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ABSTRACT
Traditional graph partitioning methods attempt to both min-
imize communication cost and guarantee load balancing in
computation. However, the skewed degree distribution of
natural graphs makes it difficult to simultaneously achieve
the two objectives. This paper proposes topology refactoriza-
tion (TR), a topology-aware method allowing graph-parallel
systems to separately handle the two objectives: refactor-
ization is mainly focused on reducing communication cost,
and partitioning is mainly targeted for balancing the load.
TR transforms a skewed graph into a more communication-
efficient topology through fusion and fission, where the fu-
sion operation organizes a set of neighboring low-degree ver-
tices into a super-vertex, and the fission operation splits a
high-degree vertex into a set of sibling sub-vertices.

Based on TR, we design an efficient graph-parallel system
(TopoX) which pipelines refactorization with partitioning to
both reduce communication cost and balance computation
load. Prototype evaluation shows that TopoX outperforms
state-of-the-art PowerLyra by up to 78.5% (from 37.2%)
on real-world graphs and is significantly faster than other
graph-parallel systems, while only introducing small refac-
torization overhead and memory consumption.
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1. INTRODUCTION
Graph computation is central to machine-learning-data-

mining (MLDM) applications such as social computing, rec-
ommendation, and language processing [16, 45, 62, 8, 42].
Graph processing on a single machine has been extensively
studied [64, 52, 28, 41, 38, 44, 58, 44, 18] and has achieved
remarkably high efficiency. However, the rapidly-growing
graph size has exceeded the capacity of any individual ma-
chines. This has recently driven the study of graph-parallel
systems [32, 51] including Pregel [34], Giraph [47], Blo-
gel [55], GraphLab [31], PowerGraph [15], GraphX [17],
GraphBuilder [21], PowerLyra [10], GraphA [29], HDRF
[40], Cube [59] and Gemini [63].

While reducing per-machine computation load, parallel
processing faces difficulty in graph partitioning [24, 6], which
is crucial for both reducing the communication cost and
balancing the load in graph-parallel systems. Further, real-
world natural graphs usually have skewed distributions of
vertex degrees where a small subset of vertices tend to have
a large number of neighbors [17], making it even more chal-
lenging for efficient partitioning.

Early graph-parallel systems (like Pregel [34] and Graph-
Lab [31]) partition a graph by cutting the edges to evenly
distribute the vertices. These edge-cut systems suffer from
imbalanced computation and communication for high-degree
vertices. In contrast, vertex-cut systems (like PowerGraph
[15] and GraphX [17]) cut the vertices and evenly distribute
the edges among machines. Although vertex-cut alleviates
the imbalance problem of high-degree vertices, it incurs high
communication cost and excessive memory consumption for
low-degree vertices. Recently, PowerLyra [10] proposes the
hybrid-cut strategy to address this problem, which differen-
tiates high-degree and low-degree vertices by (i) assigning
the edges of a high-degree vertex to all machines to evenly
distribute the computation load and (ii) assigning the edges
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of a low-degree vertex to the same machine to reduce un-
necessary communication.

Essentially, the partitioning procedure divides a graph
into n sub-graphs in an n-machine cluster, each being as-
signed to one worker machine. Traditional graph partition-
ing methods attempt to both minimize communication cost
(i.e., minimize the number of edges spanning the n sub-
graphs) and guarantee load balancing (i.e., evenly distribute
the vertices/edges among the n sub-graphs) in computa-
tion. However, the skewed degree distribution of natural
graphs makes it difficult to simultaneously achieve the two
objectives: such ideal partitioning is NP-hard (incurring
overwhelming coordination overhead in large-scale graph-
parallel systems) and cannot be achieved for large graphs.
Consequently, most (edge-cut, vertex-cut and hybrid-cut)
partitioning methods cut individual vertices or edges (prob-
ably with per-machine locality heuristics) and thus cannot
leverage the topology information of the graphs.

To address this problem, in this paper we propose topol-
ogy refactorization (TR), a topology-aware method that al-
lows graph-parallel systems to separately handle the two
objectives: refactorization is mainly focused on reducing
communication cost, and partitioning is mainly targeted for
balancing the load. TR transforms a skewed graph into a
more communication-efficient topology (with slight imbal-
ance) before partitioning. At the core of TR is the fusion op-
eration which merges a set of neighboring low-degree vertices
into a super-vertex to reduce communication cost. TR also
performs the fission operation which splits a high-degree
vertex into a set of sibling sub-vertices (similar to hybrid-
cut) to eliminate computation bottlenecks. The refactorized
graph is partitioned by uniformly distributing the super- and
sub-vertices (along with edges) to all workers.

