

We observe that in the non-interactive setting, there is a way to
deal with this challenge. One can use a higher threshold T , and
when the algorithm runs out of queries before finding c above-
threshold queries, one can retraverse the list of queries that have
not been selected so far, until c queries are selected. However, it
is unclear how to select the optimal threshold. In our experiments,
we consider SVT-ReTr, which increases the threshold T by differ-
ent multiples of the scale factor of the Laplace noise injected to
each query, and applies the retraversal technique.

6. EVALUATION
In this section, we experimentally compare the different versions

of the SVT algorithm, including our proposed SVT algorithm with
different privacy budget allocation methods. We also compare the
SVT variants applicable in the non-interactive setting with EM.

We use three metrics to compare the different algorithms, and
now explain the rationale for using these metrics. For an algorithm

A and input dataset D, let UA(D) denote an output from running
A on D. UA(D) is an unranked set of queries. When A is EM,
UA(D) has exactly c queries. When A is an SVT algorithm, UA(D)

may include < c queries. The ground truth is given by the set of all
queries and their true answers. Algorithm A provides better utility
if UA(D) better matches the ground truth.

F-measure . Let UT denote the c queries with the highest answer-
s. When using UT as the ground truth, we want to compute the
utility of a computed unordered set UA(D) against a ground truth
unordered set UT . We use the widely used F-measure [15] which
is the harmonic mean of precision and recall, i.e.,

F =
2PR

P +R
,

where P =
|UA(D) ∩ UT |

|UA(D)|
, R =

|UA(D) ∩ UT |
|UT |

.

We note that when |UA(D)| = |UT |, the precision equals the recall,
and the F-measure equals the precision, and can also be interpreted
as 1 minus the false negative rate.

Normalized Cumulative Gain (NCG) . The F-measure uses only
the unordered set UT as the ground truth. As a result, missing the
query with the highest answer is penalized the same as missing
the c’th one. To address this limitation, we can assign a relevance
score rel(q) to each query q, and use the Normalized Cumulative
Gain (NCG) metric [13]:

NCG(UA(D)) =

∑
q∈UA(D) rel(q)

c
.

We point out that since the SVT and EM algorithms output an un-
order set of queries, we cannot use discounted cumulative gain or
normalized discounted cumulative gain [13], which discount the
gain of a query based on which position it is outputted. Below,
we use two instantiations of NCG, by choosing different relevance
score functions.

Normalized Cumulative Rank (NCR) . We first define rel(q) to
be q’s rank score as follows: the highest query has a score of c, the
next one has score c−1, and so on. Thus, the c’th query has a score
of 1. All other queries have a score of 0. To normalize this into a
value between 0 and 1, we divide the sum of relevance scores by
the maximum possible score, c(c+1)

2
. This gives rise to what we

call the Normalized Cumulative Rank (NCR); this metric uses the
true rank information of the top c queries.

Normalized Cumulative Support (NCS) . Using NCR still misses
some information. Selecting a query with a very low answer will be
penalized the same as selecting the (c+1)’th query, whose answer
may be quite close to the c’th query. We thus define rel(q) to be the
true answer of q, which we call the support of q. To normalize this
into a value between 0 and 1, we divide the cumulative support by
the maximum possible support, that is,

NCS(UA(D)) =

∑
q∈UA(D)

q(D)∑
q∈UT

q(D)
.

This measures the ratio of cumulative supports by selecting UA(D)

to the total supports of queries in UT . This metric uses the actual
query answer values.

All the above three metrics, F-measure, NCR and NCS are in the
range [0.0, 1.0], where higher values indicate better accuracy. We
present results under these metrics and observe that the correlation
among them is quite stable.

643

Table 1: Dataset characteristics

Dataset Number of Records Number of Queries
BMS-POS 515,597 1,657
Kosarak 990,002 41,270

AOL 647,377 2,290,685
Zipf 10,000,000 10,000

Table 2: Summary of algorithms

Settings Methods Description

Interactive SVT-DPBook DPBook SVT (Alg. 2).
SVT-S Standard SVT (Alg. 7).

