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ABSTRACT
A range of explanation engines assist data analysts by performing
feature selection over increasingly high-volume and high-dimensional
data, grouping and highlighting commonalities among data points.
While useful in diverse tasks such as user behavior analytics, opera-
tional event processing, and root cause analysis, today’s explanation
engines are designed as standalone data processing tools that do
not interoperate with traditional, SQL-based analytics workflows;
this limits the applicability and extensibility of these engines. In
response, we propose the DIFF operator, a relational aggregation
operator that unifies the core functionality of these engines with
declarative relational query processing. We implement both single-
node and distributed versions of the DIFF operator in MB SQL, an
extension of MacroBase, and demonstrate how DIFF can provide the
same semantics as existing explanation engines while capturing a
broad set of production use cases in industry, including at Microsoft
and Facebook. Additionally, we illustrate how this declarative ap-
proach to data explanation enables new logical and physical query
optimizations. We evaluate these optimizations on several real-
world production applications, and find that DIFF in MB SQL can
outperform state-of-the-art engines by up to an order of magnitude.
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1 Introduction
Given the continued rise of high-volume, high-dimensional data
sources [9], a range of explanation engines (e.g., MacroBase, Scor-
pion, and Data X-Ray [8, 49, 58, 65, 67]) have been proposed to
assist data analysts in performing feature selection [31], grouping
and highlighting commonalities among data points. For example,
a product manager responsible for the adoption of a new mobile
application may wish to determine why user engagement declined
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in the past week. To do so, she must inspect thousands of fac-
tors, from the application version to user demographic, device type,
and location metadata, as well as combinations of these features.
With conventional business intelligence tools, the product manager
must manually perform a tedious set of GROUP BY, UNION, and CUBE

queries to identify commonalities across groups of data records
corresponding to the declined engagement metrics. Explanation
engines automate this process by identifying statistically significant
combinations of attributes, or explanations, relevant to a particular
metric (e.g., records containing device_make="Apple", os_version

="9.0.1", app_version="v50" are two times more likely to report
lower engagement). As a result, explanation engines enable order-
of-magnitude efficiency gains in diagnostic and exploration tasks.

Despite this promise, in our experience developing and deploying
the MacroBase explanation engine [8] at scale across multiple teams
at Microsoft and Facebook, we have encountered two challenges
that limit the applicability of explanation engines: interoperability
and scalability.

First, analysts often want to search for explanations as part of
a larger workflow: an explanation query is typically a subcompo-
nent of a larger pipeline combining extract-transform-load (ETL)
processing, OLAP queries, and GUI-based visualization. However,
existing explanation engines are designed as standalone tools and
do not interoperate with other relational tools or workflows. As a
result, interactive explanation-based analyses require substantial pre-
and post-processing of results. For example, in data warehouses
with a snowflake or star schema, analysts must combine fact ta-
bles with dimension tables using complex projections, aggregations,
and JOINs prior to use in explanation analyses [40]. To construct
downstream queries based on the results of an explanation, analysts
must manually parse and transform the results to be compatible with
additional relational operators.

Second, analysts often require explanation engines that can scale
to growing data volumes, while still remaining interactive. For
example, a typical explanation analysis might require processing
weeks of raw event logs to identify a subtle issue arising from
a small subpopulation of users. Since these analyses are usually
performed with a human in the loop, a low-latency query response
is highly advantageous. In our experience deploying MacroBase
at Microsoft and Facebook, we found that existing approaches for
data explantation did not scale gracefully to the dozens of high-
cardinality columns and hundreds of millions of raw events we
encountered. We observed that even a small explanation query over
a day’s worth of Microsoft’s production telemetry data required
upwards of ten minutes to complete.
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In response to these two challenges, we introduce the DIFF op-
erator, a declarative relational operator that unifies the core func-
tionality of several explanation engines with traditional relational
analytics queries. Furthermore, we show that the DIFF operator can
be implemented in a scalable manner.

To address the first challenge, we exploit the observation that
many explanation engines and feature selection routines summarize
differences between populations with respect to various difference
metrics, or functions designed to quantify particular differences
between disparate subgroups in the data (e.g., the prevalence of a
variable between two populations). We capture the semantics of
these engines via our DIFF operator, which is parameterized by these
difference metrics and can generalize to application domains such
as user behavior analytics, operational event processing, and root
cause analysis. DIFF is semantically equivalent to a parameterized
relational query composed of UNION, GROUP BY, and CUBE operators,
and therefore integrates with current analytics pipelines that utilize
a relational data representation.

However, incorporating the DIFF operator into a relational query
engine raises two key scalability questions:

1. What logical layer optimizations are needed to efficiently ex-
ecute SQL queries when combining DIFF with other relational
algebra operators, especially JOINs?

2. What physical layer optimizations—algorithms, indexes, and
storage formats—are needed to evaluate DIFF efficiently?

At the logical layer, we present two new optimizations for DIFF
that are informed by the snowflake and star schemas common in
data warehouses, where data is augmented with metadata via JOINs
before running explanation queries [40]. A naïve execution of this
workflow would fully materialize the JOINs and then evaluate DIFF

on their output. We show that if the returned output size after com-
puting the JOINs far exceeds that of the DIFF, it is more efficient to
perform the DIFF operation before materializing the JOINs, thereby
applying a predicate pushdown-style strategy to DIFF-JOIN queries
(similar to learning over joins [42]). We introduce an adaptive algo-
rithm that dynamically determines the order of operations, yielding
up to 2× speedups on real data. In addition, for input data that
contains functional dependencies, we show how to leverage these
dependencies for further logical optimization. For instance, joining
with a geographic dimension table may provide state and country
information—but for explanation queries, returning both fields is
redundant, as an explanation containing state = "CA" is equivalent
to one containing state = "CA", country = "USA". We show how
pruning computation using these functional dependencies can yield
up to 20% speedups.

At the physical layer, we implement DIFF based on a generalized
version of the Apriori algorithm from Frequent Itemset Mining [2].
However, we develop several complementary optimizations, includ-
ing hardware-efficient encoding of explanations in packed integers,
storing columns in a columnar format, and judiciously representing
specific columns using bitmaps. By exploiting properties in the
input data, such as low-cardinality columns, and developing a cost-
based optimizer for selecting an efficient physical representation,
our optimized implementation of DIFF delivers speedups of up to
17× compared to alternatives.

To illustrate the performance improvements of these logical and
physical optimizations, we implement the DIFF operator in MB SQL,
an extension to MacroBase. We develop both a single-node imple-
mentation and a distributed implementation in Spark [70], allowing
us to scale to hundreds of millions of rows or more of production
data. We benchmark our implementation of DIFF with queries de-
rived from several real-world analyses, including workloads from

Microsoft and Facebook, and show that MB SQL can outperform
other explanation query engines, such as MacroBase and RSEx-
plain [58], by up to 10× despite their specialization. Additionally,
MB SQL outperforms related dataset mining algorithms from the
literature, including optimized Frequent Itemset Mining algorithms
found in Spark MLlib [51], by up to 4.5×.

In summary, we present the following contributions:

• We propose the DIFF operator, a declarative relational aggrega-
tion operator that unifies the core functionality of explanation
engines with relational query engines.

• We present novel logical optimizations to evaluate the DIFF

operator in conjunction with joins and functional dependencies,
which can accelerate DIFF queries by up to 2×.

• We introduce an optimized physical implementation of the DIFF

operator that combines dictionary encoding, columnar storage,
and data-dependent, cost-based bitmap index, yielding up to a
17× improvement in performance.

2 Industrial Workloads
In this section, we share lessons learned from our two-year ex-
perience deploying the MacroBase explanation engine in several
industrial settings. We first describe the scalability and interoper-
ability challenges we encountered that led to the creation of the DIFF

operator, our proposed relational aggregation operator that unifies
explanation engines with declarative relational query engines. We
then describe successful real-world, large-scale production applica-
tions of the DIFF operator at Microsoft, Facebook, and Censys.

2.1 Challenges: Scalability and Interoperability

Over the last two years, we have deployed the MacroBase explana-
tion engine across a wide range of production use cases, including
datacenter monitoring, application telemetry, performance diagnos-
tics, time series analysis, and A/B testing. Through this process, we
discovered two key factors limiting data analysts’ ability to apply
explanation engines such as MacroBase, Scorpion, Data X-Ray, and
RSExplain to their production settings.