Based on TR, we design an efficient graph-parallel sys-
tem called TopoX, which pipelines refactorization with par-
titioning to both reduce communication cost and balance
computation load. For abelian [3] algorithms, we propose
the delta-based GAS (D-GAS) model by extending delta-
caching [15] of PowerGraph, so as to further reduce the
communication cost. Compared to delta-caching, D-GAS
reduces the (maximum) communication cost per active mir-
ror from 4 to 2 messages. We have implemented a prototype
of TopoX on PowerGraph [15]. Extensive evaluation shows
that TopoX outperforms state-of-the-art PowerLyra by up
to 78.5% (from 37.2%) on real-world skewed graphs and is
much faster than other systems like PowerGraph, GraphX
and Blogel, while only introducing small refactorization and
partitioning overhead and memory consumption.

This paper makes the following contributions:

• We present the TR method which transforms a skewed
graph into a better topology, and design the corre-
sponding partitioning method.
• We propose the delta-based GAS computation model

for abelian algorithms, which is more efficient than
delta-caching in graph-parallel systems.
• We implement a comprehensive and high-performance

prototype (TopoX) integrating TR, pipelined parti-
tioning, and standard/delta-based GAS.

The rest of this paper is organized as follows. Section 2
introduces the background of graph partitioning and com-
putation. Section 3 presents an overview of topology refac-
torization. Section 4 discusses the design of parallel factor-
ization, partitioning and computation. Section 5 introduces

the PowerGraph-based implementation of TopoX as well as
the D-GAS model. Section 6 presents the evaluation results.
Section 7 discusses related work. And finally Section 8
concludes the paper.

2. BACKGROUND
For a graph G = {V,E} where V is the vertex set and E

is the edge set, graph computation is abstracted as a vertex-
program Q(u) that is executed on each u ∈ V and interacts
with Q(v) where v is an in-/out-neighbor of u (denoted by
v ∈ Γ(u)). This section will review current partitioning
methods of edge-cut (Section 2.1), vertex-cut and hybrid-
cut (Section 2.2), and analyze the processing in the standard
GAS model [15] of graph-parallel systems (Section 2.3).

2.1 Edge-Cut
Edge-cut systems [31, 34, 46, 47, 48] evenly distribute

vertices to multiple workers each of which maintains a con-
sistent partial state of the graph. For example, Pregel [34]
adopts a bulk synchronous parallel (BSP) message passing
abstraction where all vertex programs run simultaneously
in a sequence of super-steps, and GraphLab [31] adopts an
asynchronous and distributed shared-memory abstraction
where vertex programs have shared access to a distributed
graph. Edge-cut systems perform well for balanced graphs
with low-degree vertices [15].

However, real-world natural graphs (such as social net-
works and the web) usually have skewed power-law degree
distributions, where most vertices have a small number of
neighbors and a few vertices have many neighbors. For
instance, 1% of the vertices in the Twitter network graph
[27] are connected to almost 50% of all the edges. Specifi-
cally, under a power-law degree distribution the probability
P (d) that a vertex has degree d is given by P (d) ∝ d−α,
where the positive constant α controls the skewness of the
distribution. Higher exponent α indicates lower density and
less high-degree vertices. The computation load of a vertex
is proportional to the vertex degree [15], so the skewness
leads to significant computation load imbalance in edge-cut
systems. The execution on workers having more high-degree
vertices could be much slower than that on workers having
more low-degree vertices.

2.2 Vertex-Cut & Hybrid-Cut
To address the challenge of high-degree vertices in natural

graphs, Gonzalez et al. [15] abstract graph computation into
the GAS model (§2.3), a general model which could express
a wide range of abstractions including Pregel’s BSP message
passing [34] and GraphLab’s asynchronous shared-memory
[31]. Following GAS, PowerGraph [15] partitions a graph
by cutting vertices instead of edges and evenly assigning
the vertices to workers. However, since PowerGraph in-
discriminately cuts all vertices, it incurs unnecessarily high
communication cost and excessive memory consumption for
low-degree vertices. Other vertex-cut systems (like GraphX
[17] and GraphBuilder [21]) have similar problems for low-
degree vertices.

To address this problem, PowerLyra [10] proposes hybrid-
cut, which distinguishes the processing of low-degree and
high-degree vertices. Hybrid-cut evenly distributes the edges
of a high-degree vertex among workers (following vertex-cut)
to distribute the computation load, and assigns all the edges
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Figure 1: Hybrid-cut partitioning. Right: blue and
yellow circles respectively represent masters and
pmirrors.

of a low-degree vertex to the same worker (following edge-
cut) to reduce communication.

In hybrid-cut, each vertex is assigned to a machine by
hashing its ID. If an edge (e) is assigned together with one
of its vertex (s) to machine M and e’s other vertex (t) is
assigned to machine M ′ 6= M , then vertex s will have a
master replica on M , and vertex t will have a master replica
on M ′ as well as a mirror replica on M . Without loss of
generality, PowerLyra performs hybrid-cut by considering
the in-degrees of vertices: if the target vertex of an edge
(e) is low-in-degree then e will be assigned with its target;
otherwise (if e’s target is high-in-degree) e will be assigned
with its source.