Non-interactive SVT-ReTr Standard SVT with Re-
traversal.

EM Exponential Mechanism.

Datasets. We use the item frequencies in three real datasets: BMS-
POS, Kosarak and AOL as representative distributions of query s-
cores. That is, each item is viewed as a query, and the answer to the
query is the support of the item. In addition, we also use the dis-
tribution inspired by the Zipf’s law, which states that given some
corpus of natural language utterances, the frequency of any word
is inversely proportional to its rank in the frequency table. Similar
phenomenon occurs in many other rankings unrelated to language,
such as the population ranks of cities in various countries, corpo-
ration sizes, income rankings, ranks of number of people watching
the same TV channel, and so on. In this distribution, the i’th query
has a score proportional to 1

i
. The characteristics of these datasets

are summarized in Table 1.

Evaluation Setup. We consider the following algorithms. SVT-
DPBook is from the book [8] (Alg. 2). SVT-S is our proposed
standard SVT, i.e., Alg. 7 without numerical outputs (ϵ3 = 0); and
since the count query is monotonic, we use the version for mono-
tonic queries in Section 4.3. We consider four privacy budget allo-
cations, 1:1, 1:3, 1:c and 1:c2/3, where the last is what our analysis
suggests for the monotonic case. These algorithms can be applied
in the interactive as well as the non-interactive setting.

For the non-interactive setting, we consider EM and SVT-ReTr,
which increases the threshold and retraverses through the queries
until c of them are selected. We use the 1:c2/3 privacy budget allo-
cation and consider 3 variants: 1D, 3D, and 5D, where 1D means
adding one standard deviation of the added noises to the threshold.

We vary c from 50 to 300, and uses the average score for the
c’th query and the c+1’th query as the threshold. We show results
for privacy budget varied from ϵ = 0.1 to ϵ = 2.0. We run each
experiment 100 times, each time randomizing the order of queries
to be examined. We report the average and standard deviation of
the three metrics, F-measure, NCR and NCS. All algorithms are
implemented in Python 2.7 and all the experiments are conducted
on an Intel Core i7-3770 3.40GHz PC with 16GB memory.

Results in the Interactive Setting. Figure 3 reports the result-
s for the algorithms that can be applied in the interactive setting
for ϵ = 0.25. Each row is for one dataset, and each column is
for one metric. While it is clear that in some settings (such as
when c = 50) all methods are quite accurate, and in some other
settings (such as when c ≥ 250) all methods are very inaccurate,
in the settings between the two extremes, the differences among
these methods are quite large. SVT-DPBook performs the worst,
followed by SVT-S-1:1, then by SVT-S-1:3, and finally by SVT-

S-1:c and SVT-S-1:c23. The differences among these algorithms
can be quite pronounced. For example, from Figure 3(f), when
c = 100, SVT-DPBook’s NCS is 0.238, which means that the av-
erage support of selected queries is only around 24% of that for the
true top-100 queries, which we interpret to mean that the output
is meaningless. In contrast, all four SVT-S algorithms have NCS
greater than 0.85, suggesting high accuracy in the selection. SVT-
DPBook’s poor performance is due to the fact that the threshold is
perturbed by a noise with scale as large as c∆/ϵ.

Among the four budget allocation approaches, it appears that the
performance of 1 : c and 1 : c

2
3 are clearly better than the others;

and their advantages over the standard 1 : 1 allocation is quite
pronounced. Using 1 : c

2
3 is clearly the best, although its advantage

over using 1 : c is small.

Results in the Non-interactive Setting. Figure 4 reports the re-
sults for the algorithms that can be applied in the non-interactive
setting. We observe that EM clearly performs better than SVT-
ReTr-1:c23-1D, which performs noticeably better than SVT-S-
1:c23, which is the best algorithm for the interactive setting.