First, data analysts require engines capable of efficiently handling
their growing industrial data volumes, which are expected to in-
crease by 40% annually [36]. Explanation engines are typically not
designed to scale to this degree; with each of these aforementioned
engines, a typical explanation query over a 13GB subset of Mi-
crosoft production data requires upwards of 10 minutes on a single
node. Except for Data X-Ray, these engines do not have distributed
implementations, fundamentally limiting their scalability.

Second, data analysts typically search for explanations as part
of a larger analytics workflow or environment. As explanation
engines are not designed to interoperate with analysts’ pipelines,
and instead act as standalone data processing systems, making use
of them is tedious: analysts must clean and export their data to an
engine-compatible format, perform analyses using the engine, and
then translate their results back to their relational query engines for
further analyses. As a result, rapid exploration and iteration over the
results of explanation queries becomes challenging and laborious.

Using these experiences and limitations as inspiration, we pro-
pose the DIFF operator as a declarative relational operator that serves
as an extension and evolution of our initial MacroBase explanation
engine. We demonstrate that the DIFF operator captures the core
semantics of additional explanation engines and data mining tech-
niques, including Data X-Ray, Scorpion, RSExplain, and Frequent
Itemset Mining, in Section 3.3. In addition, we provide an efficient
implementation of the DIFF operator in both the single-node and

420



Table 1: Generally applicable built-in difference metrics.

Difference Metric Description

Support Fraction of rows with an attribute
Odds Ratio Odds that a row will be in the test relation vs. the control

relation if it has an attribute vs. if it does not
Risk Ratio Probability that a row will be in the test relation vs. the

control relation if it has an attribute vs. if it does not
Mean Shift Percent change in a column’s mean for rows containing

an attribute in the test vs. the control relation

distributed setting, improving runtime by an order of magnitude
compared to existing explanation engines.

2.2 Production Applications

We now describe in detail a subset of the previously described
applications that inspired and are now enabled by the DIFF operator.

Microsoft At Microsoft, engineers monitor application behavior
via several dashboards of aggregated telemetry events in conjunction
with preset alerts for anomalous behavior. If unusual behavior is
detected, the engineers must perform manual root cause analyses,
requiring inspection of logged events via these dashboards and
relational query processing. This manual procedure is often tedious
and time-consuming, especially as the underlying issue may not
be immediately visible in existing dashboards. Moreover, not all
performance bottlenecks will be caught by the alerts, and identifying
these false negatives can be even more challenging.

Engineers can use existing explanation engines to perform this
root cause analysis, but constantly exporting data from their dash-
boarding tools is labor-intensive, which leads to difficulties integrat-
ing explanation functionality with legacy services. Further, existing
engines are incapable of scaling to the full size of their data of
interest (hundreds of millions to billions of rows, or more). By
incorporating the DIFF operator into their production dashboarding
tools, engineers have instead been able to automatically discover the
likely reasons for a range of common abnormal application behav-
iors, such as high tail latency [20] or low resource utilization [30].
Additionally, DIFF queries that compare large volumes of normal
and abnormal raw application events can also reveal bottlenecks that
preset alerts fail to catch.

Facebook At Facebook, teams often evaluate the reliability and
performance of different application and service features; if a fea-
ture performs unexpectedly on a given target metric, analysts must
quickly find the root cause of the deviation. To do this, an ana-
lyst typically hypothesizes several dimensions that could be highly
correlated with the metric’s unforeseen performance; each hypothe-
sis is then manually validated one at a time by executing multiple
relational queries.

Existing explanation engines cannot be efficiently applied in
this scenario, as they would only be capable of operating on small
data subsets, and data movement is heavily discouraged, especially
given that declarative relational workflows are already common-
place. With the DIFF operator, analysts can instead automate this
procedure without leaving their workspace. In a matter of minutes,
the analyst can execute a DIFF query evaluating an entire day of
experiment dimensions, which directly reveals the combination of
factors that are most responsible for the deviation.

Censys Censys is a search engine over Internet-wide port scan
data [23], enabling security researchers to monitor how Internet
devices, networks, and infrastructure change over time.

At Censys, researchers have performed thousands of Internet-
wide scans consisting of trillions of probes, and this data has played
a central role in analyzing and understanding some of the most

diff_query = table_ref "DIFF" table_ref
"ON" {attrs}
"COMPARE BY" {diff_metric([args]) > threshold}
["MAX ORDER" integer] ;

diff_metric = "support" | "odds_ratio" | "risk_ratio"
| "mean_shift" | udf

Figure 1: DIFF syntax in extended Backus-Naur Form

significant Internet-scale vulnerabilities, such as Heartbleed [22]
and the Mirai botnet [3]. Uncovering these vulnerabilities is often
time-consuming—teams of researchers spend months analyzing
Censys data to understand the genesis of the vulnerability.

Due to the high volume of these internet-wide scans, distributed
operators are required for scalable analyses—hence, existing ex-
planation engines are insufficient. In our pilot project, Censys
researchers can use the DIFF operator to automate these analyses, al-
lowing them to find potential security vulnerabilities as they evolve.
For example, a researcher can execute a DIFF query over scans from
different time ranges (e.g., week-over-week or month-over-month),
which reveals trends that are difficult to uncover through typical
declarative relational analyses, such as bursts of activities on partic-
ular ports amongst a set of IP addresses, or a sharp drop in certain
device types across several Autonomous Systems.

3 The DIFF Operator
The DIFF operator is a relational aggregation operator that provides
a declarative interface for explanation queries. In this section, we
introduce the DIFF operator’s API, sample usage and semantics, and
detail how to replicate the behavior of the explanation engines in
Section 3.3.

3.1 DIFF Operator Syntax and Example Workflow

We present syntax for the DIFF operator in Backus-Naur form in
Figure 1. The DIFF operator takes as input two relations— the test
relation and the control relation. Similar to a CUBE query [29], DIFF
outputs combinations of attribute-value pairs (e.g., make="Apple"
, os="11.0"), which we refer to as explanations, in the form of a
single relation, where each row consists of an explanation describing
how the test and control relations differ.

DIFF is parameterized by a MAX ORDER argument, which specifies
the maximum number of attributes considered per explanation, and
one or more difference metric expressions that define the utility of
an explanation. These expressions consist of a difference metric that
quantifies the difference between explanations and a corresponding
threshold; the difference metric is a function that acts on each expla-
nation to define its utility, and explanations that do not satisfy the
utility threshold are pruned from the output.

As we demonstrate in Section 3.3, different difference metrics
allow the DIFF operator to encapsulate the functionality of a variety
of explanation engines. By default, the DIFF operator can make use
of four provided difference metrics, which we describe in Table 1.
While we found these difference metrics sufficient for our industrial
use cases, the DIFF operator supports user-defined difference metrics
as well.

Example Workflow. To demonstrate how to construct and utilize
DIFF queries, we consider the case of a mobile application developer
who has been notified of increased application crash rates in the last
few days. The developer has a relational database of log data from
instances of both successful and failed sessions from her application:
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timestamp app_version device_type os crash
08-21-18 00:01 v1 iPhone X 11.0 false

... ... ... ... ...
08-28-18 12:00 v2 Galaxy S9 8.0 true

... ... ... ... ...
09-04-18 23:59 v3 HTC One 8.0 false

With this input, the developer must identify potential explanations
or causes for the crashes. She can make use of the DIFF operator
using the following query:

SELECT * FROM
(SELECT * FROM logs WHERE crash = true) crash_logs

DIFF
(SELECT * FROM logs WHERE crash = false) success_logs

ON app_version, device_type, os
COMPARE BY risk_ratio >= 2.0, support >= 0.05 MAX ORDER 3;

Here, the developer first selects her test relation to be the instances
when a crash occurred in the logs (crash_logs) and the control
relation to be instances when a crash did not occur (success_logs).
In addition, she specifies the dimensions to consider for explanations
of the crashes: app_version, device_type, os.