Consider the graph in Fig. 1 (left). Suppose that the
degree threshold is 3, i.e., a vertex is considered to be high-
degree if its in-degree ≥ 3. Consequently, in Fig. 1 (left) ver-
tex A is high-degree and all others are low-degree. Suppose
that vertices S1, S2, S5, T2 and B are hashed to Machine1
and vertices S3, S4, T1, T3, T4 and A to Machine2. Then,
the in-edges of vertex A, namely, <S1, A>, <S2, A> and
<S3, A> will be assigned with their source vertices (source
hashing); and the in-edges of all other vertices, namely,
<A, T1>, <A, T2>, <A, T3>, <S4, B>, <S5, B>, <B, T1>,
<B, T4> will be assigned with their target vertices (target
hashing). The result is shown in Fig. 1 (right), where the
blue and yellow circles respectively represent the masters
and mirrors.

2.3 Distributed GAS Model
The Gather-Apply-Scatter (GAS) model is widely adopted

in distributed graph processing. It comprises three concep-
tual phases running on each vertex u. In the Gather phase,
u collects its neighboring information via Gather() to get
a generalized sum over the adjacent vertices and edges of
vertex u.

The generalized sum operation must be commutative and
associative, such as numerical sum, max, min, and set union
of neighboring vertices/edges [15]. In the Apply phase, The
sum is passed to Apply() to calculate the new value of u.
In the Scatter phase, vertex u uses Scatter() to update the
data on adjacent edges and activate further GAS phases of
adjacent vertices in the next iteration.

In graph-parallel systems, the master/mirror replicas of
vertices significantly complicate the GAS model. Consider
the high-degree vertex A in Fig. 1 (right), which follows
hybrid-cut to adopt source hashing for its in-edges and thus
has a master on Machine2 and a mirror on Machine1. Data
is gathered along in-edges and scattered along out-edges.
The distributed GAS phases are as follows.

A A

A

S1 S2

①Acc1 = S1.data + S2.data

②Acc1
A

S3

①Acc2 = S3.data

③Acc = Acc1 + Acc2

Machine1 Machine2

A
②A.newdata

A ①A.newdata = ƒ(Acc)

③A.newdata = A.newdata

Machine1 Machine2

A

T2

A

T1 T3

①A.newdata ‐ A.lastdata < ε?
If not, execute ②  

②M(active)

③activate ③activate

Machine1 Machine2

(a) Gather phase

(b) Apply phase

(c) Scatter phase 1

A

S1 S2

④M(active)
A

S3

③activate

⑤if being activated, A is active, 
execute ⑥ 

③activate

⑦if being activated, A is active 
⑥M(active)

Machine1 Machine2
(d) Scatter phase 2

Figure 2: Example of the distributed GAS model.
Vertex A is high-degree. Note that in the imple-
mentation of PowerGraph (v2.2), Fig. 2 (c) is called
Scatter phase and Fig. 2 (d) is further decomposed
into a Receive phase (R) and a Send phase (X).

Gather. As shown in Fig. 2 (a), in the Gather phase the
data is collected along the in-edges of A. First, both A’s
master (on Machine2) and mirror (on Machine1) collect the
partial sum (Acc2 and Acc1, respectively) from their in-
neighbors. Second, the partial sum (Acc1) of A’s mirror
is sent to A’s master. And last, A’s master computes the
sum (Acc = Acc1 + Acc2).

Apply. As shown in Fig. 2 (b), in the Apply phase A’s mas-
ter (on Machine2) applies f on the sum (Acc) to compute
the new value, which is sent to A’s mirror (on Machine1).
Then the mirror is updated with the new value.

Scatter. The Scatter phase is to figure out whether to
activate the next iteration of GAS phases, and could be
divided into two subphases. In Scatter phase 1 (Fig. 2 (c)),
A’s master (on Machine2) first computes the delta between
the new and old values. If the delta is greater than a
predefined threshold (ε), the master will send an activation
message to the mirror (on Machine1), and both the master
and the mirror will then activate their out-neighbors (T1

and T3 for the master, and T2 for the mirror, respectively).
The above processing is also performed on A’s in-neighbors
(S1, S2 and S3), which may or may not activate A in their
Scatter phase 1. As shown in Fig. 2 (d), if the mirror of A is
activated then in Scatter phase 2 it will send an activation
message to the master. And if the master is activated by its
in-neighbors or receives activation messages from its mirrors,
it will be active in the next iteration and activate all its
mirrors, so that both the master and the mirrors will collect
data in (the Gather phase of) the next iteration.
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Standard GAS model

GAS model + delta‐cache
Hybrid‐LRF

Hybrid‐BL
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HDRF
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 Delta‐based GAS model

TR

Partitioning Computation
E.g., count degrees, 
differentiate vertices, 

……

Loader

Preprocessing

Figure 3: Overview of TopoX. Blue components are
newly designed. Processing in dashed rectangles is
pipelined.