It is interesting to see that increasing the threshold can signifi-
cantly improve the accuracy of SVT with retraversal. However, the
best threshold increment value depends on the number of queries
to be selected. For example, 5D works well when c is large, but
works not as well when c is small. Since it is unclear how to select
the best threshold increment value, and even with the best threshold
increment, SVT-ReTr performs no better than EM, our experiments
suggest that usage of SVT should be replaced by EM in the non-
interactive setting.

Varying the privacy budget. Figures 5, 6, and 7, compare eight
methods while varying both the privacy budget ϵ from 0.1 ro 2.0
and c from 50 to 300. We use heatmap and plot 1.0 minus the
metric values, so that blue and green denote metric values close to
1.0. In each figure, the first row are interactive algorithms and the
second row are non-interactive algorithms. The observations we
made above continue to hold. Also note that for any dataset and
any ϵ, the accuracy levels that SVT-DPBook achieves for finding
top-50 queries are about the same as what SVT-S-1:c23 achieves
for finding top-150 queries, and what EM achieves for finding top-
250 or 300 queries.

Recommendations. In summary, our recommendations regarding
SVT, based on analysis and experiments, are:

1. In interactive settings, use our proposed standard SVT
(Alg. 1) and choose ϵ1

ϵ2
= 1

(2c)2/3
for the general case, and

ϵ1
ϵ2

= 1

(c)2/3
for the monotonic case.

2. In non-interactive settings, do not use SVT and use EM
instead. If one gets better performance using SVT than
using EM, then it is likely that one’s usage of SVT is non-
private.

7. RELATED WORK
SVT was introduced by Dwork et al. [7], and improved by Roth

and Roughgarden [18] and by Hardt and Rothblum [12]. These
usages are in an interactive setting. An early description of SVT as
a stand-alone technique appeared in Roth’s 2011 lecture notes [17],
which is Alg. 3 in this paper, and is in fact ∞-DP. The algorithms
in [18, 12] also have another difference, as discussed in Section 3.2.
Another version of SVT appeared in the 2014 book [8], which is
Alg. 2. This version is used in some papers, e.g., [19]. We show
that it is possible to add less noise and obtain higher accuracy for
the same privacy parameter.

644

SVT-DPBook SVT-S-1:1 SVT-S-1:3 SVT-S-1:c23 SVT-S-1:c

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

F-
m

ea
su

re

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

R

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

S

(a) Zipf, F-measure (b) Zipf, NCR (c) Zipf, NCS

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

F-
m

ea
su

re

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

R

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

S

(d) Kosarak, F-measure (e) Kosarak, NCR (f) Kosarak, NCS

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

F-
m

ea
su

re

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

R

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

S

(g) AOL, F-measure (h) AOL, NCR (i) AOL, NCS

Figure 3: Comparison of interactive approaches. Privacy budget ϵ = 0.25. x-axis: c

SVT-S-1:c23 SVT-ReTr-1:c23-1D SVT-ReTr-1:c23-3D SVT-ReTr-1:c23-5D EM

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

F-
m

ea
su

re

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

R

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

S

(a) Zipf, F-measure (b) Zipf, NCR (c) Zipf, NCS

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

F-
m

ea
su

re

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

R

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

S

(d) Kosarak, F-measure (e) Kosarak, NCR (f) Kosarak, NCS

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

F-
m

ea
su

re

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

R

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300

N
C

S

(g) AOL, F-measure (h) AOL, NCR (i) AOL, NCS

Figure 4: Comparison of non-interactive approaches. Privacy budget ϵ = 0.1. x-axis: c.

645

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

(a) SVT-DPBook (b) SVT-S-1:1 (c) SVT-S-1:3 (d) SVT-S-1:c23

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

(e) SVT-ReTr-1:c23-1D (f) SVT-ReTr-1:c23-3D (g) SVT-ReTr-1:c23-5D (f) EM

Figure 5: The heatmap by varying ϵ and c on BMS-POS dataset, measured by 1.0− F-measure.