The developer must also specify how potential explanations should
be ranked and filtered; she can accomplish this by specifying one
or more difference metrics and thresholds. In this scenario, she first
specifies the risk ratio, which quantifies how much more likely a
data point matching this explanation is to be in the test relation than
in the control relation. By specifying a threshold of 2.0 for the risk
ratio, all returned explanations will be at least twice as likely to oc-
cur in crash_logs than in success_logs. Further, the developer only
wants to consider explanations that have reasonable coverage (i.e.,
explain a substantial portion of the crashes). Therefore, she specifies
a support threshold of 0.05, which guarantees that every returned
explanation will occur at least 5% of the time in crash_logs. Finally,
the developer includes the clause MAX ORDER 3 to specify that the re-
turned explanations should never contain more than three attributes.
Running this DIFF query, the developer obtains the following results:

app_version device_type os risk_ratio support
v1 - - 10.5 15%
v2 iPhone X - 7.25 30%
v3 Galaxy S9 11.0 9.75 20%

For each explanation, the output includes the explanation’s at-
tributes, risk ratio, and support. A NULL value (denoted as "-" in
the output) indicates that the attribute can be any value, similar to
the output of a CUBE or ROLLUP query. Thus, the first explanation—
app_version="v1"—is 10.5× more likely to be associated with a
crash in the logs, and it occurs in 15% of the crashes.

The developer in our scenario may find the first two results
uninteresting—they may be known bugs. However, the third expla-
nation warrants further study. In response, she can issue a second
DIFF query comparing this week’s crashes to last week’s:

SELECT * FROM
(SELECT * FROM logs WHERE crash = true and timestamp BETWEEN

08-28-18 AND 09-04-18) this_week
DIFF
(SELECT * FROM logs WHERE crash = true and timestamp BETWEEN

08-21-18 AND 08-28-18) last_week
ON app_version, device_type, os
COMPARE BY risk_ratio >= 2.0, support >= 0.05 MAX ORDER 3;

which yields the following result:
app_version device_type os risk_ratio support

v3 Galaxy S9 11.0 20.0 75%

In the most recent week, our explanation from the previous query
shows up 20× more often, and 75% of the crashes can be attributed
to it. With this DIFF query, the developer has confirmed that there is
likely a bug in her application causing Galaxy S9 devices running
Android OS version 11.0 with app version v3 to crash.

3.2 Formal Definition of the DIFF Operator
In this section, we define the DIFF operator and its two components:
explanations and difference metrics.

Definition 3.1. Explanation
We define an explanation of order k to be a set of k attribute values:

A∗ = {A1 = a1, . . . , Ak = ak} (1)

We borrow this definition from prior work on explanation engines,
including RSExplain [58], Scorpion [67], and MacroBase [8]. In
practice, explanations typically consist of categorical attributes,
although our definition can extend to continous data ranges as well.

Definition 3.2. Difference Metric
A difference metric filters candidate explanations based on some
measure of severity, prevalence, or relevance; examples include sup-
port and risk ratio. We refer to a difference metric and its threshold
as a difference metric clause γ (e.g., support >= 0.05). The output
of a difference metric clause is a boolean indicating if the explana-
tion A∗ “passed” the difference metric. DIFF returns all attribute
sets A∗ from R and S that pass all specified difference metrics.

Formally, a difference metric clause γ takes as input two relations
R and S and an explanation A∗ and is parameterized by:
• A set F of d aggregation functions evaluated on R and S

• A comparison function h that takes the outputs of F on R and
S to produce a single measure: Rd × Rd × Rd × Rd → R
• A user-defined minimum threshold, θ

A difference metric is computed by first evaluating the aggregation
functions F over the relations R and S and the attribute set A∗.
We evaluate F first over the entire relation, FRglobal = F(R), then
strictly over the rows matching the attributes in A∗: FRattrs =
F(σA∗(R)). Similarly, we apply F on S, which gives us FSglobal

and FSattrs. Each evaluation of F returns a vector of values in Rd,
and FRglobal, FSglobal, FRattrs, and FSattrs form the input to h. If h’s
output is greater than or equal to θ, then the attribute set A∗ has
satisfied the difference metric:

γ = h(FRglobal, FRattrs, FSglobal, FSattrs) ≥ θ (2)

Using this definition, we can express many possible difference
metrics, including those listed in Table 1, as well as custom UDFs.
For example, the support difference metric, which is defined over a
single relation, would be expressed as:

γsupport :=


F = COUNT(*)

h =
FRattrs

FRglobal

(3)

where θ∗ denotes a user-specified minimum support threshold. The
risk ratio, meanwhile, would be expressed as:

γrisk_ratio :=



F = COUNT(*)

h =

FRattrs

FRattrs + FSattrs

FRglobal −FRattrs

(FRglobal −FRattrs) + (FSglobal −FSattrs)
(4)

Definition 3.3. DIFF

We now define the DIFF operator ∆, which has the following inputs:
• R, the test relation

• S, the control relation

422



• Γ, the set of difference metrics

• A = {A1, . . . , Am}, the dimensions, which are categorical
attributes common to both R and S

• k, the maximum order of dimension combinations
The DIFF operator applies the difference metrics γ to every possible
explanation with order k or less found in R and S; the explanations
can only be derived from A. The difference metrics are evaluated
over every expalantion A∗—if the explanation satisfies all the dif-
ference metrics, it is included in the output of DIFF, along with its
values for each of the difference metrics.

A DIFF query can be translated to standard SQL using GROUP BYs
and UNIONs, as we illustrate in our experiments that benchmark DIFF

queries against equivalent SQL queries in Postgres. This translation
step is costly, however, both for data analysts and for relational
databases: the equivalent query is often hundreds of lines of SQL
that database query planners fail to optimize and execute efficiently.
With this new relational operator, we introduce two new benefits:
i) users can concisely express their explanation queries in situ with
existing analytic workflows, rather than rely on specialized expla-
nation engines, and ii) query engines—both on a single node or
in the distributed case—can optimize DIFF across other relational
operators, such as selections, projections, and JOINs. As we discuss
in Sections 4 and 5, integrating DIFF with existing databases requires
implementing new logical optimizations at the query planning stage
and new physical optimizations at the query execution stage. This
integration effort can yield order-of-magnitude speedups, as we
illustrate in our evaluation.

3.3 DIFF Generality
The difference metric abstraction enables the DIFF operator to en-
capsulate the semantics of several explanation engines and Frequent
Itemset Mining techniques via a single declarative interface. To
highlight the generalization power of DIFF, we describe these en-
gines/techniques and show how DIFF can implement them either
partially or entirely; we implement several of these generalizations
and report the results in our evaluation.

MacroBase MacroBase [8] is an explanation engine that explains
important or unusual behavior in data. The MacroBase default
pipeline computes risk ratio on explanations across an outlier set
and inlier set and returns all explanations that pass a threshold.
As the difference metric abstraction arose as a natural evolution
of (and replacement for) the MacroBase default pipeline after our
experience deploying MacroBase at scale, DIFF can directly express
MacroBase functionality using a query similar to the example query
in Section 3.1. We later on evaluate the performance of such a query
compared to a semantically equivalent MacroBase query and find
that our implementation of DIFF is over 6× faster.

Data X-Ray Data X-Ray [65] is an explanation engine that diag-
noses systematic errors in large-scale datasets. From Definition 10
in [65], we can express Data X-Ray’s Diagnosis Cost as a differ-

ence metric: let ε =
FRattrs

FRattrs + FSattrs

, and let α denote the “fixed

factor” that users can parameterize to tune a Data X-Ray query. The
Diagnosis Cost can then be written as:

γdiagnosis_cost :=

{
F = COUNT(*)

h = log 1
α

+ FRattrs log 1
ε

+ FSattrs log 1
1−ε

Once the Diagnosis Cost is computed for all attributes, Data X-Ray
then tries to find the set of explanations with the least cumulative
total cost that explains all errors in the data. The Data X-Ray
authors show that this reduces to a weighted set cover problem, and

they develop an approximate set cover algorithm to determine what
set of explanations to return. Thus, to capture Data X-Ray’s full
functionality, we evaluate a DIFF query to search for explanations,
then post-process the results using a separate weighted set cover
solver. We implement such an engine and find that it obtains the
same output and performance as Data X-Ray.