The GAS phases for low-degree vertices (which adopts
target hashing) are simpler than that for high-degree ver-
tices. Consider the low-degree vertex B in Fig. 1 (right).
Since all the in-edges of B (<S4, B> and <S5, B>) are
assigned to Machine1 by hashing B, only B’s master (on
Machine1) has in-edges and B’s mirror (on Machine2) has
no in-edges. Therefore, in Gather there is no communication
for transferring partial sums from B’s mirror to B’s master;
and in Scatter all activation messages are received only by
B’s master and B’s mirror will never perform the collect
operation in the next Gather phase, so the entire Scatter
phase 2 (Fig. 2 (d)) could be omitted.

Although target hashing is simpler than source hashing,
hybrid-cut adopts it only for low-degree vertices. This is
because for target hashing (i) all the computation along
the in-edges is performed on the target which causes im-
balance; and (ii) the source vertex (e.g., S4) of each in-edge
(<S4, B> in Fig. 1 (right)) of the target (B) has a mirror
(S4 on Machine1) if the target and source are hashed to
different machines.

3. ARCHITECTURE OVERVIEW
As shown in Fig. 3, traditionally there are three processing

stages after loading the graph, namely, (i) preprocessing
such as counting degrees and differentiating vertices [10],
(ii) partitioning where the vertices and edges are assigned
to workers using various strategies such as Random, HDRF
[40], Grid, and hybrid-cut, and (iii) computation where the
graph engine runs graph applications following the GAS
model or its variations. For partitioning, most strategies (in-
cluding edge-cut, vertex-cut, and hybrid-cut) cut individual
vertices/edges by hashing the vertices (probably with per-
machine locality heuristics) to divide a graph, making them
unable to leverage the topology information for reducing
communication cost.

Topology refactorization (TR) could be viewed as a spe-
cial preprocessing phase before partitioning. As shown in
Fig. 3, TR consists of an edge table constructor and a refac-
torizer, which collaboratively perform fusion and fission on
vertices/edges to obtain a more balanced topology. Fusion
merges a set of neighboring low-degree vertices into a super-
vertex, and fission splits a high-degree vertex into a set of
sibling sub-vertices. The new topology is partitioned by
evenly distributing the super- and sub-vertices, adopting the
hybrid-BL partitioning method (an extension of hybrid-cut
[10]) which could be pipelined with refactorization for both
reducing communication cost and balancing the load. TR
and hybrid-BL will be introduced in §4.

A

T1 T2

S1

B

S2

C

Super 
vertex

D ED E

A’

(a) Original graph (b) Refactorized graph

t1 t2

t3

Figure 4: Refactorization. Fusion merges neighbor-
ing low-degree vertices to a super-vertex A′. Fission
splits the high-degree vertex (T1) into sub-vertices
(t1, t2, t3).

After partitioning, graph computation could be performed
following the standard GAS model. As shown in Fig. 3,
TopoX further introduces the delta-based GAS model (D-
GAS) for abelian [3] algorithms, which transfers the delta
(instead of the value) of vertices to reduce the communica-
tion cost in graph computation. The D-GAS model will be
introduced in §5.

4. TOPOLOGY REFACTORIZATION
In GAS model, the replication factor (λ) is defined as

the average number of replicas for all vertices, indicating
the expected communication cost in graph computation.
Traditional graph partitioning methods [15] simultaneously
have two objectives: (i) minimize communication cost (i.e.,
reduce the replication factor), and (ii) guarantee load bal-
ancing (i.e., evenly distribute the edges among sub-graphs).

The optimal partitioning problem is NP-hard [15] and
thus cannot be solved for large graphs. To alleviate this
problem, in this paper we propose to separate the two ob-
jectives by introducing refactorization (including fusion and
fission) before partitioning: refactorization is mainly fo-
cused on reducing the replication factor, and partitioning
is mainly targeted for balancing the load.

4.1 Fusion & Fission
Fusion. TR performs fusion by (i) randomly choosing a
(low-degree) center vertex, and (ii) attaching its h-hop (h ≤
γ) low-degree neighbors where the radius γ is the maximum
number of hops from any inner vertex to the center. During
fusion, both in-neighbors and out-neighbors satisfying h ≤
γ are added into the super-vertex no matter along which
direction the data is gathered/scattered, so as to eliminate
communication within a super-vertex. Consider the original
topology depicted in Fig. 4(a). Taking a low-degree vertex A
as the center and assuming radius γ = 2, its fusion procedure
is as follows.

First, TR constructs an empty super-vertex A′ and add
A into A′. Second, TR adds all the one-hop low-degree
neighbors (S1, S2, T2) of A, together with the in-edges and
out-edges to the super-vertex A′. High-degree neighbors
(T1) are skipped and will be processed with fission (dis-
cussed later). Third, TR adds all the one-hop low-degree
neighbors of S1, S2, T2 (i.e., two-hop neighbors of A) with
edges to A′. The resulting (logical) topology is depicted
in Fig. 4(b), where the super-vertex A′ consists of A and
its one-hop and two-hop low-degree neighbors. After fusion
the edges inside A′ (e.g., <S1, A>) become invisible in the
new topology. The super-vertices’ edges will be assigned

894



with their target vertices during partitioning. For instance,
<D,A′> and <A′, E> are assigned together with A′ and
E, respectively. Note that different from Blogel [55], TR
is transparent to programmers and allows the more flexible
vertex-level communication without super-vertex-level mes-
sage aggregation before communication in each phase.