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

(a) SVT-DPBook (b) SVT-S-1:1 (c) SVT-S-1:3 (d) SVT-S-1:c23

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

(e) SVT-ReTr-1:c23-1D (f) SVT-ReTr-1:c23-3D (g) SVT-ReTr-1:c23-5D (f) EM

Figure 6: The heatmap by varying ϵ and c on AOL dataset, measured by 1.0− NCR.

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

(a) SVT-DPBook (b) SVT-S-1:1 (c) SVT-S-1:3 (d) SVT-S-1:c23

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

50

100

150

200

250

300

0.1 0.25 0.5 1.0 2.0
ε

c

10-6

10-5

10-4

10-3

10-2

10-1

1.0

(e) SVT-ReTr-1:c23-1D (f) SVT-ReTr-1:c23-3D (g) SVT-ReTr-1:c23-5D (f) EM

Figure 7: The heatmap by varying ϵ and c on Kosarak dataset, measured by 1.0− NCS.

646

Lee and Clifton [14] used a variant of SVT (see Algorithm 4)
to find itemsets whose support is above the threshold. Stoddard
et al. [20] proposed another variant (see Algorithm 5) for private
feature selection for classification to pick out the set of features
with scores greater than the perturbed threshold. Chen et al. [1]
employed yet another variant of SVT (see Algorithm 6) to return
attribute pairs with mutual information greater than the correspond-
ing noisy threshold. These usages are not private. Some of these
errors were pointed in [2], in which a generalized private threshold
testing algorithm (GPTT) that attempts to model the SVT variants
in [14, 20, 1] was introduced. The authors showed that GPTT did
not satisfy ϵ′-DP for any finite ϵ′. But there is an error in the proof,
as shown in Section 3.3. Independent from our work, Zhang et al.
[22] presented two proofs that the variant of SVT violates DP with-
out discussing the cause of the errors. Also presented in [22] is a
special case of our proposed Alg. 1 for counting queries. To our
knowledge, the general version of our improved SVT (Alg. 1 and
Alg. 7), the techniques of optimizing budget allocation, the tech-
nique of using re-traversal to improve SVT, and the comparison of
SVT and EM are new in our work.

8. CONCLUSION
We have introduced a new version of SVT that provides better

utility. We also introduce an effective technique to improve the
performance of SVT by optimizing the distribution of privacy bud-
get. These enhancements achieve better utility than the state of
the art SVT and can be applied to improve utility in the interactive
setting. We have also explained the misunderstandings and errors
in a number of papers that use or analyze SVT; and believe that
these will help clarify the misunderstandings regarding SVT and
help avoid similar errors in the future. We have also shown that in
the non-interactive setting, EM should be preferred over SVT.

9. ACKNOWLEDGMENTS
We thank the reviewers for their valuable comments. This paper

is based upon work supported by Key Laboratory on High Perfor-
mance Computing, Anhui Province, NSFC (61672486, 61672480,
11671376), Key Program of NSFC (71631006), OATF,USTC and
the United States National Science Foundation under Grant No.
1116991 and 1640374.

10. REFERENCES
[1] R. Chen, Q. Xiao, Y. Zhang, and J. Xu. Differentially private

high-dimensional data publication via sampling-based
inference. In KDD, pages 129–138, 2015.

[2] Y. Chen and A. Machanavajjhala. On the privacy properties
of variants on the sparse vector technique. CoRR,
abs/1508.07306, 2015.

[3] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In PODS, pages 202–210, 2003.

[4] C. Dwork. Differential privacy. In ICALP, pages 1–12, 2006.
[5] C. Dwork, F. McSherry, K. Nissim, and A. Smith.

Calibrating noise to sensitivity in private data analysis. In
TCC, pages 265–284, 2006.

[6] C. Dwork, F. McSherry, and K. Talwar. The price of privacy
and the limits of LP decoding. In STOC, pages 85–94, 2007.

[7] C. Dwork, M. Naor, O. Reingold, G. Rothblum, and
S. Vadhan. On the complexity of differentially private data
release: efficient algorithms and hardness results. STOC,
pages 381–390, 2009.