Scorpion Scorpion [67] is an explanation engine that finds expla-
nations for user-identified outliers in a dataset. To rank explanations,
Scorpion defines a notion of influence in Section 3.2 in [67], which
measures, for an aggregate function f , the delta between f applied
to the entire input table R and f applied to all rows not covered
by the explanation in R. Let g denote the aggregation function
COUNT(*), and let λ denote Scorpion’s interpolation tuning parame-
ter. Then the influence can be expressed as the following difference
metric:

γinfluence :=


F = {f, g}

h = λ
remove(fRglobal, f

R
attrs)

gRattrs

−(1− λ)
remove(fSglobal, f

S
attrs)

gSattrs

In this definition, remove refers to the notion of computing an incre-
mentally removable aggregate, which the Scorpion authors define in
Section 5.1 of their paper. An aggregate is incrementally removable
if the updated result of removing a subset, s, from the inputs, R, can
be computed by only reading s. For example, SUM is incrementally
removable because SUM(R - s) = SUM(R) - SUM(s). Here, we
compute the influence for an explanation by removing the explana-
tion’s aggregate fRattrs from the total aggregate fRglobal; by symmetry,
we do the same for the aggregates on S.

Unlike DIFF, Scorpion explanations can specify sets of values
for a specific dimension column, and can support more flexible
GROUP BY aggregations. Nevertheless, the DIFF operator provides a
powerful way of computing the key influence metric.

RSExplain RSExplain [58] is an explanation engine that provides
a framework for finding explanations in database queries. RSEx-
plain analyzes the effect explanations have on numerical queries, or
arithmetic expressions over aggregation queries (e.g., q1/q2, where
q1 and q2 apply the same aggregation f over different input tables).
RSExplain measures the intervention of an explanation, which is
similar to the influence measure used in Scorpion. For a numerical
query q1/q2 with aggregation f , the intervention difference metric
would be written as:

γintervention :=


F = {f}

h =
remove(fRglobal, f

R
attrs)

remove(fSglobal, f
S
attrs)

Frequent Itemset Mining A classic problem from data mining,
Frequent Itemset Mining (FIM) [2] has a straightforward mapping
to the DIFF operator: we simply construct a DIFF query with an
empty control relation and whose sole difference metric is support.
In our evaluation, we benchmark support-only DIFF queries against
popular open-source frequent itemset miners, such as SPMF [27]
on a single node, and Spark MLlib in the distributed setting . We
find that DIFF is over 36× faster than SPMF’s Apriori, 3.4× faster
than SPMF’s FPGrowth, and up to 4.5× faster than Spark MLlib’s
FPGrowth.

Multi-Structural Databases Multi-structural databases (MSDBs)
are a data model that supports efficient analysis of large, complex
data sets over multiple numerical and hierarchical dimensions [24,
25]. MSDBs store data dimensions as a lattice of topics and define an
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operator called DIFFERENTIATE which returns a set of lattice nodes
corresponding to higher-than-expected outlier data point occurrence
rates.
DIFFERENTIATE approximates an NP-hard optimization problem

that rewards small sets which explain a large fraction of the outlier
data points. Because DIFF operates over relational tables and not MS-
DBs, we cannot precisely capture the semantics of DIFFERENTIATE.
However, we can define a DIFFERENTIATE-like difference metric by
comparing explanation frequency in the outlier set to a background
rate and finding sets of relational attributes for which outliers occur
significantly more often than they do in general.

3.4 Practical Considerations for DIFF

While our definition of DIFF is purposefully broad, we observe
that there are several practical considerations that DIFF query users
undertake to maximize the analytical value of their queries. These
practices are applicable to a broad range of applications and real-
world datasets, especially for industrial workloads. Specifically, a
typical DIFF query has the following properties:

1. The query always uses support as one of its difference metrics.
2. The maximum order of the query is k ≤ 3.
3. The query outputs the most concise explanations—i.e., each

output tuple should be the minimal set of attribute values that
satisfy the difference metrics of the query.

The last property—which we refer to as the minimality property—is
included so that the DIFF query returns valuable results to the user
without overwhelming her with extraneous outputs. Obeying this
property can change the semantics of DIFF and affect its generality
(e.g., running DIFF with just support would no longer generalize to
FIM, since FIM’s goal is to find maximal itemsets [46]), and DIFF

implementations can provide a flag to enable or disable it for a given
query. If minimality is enabled, then there are two opportunities for
optimization: we can i) terminate early and avoid evaluating higher-
order explanations when a lower-order subset already satisfies the
difference metrics, and ii) incrementally prune the search space of
candidate explanations as we compute their difference metric scores,
so long as the difference metric is anti-monotonic.

In general, a difference metric with threshold θ is anti-monotone
if, whenever a set of attribute values A∗ fails to exceed θ, so, too,
will any superset of A∗. The most common example of an anti-
monotonic difference metric is support: the frequency of A∗ in a
table R will always be greater than or equal to any superset of A∗.
We illustrate how to leverage the anti-monotonicity of difference
metrics for faster DIFF evaluation in Section 5.1.

3.5 ANTI DIFF: An extension to DIFF

While the DIFF operator is helpful for finding explanations, analysts
may also be interested in finding data points that are not covered
by explanations. More precisely, for a test relation R and control
relation S, users may want to find tuples r ∈ R whose attribute
values A∗ do not appear in ∆(R,S). To address this use case, we
also introduce the ANTI DIFF operator, which mirrors the DIFF SQL
syntax defined in Figure 1. If ∇ denotes the ANTI DIFF operator,
then we define the k-order ANTI DIFF of R and S to be:

Γ∇A,k(R,S) = {r ∈ R | πA(r) 6∈ πA(∆Γ,A,k(R,S))} (5)

For the scope of this paper, we limit our discussion of the ANTI

DIFF query to this section, and leave any discussion on efficient
implementations of it as future work.

4 Logical Optimizations For DIFF
For many workloads, data analysts need to combine relational fact
tables with dimension tables, which are stored in a large data ware-
house and organized using a snowflake or star schema. Because the
DIFF operator is defined over relational data, we can design logical
optimizations that take advantage of this setting and co-optimize
across other expensive relational operators. These optimizations are
not possible in existing explanation engines, which do not provide
an algebraic abstraction for explanation finding. In this section, we
discuss two logical optimizations: the first is a predicate-pushdown-
based adaptive algorithm for evaluating DIFF in conjunction with
JOINs; it can provide up to 2× speedup on real-world queries over
normalized datasets. The second is a technique that leverages func-
tional dependencies to accelerate DIFF query evaluation when possi-
ble; it can provide up to 20% speedups on datasets with one more
functional dependencies.

Throughout this section—along with the subsequent section on
physical optimizations—we focus on optimizations for DIFF that
make the assumptions in Section 3.4. In addition, the optimizations
discussed in Section 4.1 further assume that DIFF uses exactly two
difference metrics, risk ratio and support.

4.1 DIFF-JOIN Predicate Pushdown

Suppose we have relations R, S, and T , with a common attribute a;
In T , a is a primary key column, and in R and S, a is a foreign key
column. T has additional columns T = {t1, . . . , tn}.

A common query in this setting is to evaluate the DIFF on R

NATURAL JOIN T and S NATURAL JOIN T; we refer to this as a DIFF-
JOIN query. Here, T effectively augments the space of features that
the DIFF operator considers to include T . This occurs frequently
in real-world workflows: when finding explanations, many ana-
lysts wish to augment their datasets with additional metadata (e.g.,
hardware specifications, weather metadata) by executing primary
key-foreign key JOINs [40]. For example, a production engineer who
wants to explain a sudden increase in crash rate across a cluster may
want to augment the crash logs from each server with its hardware
specification and kernel version.

More formally, we wish to evaluate ∆Γ,A,k(R ./a T, S ./a T ),
the k-order DIFF over R ./a T and S ./a T . The naïve approach
to evaluate this query would be to first evaluate each JOIN, then
subsequently evaluate the DIFF on the two intermediate outputs. This
can be costly, however—the JOINs may be expensive to evaluate [1,
53, 55, 66], potentially more expensive than DIFF. Moreover, if
the outputs of the JOINs contain few attribute value combinations
that satisfy the difference metrics, then fully evaluating the JOINs
becomes effectively a wasted step.

The challenge of efficiently evaluating DIFF in conjunction with
one more JOINs is a specialized scenario of the multi-operator query
optimization problem: a small estimation error in the size of one or
more intermediate outputs can transitively yield a very large estima-
tion error for the cost of the entire query plan [38]. This theoretical
fact inspired extensive work in adaptive query processing [21], in-
cluding systems such as Eddies [5] and RIO [7]. Here, we take a
similar approach and design an adaptive algorithm for evaluating the
DIFF-JOIN that avoids the pitfalls of expensive intermediate outputs.