Fission. TR performs fission on a high-degree vertex by
splitting it into a set of sub-vertices each having a smaller
degree. Intuitively, the degrees of sub-vertices should be
similar to that of super-vertices so as to achieve load bal-
ancing by evenly distributing all super- and sub-vertices.
However, the super-vertex degrees will not be known until all
fusion operations complete, causing time-consuming fission-
after-fusion dependencies. Inspired by the splitting process
on high-degree vertices in previous studies [15, 10, 30, 39],
we perform fission without waiting for fusion by (i) splitting
a high-degree vertex (vh) into n sub-vertices (where n is the
number of workers) each being assigned to one worker, and
(ii) assigning vh’s edges (e = <u, vh> or <vh, u>) according
to (the hash of) the opposite ends (vertices u).

Without loss of generality, suppose that the vertex (e.g.,
T1 in Fig. 4(a)) is high-in-degree. Then the edges to the
high-in-degree vertex T1 (split into t1, t2, t3 in Fig. 4(b)) will
be assigned together with their source vertices during parti-
tioning. Fission evenly distributes the computation load of
each high-degree vertex to all workers, and thus introduces
no imbalance in partitioning all high-degree vertices.

Refactorization vs. locality-constraint. Existing par-
titioning strategies usually adopt locality constrained poli-
cies, such as Oblivious/Coordinated [15], Grid [21], Gin-
ger [10], and HDRF [40], to restrict local edge placement.
They configure a constraint set S(v) for each vertex v and
place an edge <u, v> in one of the workers ∈ S(u) ∩ S(v).
In these strategies, workers independently follow the con-
straints when partitioning/placing the edges in parallel. The
locality-constraint policies attempt to simultaneously achieve
the two objectives of (i) minimizing the replication factor
(λ) and (ii) balancing the load. Consequently, there is no
guarantee for a set of neighboring vertices/edges to be placed
on the same worker. For instance, PowerLyra Ginger [10]
assigns each individual vertex to a worker by calculating
the (temporarily) minimum λ (which might be inconsistent
with the final λ) and thus cannot ensure the blue vertices (in
Fig. 4(a)) to be placed together. In contrast, TR explicitly
transforms the original graph, allowing graph-parallel sys-
tems to separately handle the two objectives (as discussed
in §4.2).

Refactorization vs. coarsening. Some Pregel-like sys-
tems [55, 47, 14] coarsen a graph by grouping neighbor-
ing vertices and merging duplicated edges between groups.
They follow Pregel’s BSP model and expose group-aware
API to users for aggregating inter-group communication in
each superstep. or instance, Blogel [55] (a variation of Pregel
[34]) divides a graph into blocks. A block has at most one
edge from/to another block, and a vertex v belongs to a
block only if v is closer to the block’s center than to any
other blocks’ centers. Blogel performs better than Pregel
since coarsening eliminates intra-block communication. The
Block communication model is straightforward for traversal
and aggregation applications such as CC and SSSP [40], but
could significantly complicate a broad range of other graph
applications. To implement PageRank over a coarsened

graph, for example, in each superstep Blogel (i) computes
the local PageRank of each v ∈ V (B), denoted by lpr(v), (ii)
for each block B, constructs Γ(B) from Γ(v) of all v ∈ V (B)
following a specific algorithm [23], to assign a weight to
each out-edge, (iii) computes the BlockRank of each block,
denoted by br(B), (iv) distributes the BlockRank to out-
neighbors proportionally to the edge weights, and (v) com-
putes the PageRank of each vertex by pr(v) = lpr(v) ×
br(block(v)). Moreover, it is nontrivial to adapt the BSP-
based systems to the GAS model, which prevents them from
applying vertex-cut and thus causes poor performance when
computing at high-degree vertices [15]. In contrast, TR does
not coarsen the graph, and allows communication between
vertices rather than super-vertices.

4.2 Parallel Refactorization
By introducing refactorization, we could divide the tra-

ditional graph partitioning procedure into two stages: (i)
refactorizing the original low- and high-degree vertices to
get super- and sub-vertices, and (ii) assigning the super- and
sub-vertices to the n workers. Since the fission operation for
a high-degree vertex simply generates n replicas each evenly
having 1

n
share of the edges (similar to hybrid-cut [10])

as discussed in §4.1, the main challenge lies in the fusion
operation for low-degree vertices.

Our basic idea for fusion is to focus on the objective of
minimizing λ. Slight imbalance between super-vertices is ac-
ceptable because the second assignment stage can handle it.
Therefore, instead of generating strictly equal-sized super-
vertices, in the fusion stage we limit the super-vertices’ ra-
dius to obtain roughly equal sizes. We then resort to the
second assignment/partitioning stage to satisfy the require-
ment of load balancing.