[8] C. Dwork and A. Roth. The algorithmic foundations of
differential privacy. Theoretical Computer Science,
9(3-4):211–407, 2013.

[9] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and
differential privacy. FOCS ’10, pages 51–60, 2010.

[10] C. Dwork and S. Yekhanin. New efficient attacks on
statistical disclosure control mechanisms. CRYPTO’08,
pages 469–480, 2008.

[11] A. Gupta, A. Roth, and J. Ullman. Iterative constructions and
private data release. In TCC, pages 339–356, 2012.

[12] M. Hardt and G. N. Rothblum. A multiplicative weights
mechanism for privacy-preserving data analysis. In FOCS,
pages 61–70, 2010.

[13] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst.,
20(4):422–446, Oct. 2002.

[14] J. Lee and C. W. Clifton. Top-k frequent itemsets via
differentially private fp-trees. In KDD ’14, pages 931–940,
2014.

[15] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge University Press, New
York, NY, USA, 2008.

[16] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In FOCS, pages 94–103, 2007.

[17] A. Roth. The sparse vector technique, 2011. Lecture notes
for “ The Algorithmic Foundations of Data Privacy”.

[18] A. Roth and T. Roughgarden. Interactive privacy via the
median mechanism. In STOC, pages 765–774, 2010.

[19] R. Shokri and V. Shmatikov. Privacy-preserving deep
learning. In CCS, pages 1310–1321, 2015.

[20] B. Stoddard, Y. Chen, and A. Machanavajjhala.
Differentially private algorithms for empirical machine
learning. CoRR, abs/1411.5428, 2014.

[21] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and
X. Xiao. Privbayes: Private data release via bayesian
networks. In SIGMOD ’14, pages 1423–1434, 2014.

[22] J. Zhang, X. Xiao, and X. Xie. Privtree: A differentially
private algorithm for hierarchical decompositions. SIGMOD
’16, pages 155–170, 2016.

11. APPENDIX

11.1 Proof that Alg. 3 is nonprivate

THEOREM 4. Alg. 3 is not ϵ′-DP for any finite ϵ′.

PROOF. Set c = 1 for simplicity. Given any finite ϵ′ > 0, we
construct an example to show that Alg. 3 is not ϵ′-DP. Consider
an example with T = 0, and m + 1 queries q with sensitivity ∆
such that q(D) = 0m∆ and q(D′) = ∆m0, and the output vector
a = ⊥m0, that is, only the last query answer is a numeric value 0.
Let A be Alg. 3. We show that Pr[A(D)=a]

Pr[A(D′)=a]
≥ eϵ

′ for any ϵ′ > 0

when m is large enough.
We denote the cumulative distribution function of Lap

(
2∆
ϵ

)
by

F (x). By Eq. (1), We have

Pr[A(D) = a]

=

∫ ∞

−∞
Pr[ρ=z]

∏
i∈I⊥

fi(D, z)Pr[∆+νm+1≥z ∧∆+νm+1=0] dz

=

∫ ∞

−∞
Pr[ρ=z]

∏
i∈I⊥

fi(D, z)Pr[0 ≥ z]Pr[νm+1 = −∆] dz

647

=
ϵ

4∆
e−

ϵ
2

∫ ∞

−∞
Pr[ρ=z]

∏
i∈I⊥

fi(D, z)Pr[0 ≥ z] dz

=
ϵ

4∆
e−

ϵ
2

∫ 0

−∞
Pr[ρ=z]

∏
i∈I⊥

fi(D, z) dz

=
ϵ

4∆
e−

ϵ
2

∫ 0

−∞
Pr[ρ = z]

m∏
i=1

Pr[νi < z] dz

=
ϵ

4∆
e−

ϵ
2

∫ 0

−∞
Pr[ρ = z] (F (z))m dz, (19)

and similarly

Pr
[
A(D′) = a

]
=

ϵ

4∆

∫ 0

−∞
Pr

[
ρ = z′

]
(F (z′ −∆))m dz′. (20)

The fact that 0 is given as an output reveals the information that
the noisy threshold is at most 0, forcing the range of integration to
be from −∞ to 0, instead of from −∞ to ∞. This prevents the use
of changing z in (19) to z′ −∆ to bound the ratio of (19) to (20).