Our adaptive algorithm is summarized in Algorithm 1. We start
by evaluating DIFF on the foreign key columns in R and S (line 2),
but without enforcing the support difference metric.

Evaluating the DIFF on the foreign keys gives us a set of candidate
foreign keys K—these keys will map to candidate values in T . This
is a form of predicate pushdown applied using the risk ratio: rather
than JOIN all tuples in T with R and S, we use the foreign keys to
prune the tuples that do not need to be considered for evaluating the
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Algorithm 1 DIFF-JOIN Predicate Pushdown, support and risk ratio

1: procedure DIFF-JOIN(R, S, T , k, A, θrr, θsupp)
2: K ← ∆Γ=θrr,A,k(πaR, πaS) . DIFF, risk ratio only
3: if |K| > threshold then
4: return ∆Γ={θsupp,θrr},A,k(R ./ T, S ./ T )

5: V ← K o T
6: for t ∈ T do . each tuple
7: for ti ∈ t do . each value
8: if ti ∈ V and ti.pk /∈ K then
9: V ← V ∪ t

return ∆Γ={θsupp,θrr},A,k(R ./ V, S ./ V )

DIFF of R ./ T and S ./ T . We cannot apply the same predicate
pushdown using support, since multiple foreign keys can map to the
same attribute in T , allowing low-support foreign keys to contribute
to a high-support attribute. However, predicate pushdown via the
risk ratio is mathematically possible: suppose we have two foreign
keys x and y, which both map to the same value v in T . The risk
ratio of v—denoted rr(v)—is thus a weighted average of rr(x) and
rr(y). This means that, if rr(v) exceeds the threshold θrr, then
either rr(x) or rr(y) must also exceed θrr. Therefore, the risk ratio
difference metric can be applied on the column a, since at least one
foreign key for a corresponding value in T will always be found.

We continue by semi-joining K with T , which yields our prelim-
inary set of candidate values, V (line 5). However, the semi-join
does not give us the complete set of possible candidates—because
multiple foreign keys can map to the same value, there may be
additional tuples in T that should be included in V . Thus, we loop
over T again; if any attribute value in a tuple t is already present in
V , but t’s primary key is not found in K, then we add t to V (lines
6-9). We conclude by evaluating the DIFF on R ./ V , and S ./ V .

The technique of pushing down the difference metrics to the
foreign keys does not always guarantee a speedup—only when K is
relatively small. Thus, on line 3, we compare the size of K against
a pre-determined threshold. (In our experiments, we found that
threshold = 5000 yielded the best performance.) If |K| exceeds
the threshold, then we abort the algorithm and evaluate the DIFF-
JOIN query using the naïve approach.

4.2 Leveraging Functional Dependencies

As previously described, extensive data collection and augmentation
is commonplace in the monitoring and analytics workloads we con-
sider. Datasets are commonly augmented with additional metadata,
such as hardware specifications or geographic information, that can
yield richer explanations. This, however, can lead to redundancies
or dependencies in the data. In this section, we focus specifically on
how functional dependencies can be used to optimize DIFF queries.

Given a relation R, a set of attributes X ⊆ R functionally deter-
mines another set Y ⊆ R if Y is a function of X . In other words,
X functionally determines Y if knowing that a row contains some
attribute x ∈ X means the row must also contain another particular
attribute y ∈ Y . This relationship is referred to as a functional
dependency (FD) and is denoted X → Y . Examples of commonly
found FDs include location-based FDs (Zip Code→ City) and FDs
arising from user-defined functions or derived features (Raw Tem-
perature → Discretized Temperature). As the output of the DIFF

operator is a set of user-facing explanations, returning results which
contain multiple functionally dependent attributes is both computa-
tionally inefficient and distracting to the end-user. Thus, we present
a logical optimization that leverages FDs.

There are two classes of functional dependencies which we op-
timize differently; an example of each is shown in the following
tables:

Device Zip Code City
iPhone 94016 SF

- 94119 SF
Galaxy S9 94134 SF

Device Country ISO Code
iPhone France -
iPhone - FR

Galaxy S9 India -
Galaxy S9 - IN

In the first class, we have attributes X Y where X → Y but
not Y → X . For example, zip code functionally determines city,
but the reverse is not true. If we ignore this sort of functional de-
pendency, we may end up with uninteresting results like those in
the left table. These results are redundant within each explana-
tion: the City column is redundant with the Zip Code column. We
know that if iPhone-94016 is an explanation, iPhone-94016-SF
is as well. Likewise, if iPhone-94016 is not an explanation, then
iPhone-94016-SF must not be either. Therefore, the DIFF operator
should not consider these combinations of columns.

In the second class of functional dependencies, there exist at-
tributes X and Y where both X → Y and Y → X . This means
thatX and Y are perfectly redundant with one another. For instance,
in the second table, Country→ ISO Code, and ISO Code→ Coun-
try. Naïvely running DIFF over this dataset may return results as in
the right table.

Here, the results are redundant across different explanations.
Given the first and third explanations, we can derive the second
and fourth, and vice versa. We do not need to run DIFF over both
Country and ISO Code, because they provide identical information.

Depending on what types of functional dependencies are ob-
served, the DIFF operator employs the following logical optimiza-
tions: i) If X → Y , do not consider or evaluate explanations
containing both X and Y ; ii) X → Y and Y → X , do not evaluate
or consider explanations containing X . (Or alternatively, do not
evaluate or consider explanations containing Y .) We evaluate the
runtime speedups provided by each of these optimizations in our
evaluation.

5 Physical Optimizations For DIFF
In this section, we discuss the core algorithm underlying DIFF, a
generalization of the Apriori algorithm [2] from the Frequent Itemset
Mining (FIM) literature. Based on the assumptions from Section 3.4,
we apply several physical optimizations, including novel techniques
that exploit specific properties of our datasets and relational model
to deliver speedups of up to 17×.

5.1 Algorithms
The DIFF operator uses the Apriori itemset mining algorithm [2]
as its core subroutine for finding explanations (i.e., itemsets of
attributes). Apriori was developed to efficiently find all itemsets in
a dataset that exceed a support threshold. We chose Apriori instead
of other alternatives, such as FPGrowth, because it is simple and
perfectly parallel, making it easy to distribute and scale.

Our Apriori implementation is a generalization of the original
Apriori introduced in [2]. We build a map from itemsets of attributes
to sets of aggregates. For each explanation order k, we iterate
through all itemsets of attributes of size k in all rows of the dataset.
Upon encountering an itemset, we check if all subsets of order k− 1
pass all anti-monotonic difference metrics. If they did, we update
each of its aggregates. After iterating through all rows and itemsets
for a particular k, we evaluate all difference metrics on the sets of
aggregates associated with itemsets of size k. If an itemset passes
all difference metrics, we return it to the user. If it only passes the
anti-monotonic difference metrics, we consider the itemset during
the subsequent k + 1 pass over the data.

425



While Apriori gives us a scalable algorithm to find explanations,
it performs poorly when applied naïvely to high-dimensional, rela-
tional data of varying cardinalities. In particular, the many reads and
writes to the itemset-aggregate map becomes a bottleneck at large
scales. We now discuss our optimizations that address performance.

5.2 Packed Integers and Column Ordering
To improve the performance of the itemset-aggregates map at query
time we encode on the fly each unique value in the dataset whose
frequency exceeds the support threshold as a 21-bit integer. This
is done by building a frequency map per column, then discarding
entries from each map that do not meet the support threshold. With
this encoding, all explanations can be represented using a single 64-
bit integer, for k up to and including 3. This allows us to index our
map with single packed integers instead of with arrays of integers,
improving overall runtimes by up to 1.7×. This optimization is
possible because the total number of unique values in our datasets
never exceeds 221 even with a support threshold of 0. If the total
number of unique values does exceed 221, we do not perform this
optimization and instead store itemsets as arrays of integers.

To improve the map’s read performance, we borrow from prior
research [45, 64] and use a columnar storage format for our data
layout strategy. Because most reads are for a handful of high-
frequency itemsets, this improves cache performance by avoiding
cache misses on those itemsets, improving runtimes by up to 1.9×.