Parallel refactorization algorithm. As shown in Algo-
rithm 1, each worker first reads a subgraph G′ of the graph,
and builds the local in-edge/out-edge tables (IET/OET)
for indexing the edges (Line 3). For instance, in the IET
table the corresponding entry for vertex A (in Fig. 1) is
“target: A; source: S1, S2, S3”, and in the OET table the
corresponding entry is “source: A; target: T1, T2, T3”. Each
worker initializes an empty fusion-queue (Q) to allow fusion
requests from others.

There is a main loop (Line 5) for distributed refactoriza-
tion. In the loop, if Q is empty then a vertex v is taken out
(Line 7). If v is low-degree and has no super-vertex, then it
initiates a super-vertex taking itself as the center (Line 9).
Then v performs fusion (Line 25) where for each neighbor
(w) it adds w and the in-/out-edge to the super-vertex (Lines
31, 32), and notifies the worker (where the subgraph of w
resides) to move w to Q (Line 33).

If vertex v is high-degree, then the worker performs fis-

sion (Line 11), which (i) generates n sub-vertices ψ
(i)
v (i =

1, 2, · · · , n) of v, (ii) assigns each of the nmachinesM (i) with

a sub-vertex ψ
(i)
v , and (iii) splits v’s edges into n subsets by

hashing v’s opposite end (u). The ith edge subset is attached

to ψ
(i)
v .

If Q is not empty (Line 13) then a vertex u (which has
been previously added to Q by another worker in Line 33)
is taken out of Q. If u has not been processed by the worker
and the radius of u’s super-vertex Υu is lower than the
threshold γ, then the worker further performs fusion on u
(Line 16). Otherwise the current pass completes.
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Algorithm 1 Parallel Refactorization

1: procedure Refactorization(Subgraph G′)
2: V ′ ← local vertex subset
3: build local in-/out-edge tables (IET/OET) for G′

4: initialize an empty fusion-queue Q
5: while V ′ is NOT empty do
6: if Q is empty then
7: take a vertex v out of V ′

8: if v is low-degree and v.super is NULL then
9: InitFusion(v)

10: else if v is high-degree then
11: Fission(v)
12: end if
13: else
14: take a vertex u out of Q
15: if u has NOT been completely processed

before and u.super.radius < Threshold γ then
16: Fusion(u)
17: end if
18: end if
19: end while
20: end procedure

21: procedure InitFusion(Vertex u)
22: construct an empty super-vertex Υu for u
23: u.super ← Υu

24: if u.super.radius < Threshold γ then
25: Fusion(u)
26: end if
27: end procedure

28: procedure Fusion(Vertex u)
29: for each neighbor w of u do
30: if w.super is NULL then
31: w.super ← u.super
32: add e between u and w to u.super’s edge set
33: if w ∈ V ′ then move w from V ′ to Q
34: end if
35: end for
36: end procedure

37: procedure Fission(Vertex v)

38: for each machine M (i) do
39: generate a sub-vertex ψ

(i)
v of v

40: end for
41: for each neighbor u of v do
42: if u is hashed onto machine M (i) then
43: add edge e between u and v to sub-vertex

ψ
(i)
v ’s edge set

44: end if
45: end for
46: end procedure

Center vertex vs. affiliated vertex. We refer to the
center of a super-vertex as center and others as affiliated
vertices. The center proactively initiates its super-vertex
(e.g., to find the host machine) while the affiliated vertices
passively accept the arrangement. The affiliated vertices
from Q (Line 14) are processed with higher priority than
the center from the local vertex subset V ′ (Line 7), to add
as much as possible affiliated vertices into one super-vertex
instead of initiating more super-vertices. The affiliated ver-

tices could be further divided into inner vertices (whose
radius < γ) and border vertices (whose radius = γ), where
inner vertices recursively invoke Fusion(), and border ver-
tices stop further fusion operations. A border vertex of one
super-vertex might be a border or inner vertex of another
super-vertex. During refactorization, we use locks to avoid
possible conflicts of multi-threaded data access on a single
machine, e.g., when moving a vertex out of the local vertex
set V ′ (Lines 7 and 33).

Threshold for super-vertex size. The threshold of super-
vertices is for controlling their sizes for load balancing. Orig-
inally, we had used the number of edges in a super-vertex
as the threshold, which directly reflects the computation
load. Different from the radius threshold which could be
predefined and well-known by all machines, however, the
edge number threshold required the workers to dynamically
coordinate the overall numbers of assigned edges, which
induced overwhelming synchronization overhead in large-
scale graph computation.

Therefore, we use the radius (Lines 15 and 24) as the
threshold for the size of a super-vertex. Although super-
vertices with the same radius may have different number
of edges, if the radius is not too large the difference will
be small enough (note that fusion only involves low-degree
vertices) to be easily balanced in the second assignment
stage. The radius threshold controls the tradeoff between
computation balance and communication overhead. Higher
radius results in larger super-vertices and consequently less
inter-machine communication. However, it will also make
some worker machines passively process more affiliated ver-
tices (Line 16) while others proactively process more center
vertices (Line 9). This exacerbates the imbalance due to
passive assignments, which will be evaluated in more details
in §6.6.