Noting that F (z)
F (z−∆)

= e
ϵ
2 for any z ≤ 0, we thus have

Pr[A(D) = a]

Pr[A(D′) = a]
= e−

ϵ
2

∫ 0
−∞ Pr[ρ = z] (F (z))m dz∫ 0

−∞ Pr[ρ = z′] (F (z′ −∆))m dz′

= e−
ϵ
2

∫ 0
−∞ Pr[ρ = z] (e

ϵ
2 F (z −∆))m dz∫ 0

−∞ Pr[ρ = z′] (F (z′ −∆))m dz′

= e(m−1) ϵ
2 ,

and thus when m > ⌈ 2ϵ′

ϵ
⌉+ 1, we have Pr[A(D)=a]

Pr[A(D′)=a]
> eϵ

′ .

11.2 Proof that Alg. 6 is nonprivate
THEOREM 5. Alg. 6 is not ϵ′-DP for any finite ϵ′.
PROOF. We construct a counterexample with ∆ = 1, T = 0,

and 2m queries such that q(D) = 02m, and q(D′) = 1m(−1)m.
Consider the output vector a = ⊥m⊤m. Denote the cumulative
distribution function of νi by F (x). From Eq. (1), we have

Pr[A(D) = a]

=

∫ ∞

−∞
Pr[ρ = z]

m∏
i=1

Pr[0+νi < z]
2m∏

i=m+1

Pr[0+νi ≥ z] dz

=

∫ ∞

−∞
Pr[ρ = z] (F (z)(1− F (z)))m dz,

and

Pr
[
A(D′) = a

]
=

∫ ∞

−∞
Pr[ρ = z]

m∏
i=1

Pr[1+νi < z]

2m∏
i=m+1

Pr[−1+νi ≥ z] dz

=

∫ ∞

−∞
Pr[ρ = z] (F (z − 1)(1− F (z+1)))m dz.

We now show that Pr[A(D)=a]

Pr[A(D′)=a]
is unbounded as m increases, prov-

ing this theorem. Compare F (z)(1 − F (z)) with F (z − 1)(1 −
F (z+1)). Note that F (z) is monotonically increasing. When
z ≤ 0,

F (z)(1− F (z))

F (z − 1)(1− F (z+1))
≥

F (z)

F (z − 1)
=

1
2
e

ϵ
2
z

1
2
e

ϵ
2
(z−1)

= e
ϵ
2 .

When z > 0, we also have

F (z)(1− F (z))

F (z − 1)(1− F (z+1))
≥

1− F (z)

1− F (z + 1)
=

1
2
e−

ϵ
2
z

1
2
e−

ϵ
2
(z+1)

= e
ϵ
2 .

So, Pr[A(D)=a]

Pr[A(D′)=a]
≥ e

mϵ
2 , which is greater than eϵ

′
when m > ⌈ 2ϵ′

ϵ
⌉

for any finite ϵ′.

11.3 Error of nonprivacy proof in [2]
The proof in [2] that GPTT is non-private considers the counter-

example with ∆ = 1, T = 0, a sequence q of 2t queries such that
q(D) = 0t1t and q(D′) = 1t0t, and the output vector a = ⊥t⊤t.
Then

Pr[GPTT(D) = a]

Pr[GPTT(D′) = a]
=

∫ ∞
−∞ Pr[ρ = z]

(
Fϵ2 (z)−Fϵ2 (z)Fϵ2 (z−1)

)t dz∫ ∞
−∞ Pr[ρ = z]

(
Fϵ2 (z−1)−Fϵ2 (z)Fϵ2 (z−1)

)t dz
where Fϵ(x) is the cumulative distribution function of Lap (1/ϵ) .