5.3 Bitmaps
We can further optimize DIFF by leveraging bitmap indexes, a strat-
egy used in MAFIA [15] and other optimized Apriori implementa-
tions [6, 26, 71]. We encode each column as a collection of bitmaps,
one for each unique value in the column. Each bitmap’s ith bit is 1
if the column contained the value in its ith position and 0 otherwise.
To compute the frequency of an itemset, we count the number of
ones in the bitwise AND of the bitmaps corresponding to the itemset.

However, the cost of using bitmaps—both compressed (e.g., Roar-
ing Bitmaps [16]) and uncompressed—in the context of Apriori can
be prohibitive, particularly for high-cardinality datasets, which prior
work does not consider. While each individual AND is fast, the num-
ber of potential bitmaps is proportional to the number of distinct
values in the dataset. Additionally, the number of AND operations is
proportional to

(
n
3

)
, where n is the number of distinct elements in a

given column. This tradeoff between intersection speed and number
of operations is true for compressed bitmaps as well: ANDs are faster
with Roaring Bitmaps only when the bitmaps are sufficiently sparse,
which only holds true for very large n. In our evaluation, we find
that using bitmaps for the CMS dataset with support 0.001 would
require computing over 4M ANDs of bitmaps with 15M bits each.

To combat these issues, we develop a per-column cost model to
determine if bitmaps speed up processing prior to mining itemsets
from a set of columns. This is possible because our data originates
in relational tables, so we know the cardinality of our columns in
advance. The runtime of DIFF without bitmaps on a set of columns is
independent of column cardinalities. However, the runtime of DIFF
with bitmaps is proportional to the product of the cardinalities of
each column. We demonstrate this in Figure 2. On the left, we run
DIFF on three synthetic columns with varying cardinality and find
that bitmap runtime increases with the product of the cardinalities
of the three columns while non-bitmap runtime does not change.
On the right, we fix the cardinalities of two columns and vary the
third and find that bitmap runtime increases linearly with the varied
cardinality, while non-bitmap runtime again does not change.

Given these characteristics of the runtime, a simple cost model
presents itself naturally. Given a set of columns of cardinalities
c1...cN , we should mine itemsets from those columns using bitmaps
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Figure 2: Bitmap vs. non-bitmap performance mining 3-order
itemsets. Left: all columns share same cardinality. Right: two
columns have fixed cardinality and the third varies.

if the product c1 ∗ c2... ∗ cN < r. Here, r is a parameter derived
empirically from experiments similar to those in Figure 2. It is the
ratio tnb

tb/(c1∗c2...c∗N)
where tnb and tb are runtimes mining itemsets

of order N from N columns with cardinalities c1...cN . We find
that for a given machine, r does not change significantly between
datasets. Overall, we show in our evaluation that this selective use
of bitmap indexes improves performance by up to 5×.

6 Implementation
We implement the DIFF operator and the previously described op-
timizations in MB SQL, our extension to MacroBase. We develop
both single-node and distributed implementations of our relational
query engine; in this section, we focus on the distributed setting,
and describe how we integrate the DIFF operator in Spark SQL [4].
We evaluate the distributed scalability of DIFF in our evaluation.

6.1 MB SQL in Spark

For our distributed implementation, we integrate MB SQL with
Spark SQL, which provides a reliable and optimized implementation
of all standard SQL operators and stores structured data as relational
DataFrames. We extend the Catalyst query optimizer—which allows
developers to specify custom rule-based optimizations—to support
our logical optimizations. For standard SQL queries, MB SQL
defers execution to standard Spark SQL and Catalyst optimizations,
while all MacroBase-specific queries, including the DIFF operator,
are i) optimized using our custom Catalyst rules, and ii) translated to
equivalent Spark operators (e.g., map, filter, reduce, groupBy) that
execute our optimized Apriori algorithm. In total, integrating the
DIFF operator with Spark SQL requires ~1600 lines of Java code.

Pruning Optimization A major bottleneck in the distributed Apri-
ori algorithm is the reduce stage when merging per-node itemset-
aggregate maps. Each node’s map contains the number of occur-
rences for every single itemset, which can grow exponentially with
order. Therefore, naïvely merging these maps across nodes can incur
significant communication costs. For example, for MS-Telemetry
A, the reduction of the itemset-aggregate maps is typically an order
of magnitude more expensive than other stages of the computation.

To overcome this bottleneck, we prune each map locally before
reducing, using the anti-monotonic pruning rules introduced in
Section 3.4. Naïvely applying our pruning rules to each local map
may incorrectly remove entries that satisfy the pruning rules on one
node but not another. Therefore, we use a two-pass approach: in
the first pass, we prune the local entries but preserve a copy of the
original map. We reduce the keys of the pruned map into a set of all
entries that pass our pruning rules on any node. Then, in the second
pass, we use this set to prune the original maps and finally combine
the pruned originals to get our result.
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7 Evaluation
To evaluate the scalability and generality of the DIFF operator, we
implement DIFF in MB SQL (an extension of MacroBase) on a
single node and in Apache Spark1. We evaluate the DIFF operator
across a variety of datasets and queries in both of these settings.

7.1 Experimental Setup

Single-node benchmarks were run on an Intel Xeon E5-2690 v4
CPU with 512GB of memory. Distributed benchmarks were run
on Spark v2.2.1 using a GCP cluster comprised of n1-highmem-4

instances, with each worker equipped with 4 vCPUs from a 2.2GHz
Intel E5 v4 (Broadwell) processor, and 26GB of memory.

7.2 Datasets

We benchmark the DIFF operator on the real-world datasets sum-
marized in Tables 2 and 3. Unless otherwise specified, all queries
are executed over all columns in the dataset and use as difference
metrics support with a threshold of 0.01, risk ratio with a threshold
of 2.0, and MAX ORDER 3. We measure and report the end-to-end
query runtime, which includes the time to apply our integer packing,
column ordering, and bitmap optimizations.

Telemetry at Microsoft: With Microsoft’s permission, we use two
of their private datasets, MS-Telemetry A (60GB, 175M rows, 13
columns) and MS-Telemetry B (26GB, 37M rows, 15 columns).
These consist of application telemetry data collected from their
internal dashboarding system. In our benchmarks, we evaluate
Microsoft’s production DIFF queries on both datasets.

Censys Internet Port Scans: The publicly available2 Censys [23]
dataset (75GB, 400M rows, 17 columns), used in the Internet secu-
rity community, consists of port scans across the Internet from two
separate days, three months apart, where each record represents a
distinct IP address. For our single-node experiments, we generate
two smaller versions of this dataset: Censys A (3.6GB, 20M rows,
17 columns) and Censys B (2.6GB, 8M rows, 102 columns). These
datasets are publicly available to researchers at . In our benchmarks,
we evaluate DIFF queries comparing the port scans across the two
days.

Center for Medicare Studies (CMS): The 7.7GB (15M row) Cen-
ter for Medicare Studies dataset, which is publicly available3, lists
registered payments made by pharmaceutical and biotech companies
to doctors. In our benchmarks, we evaluate a DIFF query comparing
changes in payments made between two years (2013 and 2015).

We also benchmarked the scalability of the DIFF operator on a
day’s worth of anonymous scrolling performance data from a single
table used by a production service at Facebook. In our benchmarks,
we evaluate a DIFF query comparing the top 0.1% (p999) of events
for a target metric against the remaining 99.9%. To simulate a
production environment, we ran our benchmarks on a cluster located
in a Facebook datacenter. Each worker in the cluster was equipped
with 56 vCores, 228 GB RAM, and a 10 Gbps Ethernet connection.

7.3 End-to-end Benchmarks

In this section we evaluate the end-to-end performance of DIFF. We
compare DIFF’s performance to other explanation engines as well as
to other related systems such as frequent itemset miners, finding that
performance is at worst equivalent and up to 9× faster on queries
1Our DIFF implementation is open-source and available at https:
//github.com/stanford-futuredata/macrobase
2https://support.censys.io/getting-started/
research-access-to-censys-data
3https://www.cms.gov/OpenPayments/Explore-the-Data/
Data-Overview.html

Table 2: Datasets used for our single-node benchmarks.

Dataset File size (CSV) # rows # columns # 3-order combos

Censys A 3.6 GB 20M 17 19.5M
Censys B 2.6 GB 8M 102 814.9M
CMS 7.7 GB 15M 16 63.8M
MS-Telemetry A 17 GB 50M 13 73.4M
MS-Telemetry B 13 GB 19M 15 1.3B

Table 3: Datasets used for our distributed benchmarks.