4.3 Partitioning after Refactorization
A graph could be partitioned by evenly assigning its ver-

tices/edges to all workers. For a super-vertex, all its vertices
and edges are assigned with its center, and its cross-border
edges are assigned with their targets. For a sub-vertex, there
are no inner edges and all the edges are assigned with the
opposite ends of the high-degree sub-vertex.

We follow the recent analysis [51] of existing partitioning
strategies and extend the state-of-the-art hybrid-cut strat-
egy [10] to design hybrid-BL, a hybrid and refactorization-
aware partitioning method for balancing the computation
load. Hybrid-BL avoids global coordination by letting each
worker assign its super- and sub-vertices according to its
local knowledge about the load. It pipelines refactorization
and partitioning to reduce the ingress time. Specifically,
during the initiation of an empty super-vertex S on the
current worker M (Line 22 in Algorithm 1), S is assigned
to the least-loaded worker M ′ to which M has assigned the
least edges; and in the fusion of S, each of the edges of S is
assigned to M ′ (Line 32).

Originally, we had designed a replication-factor-optimized
partitioning method called hybrid-LRF (least replication fac-
tor). Instead of pipelining, Hybrid-LRF performs parti-
tioning after refactorization to calculate the best placement
for each super-vertex. After refactorization is complete,
consider the placement of the (i + 1)th edge of a worker
M given the i edges that have been assigned by M . Each
super-vertex is assigned to its optimal worker M ′ that causes
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Figure 5: Phases in the D-GAS model of TopoX,
assuming v is high-in-degree and its in-edges adopt
source hashing. Compared to D-Cache, D-GAS
avoids communication in Scatter phase.

the smallest increase of the replication factor for M . As
shown in §6.6, although slightly reducing the replication
factors, hybrid-LRF not only guarantees no balancing but
also introduces much higher partitioning overhead compared
to hybrid-BL, and thus is not recommended.

5. TOPOX GRAPH ENGINE

5.1 Standard GAS Model
TopoX follows the standard GAS model (Section 2.3) for

computation on the refactorized graph, which provides a
general abstraction supporting gather/scatter in both di-
rections of edges. Without loss of generality, consider an
algorithm (e.g., PageRank in Fig. 2) which performs both
gather and scatter along the directions of edges. In the
Gather phase, each vertex v has its master and mirrors
(if exist) compute the partial sum from their in-neighbors
and accumulate the results to the master. In the Apply
phase, the master of v applies f on the accumulated sum and
updates its mirrors. And in the Scatter phase, the master
and the mirrors activate their out-neighbors if the deltas
between the current and previous values are greater than
the threshold. All the low-degree vertices in a super-vertex
are assigned to the same worker, so TopoX reduces the
inter-machine communication; and each high-degree vertex
is divided and assigned to all workers, so TopoX balances
the load.

5.2 Delta-Based GAS (D-GAS) Model
We propose the delta-based GAS (D-GAS) model to fur-

ther improve the communication efficiency of TopoX for
abelian algorithms [15] (like PageRank). D-GAS borrows
the idea of delta transfer from delta-caching [15] and shared-
memory systems [63], which allows the master/mirror ver-
tices to transfer the deltas (instead of the partial sum and
activation messages) in the Gather and Scatter phases.

Fig. 5 shows an example of the different phases in our D-
GAS model. In the (i − 1)th iteration, suppose S1, S2 and

Table 1: Communication cost of GAS, D-Cache and
D-GAS. H: high-degree vertices. I: (low-degree)
inner vertices. B: (low-degree) border vertices. m: #
mirrors.

Model Comm. Cost

PowerGraph GAS ≤ 5m
PowerGraph D-Cache ≤ 4m

TopoX GAS I: 0; B: ≤ m; H: ≤ 4m
TopoX D-GAS I: 0; B: ≤ m; H: ≤ 2m

S3 are active. In the Scatter phase (in Fig. 5a (1)), they
will pass their deltas to their out-neighbors, i.e., both the
(yellow) mirrors and the (blue) master of V . The (i− 1)th

iteration completes when all vertices finish their Scatter
phases. Then, in the Gather phase of the ith iteration
(in Fig. 5a (2)), each mirror sums the deltas and sends
them to the (blue) master V . The Gather phase in this
iteration completes after the mirrors send sums to their
masters (shown by the red line in Fig. 5a). Note that there
is no data transfer from Machine3 to Machine2 in Fig. 5a (2)
(represented using the dashed line), because S5 and S6 are
inactive in the (i− 1)th iteration.