The goal of the proof is to show that the above is unbounded as t
increases. A key observation is that the ratio of the integrands of
the two integrals is always larger than 1, i.e.,

κ(z) =
Fϵ2(z)− Fϵ2(z)Fϵ2(z − 1)

Fϵ2(z − 1)− Fϵ2(z)Fϵ2(z − 1)
> 1

For example, since Fϵ(x) is the cumulative distribution function
of Lap (1/ϵ), we have Fϵ2(0) = 1/2 and Fϵ2(−1) < 1/2; and
thus κ(0) = 1−Fϵ2 (−1)

Fϵ2 (−1)
> 1. However, when |z| goes to ∞, κ(z)

goes to 1. Thus the proof tries to limit the integrals to be a finite
interval so that there is a lower-bound for κ(z) that is greater than
1. It denotes α = Pr[GPTT(D′) = a]. Then choose parameter
δ = |F−1

ϵ1 (α
4
)| to use [−δ, δ] as the finite interval, and thus

α ≤ 2

∫ δ

−δ

Pr[ρ = z] (Fϵ2(z − 1)− Fϵ2(z)Fϵ2(z − 1))t dz.

Denote the minimum of κ(z) in the closed interval [−δ, δ] by κ.
Then we have Pr[GPTT(D)=a]

Pr[GPTT(D′)=a]
> κt

2
. The proof claims that for any

ϵ′ > 1 there exists a t to make the above ratio larger than eϵ
′
.

The proof is incorrect because of dependency in the parameter-
s. First, α is a function of t; and when t increases, α decreases
because the integrand above is positive and decreasing. Second, δ
depends on α, and when α decreases, δ increases. Thus when t
increases, δ increases. We write δ as δ(t) to make the dependency
on t explicit. Third, κ, the minimum value of κ(z) over the interval
[−δ(t), δ(t)], decreases when t increases. That is, κ is also depen-
dent on t, denoted by κ(t), and decreases while t increases. It is
not sure that there exists such a t that κ(t)t

2
> eϵ

′
for any ϵ′ > 1.

To demonstrate the error in the proof cannot be easily fixed, we
point out that following the logic of that proof, one can prove that
Alg. 1 is not ϵ′-DP for any finite ϵ′. We now show such a “proof”
that contradicts Theorem 1. Let A be Alg. 1 with c = 1. Consider
an example with ∆ = 1, T = 0, a sequence q of t queries such
that q(D) = 0t and q(D′) = 1t, and output vector a = ⊥t. Let

β = Pr
[
A(D) = ⊥ℓ

]
=

∫ ∞

−∞
Pr[ρ = z]

(
F ϵ

4
(z)

)t
dz

α = Pr
[
A(D′) = ⊥ℓ

]
=

∫ ∞

−∞
Pr[ρ = z]

(
F ϵ

4
(z − 1)

)t
dz,

where F ϵ
4
(x) is the cumulative distribution function of Lap (4/ϵ) .

Find a parameter δ such that
∫ δ

−δ
Pr[ρ = z] dz ≥ 1 − α

2
. Then∫ δ

−δ
Pr[ρ = z]

(
F ϵ

4
(z − 1)

)t

dz ≥ α
2

. Let κ be the minimum val-

ue of
F ϵ

4
(z)

F ϵ
4
(z−1)

in [−δ, δ]; it must be that κ > 1. Then

β >

∫ δ

−δ

Pr[ρ = z]
(
F ϵ

4
(z)

)t
dz ≥

∫ δ

−δ

Pr[ρ = z]
(
κF ϵ

4
(z − 1)

)t
dz

= κ
t
∫ δ

−δ

Pr[ρ = z]
(
F ϵ

4
(z − 1)

)t
dz ≥

κt

2
α.

Since κ > 1, one can choose a large enough t to make β
α
= κt

2
to

be as large as needed. We note that this contradicts Theorem 1. The
contradiction shows that the proof logic used in [2] is incorrect.

648