Dataset File size (CSV) # rows # columns # 3-order combos

Censys 75 GB 400M 17 38M
MS-Telemetry A 60 GB 175M 13 132M

they support. We then evaluate distributed DIFF’s and find that it
scales to hundreds of millions of rows of data and hundreds of cores.

7.3.1 Generality
In this section, we benchmark DIFF against the core subroutines of
three other explanation engines: Data X-Ray [65], RSExplain [58],
and the original MacroBase [8], matching their semantics using DIFF

as described in Section 3. We also compare DIFF against Apriori and
FPGrowth from SPMF [27] as well as SQL-equivalent DIFF queries
described in Section 3.2 on Postgres. Results are shown in Figure 3.

Original MacroBase We first compare the performance of DIFF

to that of the original MacroBase [8]. We used support and
risk ratio and measured end-to-end runtimes. We found that DIFF
ranged from 1.6× faster on MS-Telemetry A to around 6× faster
on MS-Telemetry B and Censys A than original MacroBase. In
the much larger Censys-B dataset, DIFF finished in 4.5 hours while
MacroBase could not finish in 24 hours. The differences in perfor-
mance here come from our physical optimizations.

Data X-Ray To compare against Data X-Ray, we create a differ-
ence metric from a Data X-ray cost metric, disable minimality, and
feed the DIFF results into Data X-Ray’s own set-cover algorithm
taken from their implementation4. We benchmark Data X-Ray on
MS-Telemetry B because it is our only dataset supporting a query—
explaining systematic failures—that fits Data X-Ray’s intended use
cases. We attempted to run the benchmark on the entire dataset; how-
ever, we repeatedly encountered OutOfMemory errors from Data
X-Ray’s set-cover algorithm during our experiments. Therefore,
we report the experimental results on a subset of MS-Telemetry B
(1M rows). We do not observe any speedup, as the runtime of the
set-cover solver dominated that of the cost calculations and so we
obtain effectively matching results (our performance is 2% worse).

RSExplain To compare against RSExplain, we implement RSEx-
plain’s intervention metric as a difference metric and disable min-
imality. To compute a numerical query subject to the constraints
described in Section 4.1 of the original paper, we calculate results
for each individual query separately and then combine them per-
explanation. We evaluate the performance of this in queries on our
single-node datasets, comparing the ratio of events in the later time
period versus the earlier in Censys A and CMS, the ratio of high-
latency to low-latency events in MS-Telemetry A, and the ratio of
successful to total events in MS-Telemetry B. To reduce runtimes,
we remove a handful (≤ 2) columns with large numbers of unique
values from each dataset. We found that the DIFF implementation
was consistently between 8×-10× faster at calculating intervention
than the originally described data-cube-based algorithm.

Frequent Itemset Mining Though DIFF is semantically more gen-
eral than Frequent Itemset Mining, we compare DIFF’s performance
with popular FIM implementations. Specifically, we compare the
4https://bitbucket.org/xlwang/dataxray-source-code
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runtime of the summarization step of DIFF to the runtimes of the
Apriori and FPGrowth implementations in the popular Java data min-
ing library SPMF [27]. When we run DIFF with only one difference
metric, support, and disable the minimality property, DIFF is seman-
tically equivalent to a frequent itemset miner. DIFF ranges from
11× faster on Censys A to to 36× faster on MB-Telemetry-B than
SPMF Apriori and from 1.1× faster on MS-Telemetry A to 3×
faster on MS-Telemetry B and Censys A than SPMF FPGrowth at
Frequent Itemset Mining. These speedups are due to the physical
optimizations we discuss in Section 5.

Postgres For these experiments, we benchmark DIFF against a se-
mantically equivalent SQL query in Postgres v10.3. We translate the
support and risk ratio to Postgres UDFs and benchmark DIFF queries
on the CMS and Censys A datasets. We find that DIFF is orders of
magnitude faster than the equivalent SQL query.

7.3.2 Distributed

We evaluate the scalability and performance of our distributed im-
plementation of DIFF, described in Section 6, on our largest datasets.

Censys In Figure 4, we run a DIFF using support and risk ratio on
our largest public dataset, 400 million rows of Censys data, on a
varying number of 4-core nodes. This query compares two Internet
port scans (200M rows each) made three months apart to analyze
how the Internet has changed in that time period. We find that this
query scales well with increasing cluster sizes.

Facebook To measure the performance of MB SQL on even larger
datasets, we ran a similar scalability experiment on a day’s worth of
anonymous scrolling performance data from a service at Facebook
using one of their production clusters. Workers in the cluster are
not reserved for individual Spark jobs, but are instead allocated as
containers using a resource manager. We therefore benchmark the
DIFF query for this service at the granularity of a Spark executor.
Each executor receives 32 GB of RAM and 4 cores.

At 50 executors, MB SQL in Spark evaluated our DIFF query in
approximately 2,000 seconds. With fewer executors allocated, MB

SQL’s performance was slowed by significant memory pressure:
more than 10% of the overall compute time was spent on garbage
collection, since the data itself took a significant fraction of the
allocated memory. At 300 executors, which relieved the memory
pressure, MB SQL in Spark evaluated the query in 1,000 seconds.

7.4 Analysis of Optimizations

In this section, we analyze the effectiveness of our physical and log-
ical optimizations. We show that they improve query performance
by up to 17× on a single node and 7× in a cluster.

7.4.1 Single-Node Factor Analysis

We conduct a factor analysis to evaluate the effectiveness of the
physical optimizations described in Section 5 with the results shown
in Figure 5. Our efficient encoding scheme (Packed Integers)
and layout scheme (Column Ordered) produce substantial gains in
performance, improving it by up to 1.7× and 1.9×, respectively.
Applying bitmaps to all columns (All Bitmaps) improves perfor-
mance by up to 5× on datasets with low-cardinality columns, such
as Censys A with a high support threshold, but performs poorly
when columns have high cardinalities. To decide when bitmaps
are appropriate, we use the cost model in Section 5 (Bitmap w/
Cost Model), which produces speedups on all datasets and queries.
We also evaluate the performance of our functional dependency
optimization described in Section 4 (FDs) and find that it produces
speedups of up to 1.2× in all datasets except Censys A and Censys
B, which had no FDs. In total, our optimized implementation is
2.5-17× faster than our unoptimized implementation.

7.4.2 Distributed Factor Analysis

In Figure 6, we conduct a factor analysis to study the effects of
our optimizations in the distributed setting. Because, to our knowl-
edge, no other explanation engines have open-source distributed
implementations to compare to, we benchmark against a popular
distributed frequent itemset miner, the parallel FPGrowth algorithm
first described in [47] and implemented as part of Spark’s MLlib
library. We run our experiments on all 400 million rows of Censys
on a cluster of 25 four-core machines and report throughput.

We find that MB SQL’s DIFF consistently outperforms Spark’s
FPGrowth by 2.5× to 4.5×. Even unoptimized DIFF outperforms
Spark FPGrowth, because our benchmark DIFF queries return low-
order explanations (k ≤ 3), while FPGrowth is designed for finding
higher-order explanations common in Frequent Itemset Mining.
Analyzing the optimizations individually, we find that our efficient
encoding and bitmap schemes produce similar speedups as on a
single core. FDs produce a 10% speedup on MS-Telemetry A. (No
functional dependencies were found in Censys.) Our distributed
pruning optimization produces speedups of up to 6× on datasets
with high-cardinality columns.
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Figure 5: Factor analysis of our optimizations, conducted on a single machine and core. We successively add all optimizations (PI: Packed
Integers, CO: Column Ordered, FDs: Functional Dependencies) discussed in Sections 4 and 5.
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throughput. We also compare against Spark’s FPGrowth.
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DIFF query is run with risk ratio = 10.0 and support = 10−4.

7.4.3 DIFF-JOIN

In this section, we evaluate the performance of our DIFF-JOIN logical
optimization. First, we apply the DIFF-JOIN predicate pushdown al-
gorithm on a normalized version of MS-Telemetry B that requires
a NATURAL JOIN between two fact tables R and S and a single di-
mension table T . We benchmark our optimization against the naïve
approach and find that it improves the query response time by 2×.

In Figure 7, we conduct a synthetic experiment to illustrate the
relationship between |K|, the number of candidate foreign keys,
and our DIFF-JOIN optimization. We set |R| and |S| to be 1M rows,
and |T | to be 100K rows with 4 attributes. In R, we set a subset
of foreign keys to occur with a relative frequency compared to S,
ensuring that this subset becomes K. Then, we measure the runtime
of both our algorithm and the naïve approach on a DIFF query with
risk ratio and support thresholds of 10.0 and 10−4, respectively.

At |K| = 5000, the runtimes of both are roughly equivalent, con-
firming our setting of threshold. As |K| increases, we find that the
runtime of the DIFF-JOIN predicate pushdown algorithm increases as
well—a larger |K| leads to a larger V , the set of candidate values,
which in turn, leads to a more expensive JOIN betweenR and V , and
S and V . For the naïve approach, a larger K leads to shorter overall
runtime due to less time spent in the Apriori stage. The larger set of
candidate keys leads to many single-order and fewer higher-order
attribute combinations, and the Apriori algorithm spends less time
exploring higher-order itemsets.
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7.5 Comparison of Difference Metrics and Parameters

To evaluate the relative performance of MB SQL’s DIFF running with
different difference metrics, we compare their runtimes on CMS. The
results are shown in Figure 8. The Support Only query, equivalent
to classical FIM, is fastest due to its simplicity and amenability
to bitmap optimizations. Combining support with risk ratio (Risk
Ratio) or odds ratio (Odds Ratio) yielded a slightly slower query.
Combining support with the mean shift metric is even slower, since
the mean shift cannot take advantage of our bitmap optimizations.

To evaluate how support and ratio thresholds affect the perfor-
mance of our DIFF implementation, we picked two representative
queries (Risk Ratio and Mean Shift) and ran them with varying
support and ratio. The results are shown in Figure 9. In the left
chart, we confirm that decreasing support increases runtime. At
low supports, Mean Shift outperforms Risk Ratio because the
Mean Shift pruning rules are more efficient (Mean Shift requires
itemsets to be supported among both test and control rows, but Risk
Ratio only among test rows). At higher supports, Risk Ratio
becomes faster as it can take advantage of bitmap optimizations.
Examining the right chart in Figure 9, we find that decreasing either
the risk ratio or the mean shift ratio decreases runtime. This is
attributable to the minimality rule in Section 3.4. At low ratios, most
low-order itemsets that pass the support threshold also pass the ratio
threshold, so their higher-order supersets never need to be consid-
ered. With high ratios, fewer itemsets are pruned by minimality, so
more must be considered.

8 Related Work
Explanation Query Engines Many researchers have explored ex-
tending the functionality of databases to understand causality and
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answer explanation queries, starting with Sarawagi and Sathe’s i3

system. Unlike our proposed DIFF operator, Sarawagi and Sathe’s
DIFF finds differences between two different cells in an OLAP
cube, rather than two relations (or alternatively, two data cubes).
Subsequently, Fagin et al. [24,25] introduce a theoretical framework
for answering explanation queries in their proposed data model, a
multi-structural database. They propose a DIFFERENTIATE operator
that, unlike DIFF, requires solving an NP-hard optimization problem
for an exact answer.

We implemented the DIFF operator as a relational interface for
MacroBase; our difference metrics abstraction generalizes the sup-
port and risk ratio semantics introduced by Bailis et al. [8]. Others
have proposed general frameworks for explanation queries: Roy et
al. [58] developed a formal approach for explanation queries over
multiple relations, but they require computing an entire data cube to
evaluate queries. Wu and Madden [67] introduce a framework for
finding explanations for aggregate queries on a single relation based
on the notion of influence, which we can express using our DIFF

operator. Finally, many specialized explanation query engines have
also been proposed to explain performance bottlenecks [39, 57, 69]
or diagnose data errors [65]; the DIFF operator allows us to express
core subroutines of each of these systems using a single interface
without sacrificing performance.

Feature Selection Finding explanations for trends in large-scale
datasets can be cast as a feature selection problem, an important task
in machine learning [31, 35, 41, 48, 60]. Various feature selection
techniques, such as compressive sensing [12], correlation-based
tests [32], and tree-based approaches [56] are used to select a subset
of relevant features (i.e., variables, predictors) to construct a machine
learning model. Through our difference metric interface, the DIFF

operator presents a generalizable approach for efficiently applying
one or more correlation-based feature selection techniques (e.g.,
chi-squared tests) and retrieving relevant features.

Multiple Hypothesis Testing Because a DIFF query can produce
many explanations, it is potentially vulnerable to false positives
(Type I errors). We can correct for this by calculating p-values for
our difference metrics, as Bailis et al. [8] do for risk ratio. We can
then compare these p-values to our desired confidence thresholds,
applying corrections such as the Bonferroni correction [59] or the
Benjamini-Hochberg procedure [13] to account for the number of
explanations returned. We can then set our support threshold high
enough that any explanation that passes it must be significant. In
our experiments, our support thresholds were high enough given the
relatively small number of explanations returned and relatively large
number of rows in our datasets to ensure statistical significance.

Frequent Itemset Mining Our work draws inspiration from the
Frequent Itemset Mining (FIM) literature [46]; specifically, the DIFF

operator uses a variant of the Apriori algorithm [2] to explore dif-
ferent dimension combinations as itemsets, which are potential ex-
planations that answer a given DIFF query. A substantial amount of
prior work optimizes Apriori performance, such as applying bitmap
indexes for faster candidate generation [6, 15, 26, 71]. This previ-
ous work, however, mostly considers lists of transactions instead
of relational tables and thus has no notion of column cardinality;
we show in Section 7 that cardinality-aware bitmap indexes lead to
substantial improvements for DIFF query evaluation. Additionally,
prior work does not consider opportunities to optimize over rela-
tional data: our experiments illustrate that we can exploit functional
dependencies to prune the search space of Apriori and accelerate
DIFF query performance. Proposals for custom FIM indexes in re-
lational databases—such as I-trees [10] and IMine [11]—apply to
FPGrowth [63], not Apriori.

OLAP Query Optimization Query optimization has long been
a research focus for the database community [18, 28, 33, 34]. In
this paper, we present novel logical optimizations and an efficient
physical implementation for DIFF, a new relational operator. Our
physical optimizations leverage previous techniques used to acceler-
ate OLAP workloads, including columnar storage [64], dictionary
encoding [50], and bitmap indexes [17, 54]. Our implementation of
DIFF requires a data-dependent application of these techniques that
take into account the cardinality of individual attributes. With these
improvements, the DIFF operator can be incorporated into existing
OLAP warehouses, such as Druid [68] and Impala [14].

In addition, our proposed optimizations draw from research in
adaptive query processing [5, 7, 21]. We show in Section 4 how
to optimize DIFF-JOIN queries using our adaptive algorithm, which
builds upon extensive work on optimizing JOINs [52, 53, 55, 61, 62].
Our algorithm also shares similarity with recent work examining the
cost of materializing JOINs in machine learning workloads [19, 44],
including learning over JOINs [42]. Kumar et al. [43] study the
impact of avoiding primary key-foreign key (KFK) JOINs during
feature selection; they develop a set of information-theoretic deci-
sion rules to inform users when a KFK JOIN can be safely avoided
without leading to a lower test accuracy for the downstream machine
learning model. In our work, we assume that the JOIN is beneficial
for the downstream model, and we design an adaptive algorithm for
evaluating the JOIN efficiently in a data-dependent manner.

Lastly, our logical optimizations borrow from previous work
on functional dependencies (FDs), such as CORDS [37], which
mines datasets for FDs. In MB SQL, we do not focus on functional
dependency discovery—we assume that they are provided by the
user. Our contribution is a modified version of the Apriori algorithm
that takes advantage of functional dependencies to prune the search
space during candidate generation.

9 Conclusion
To combat the interoperability and scalability challenges common in
large-scale data explanation tasks, we presented the DIFF operator, a
declarative operator that unifies explanation and feature selection
queries with relational analytics workloads. Because the DIFF query
is semantically equivalent to a standard relational query composed
of UNION, GROUP BY and CUBE operators, it integrates with current an-
alytics pipelines, providing a solution for improved interoperability.
Further, by providing logical and physical optimizations that take
advantage of DIFF’s relational model, we are able to scale to large
industrial workloads across Microsoft and Facebook. We are contin-
uing to develop the DIFF operator with our collaborators, including
Microsoft, Facebook, Censys, and Google, and hope to provide
additional improvements to further boost data analyst productivity.
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