In the Apply phase of the ith iteration (in Fig. 5b (1)), V ’s
master receives the deltas from its mirrors, and accumulates
the deltas and applies f to compute a new value. Then the
master will compute the delta between the new/old values,
and if the delta is greater than a predefined threshold it
will send the delta to its mirrors (shown by the red line
in Fig. 5b). Then, in the Scatter of the ith iteration (in
Fig. 5b (2)), each mirror vertex passes the delta of V to
its out-neighbors (T1 ∼ T4), the processing of which is the
same as that (from Si to V ) in the (i−1)th iteration’s Scatter
phase.

5.3 D-GAS vs. Delta-caching
PowerGraph provides the delta-caching (D-Cache) mech-

anism if the accumulator type forms an abelian group [3],
i.e., supports commutative and associative sum (+) and
inverse (−). For example, the numerical sum operation in
PageRank is abelian and thus D-Cache could be applied to
PageRank. In contrast, the set union operation in Graph
Coloring (GC) [4] supports only commutative and associa-
tive sum but no inverse, and thus set union is not abelian
and cannot apply D-Cache.

The main goal of D-Cache is for reducing computation
(rather than communication) cost. Compared to the stan-
dard GAS, D-Cache (i) has the mirrors transfer the deltas
to the master in the Scatter phase instead of the activation
message in the 4th step in Fig. 2 (d), and (ii) simplifies
the Gather phase by adding the deltas to the cached ac-
cumulators. Suppose that a vertex V has d neighbors of
which da neighbors are active. In the Gather phase D-Cache
only needs to sum da + 1 values (da deltas and the base
value of V ), while the standard GAS needs to sum d values
from all the d neighbors of V even when many of them are
inactive. D-Cache reduces one message per mirror in each
iteration, eliminating the message of accumulated value from
the mirror to the master (in the 2nd step in Fig. 2 (a)).

The D-GAS model extends D-Cache’s delta computation
and proposes to use delta messages to reduce not only the
computation cost but also the communication cost. As de-
picted in Fig. 5, D-GAS avoids communication in the Scatter
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Table 2: Real-world and synthetic datasets.
Datasets #edges #vertices Type

UK-2007 [2] 3.74B 105.9M Power-law
Twitter [27] 1.46B 41.6M Heavy-tailed
UK-2002 [1] 298.1M 18.5M Power-law

α2.0 102.8M 10M Power-law
α2.1 57.1M 10M Power-law
α2.2 35.0M 10M Power-law

phase by combining the update/activation messages. Table
1 compares the communication cost of the standard GAS,
D-Cache, and D-GAS models in one iteration.

First, the standard GAS model in PowerGraph transfers
at most five messages for each mirror (Fig. 2 (a)∼(d)). D-
Cache combines Gather in the ith iteration and Scatter in
the (i − 1)th iteration by transferring delta in the 4th step
in Fig. 2 (d), and thus transfers at most four messages for
each mirror.

Second, when adopting standard GAS, TopoX splits a
high-degree vertex into sub-vertices and transfers at most 4
messages per mirror. Compared to PowerGraph’s standard
GAS model, the one message reduction is because TopoX
combines the two messages of the Apply phase (Fig. 2 (b))
and of the Scatter phase 1 (Fig. 2 (c)). For low-degree
vertices in TopoX, the border vertices of a super-vertex
transfer at most one message for each of the mirrors owing
to target hashing (§2.3). The cost of inner vertices is always
zero.

Third, when adopting D-GAS, TopoX transfers at most
two delta messages for a mirror of a high-degree vertex,
which are 2 messages fewer than D-Cache: the 1st is because
D-GAS eliminates the master-to-mirror activation (in the
6th step in Fig. 2 (d)) since the mirror decides whether to
start the next round of Gather based on the delta; and the
2nd is because D-GAS combines the two master-to-mirror
messages in Apply (Fig. 2 (b)) and in Scatter phase 1 (Fig. 2
(c)).

TopoX adopts D-GAS as its default computation model,
but will resort to the standard GAS model if the abelian
condition cannot be satisfied.

6. EVALUATION

6.1 Overview
Datasets & testbeds. We evaluate TopoX on skewed
graphs shown in Table 2 (UK-2007, Twitter and UK-2002).
Besides the real-world graphs, we also use PowerGraph tools
to generate three synthetic power-law graphs (α = 2.0, 2.1
and 2.2, smaller α producing denser graphs) with 10 million
vertices. We randomly add edges by sampling the in-degrees
from a Zipf distribution [60] and keep the out-degrees of the
vertices nearly identical.

We build two testbeds. First, we build an EC2 cluster
consisting of 48 instances to evaluate the two large datasets
(UK-2007 and Twitter). Each instance has 8 Xeon E5-2676
v3 vCPUs, 16GB memory and 250GB SSDs. Second, we
build a local testbed with 9 machines, each having a 6-core
E5-2640 CPU, 32GB memory and a 1Gbps NIC. The local
testbed is used to evaluate the relatively small datasets (UK-
2002, α2.0, α2.1, and α2.2). Each evaluation result is an
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Figure 6: Normalized execution time.

average of 10 runs and the differences to the mean are less
than 5%, which are omitted for clarity.

Graph-parallel systems. We compare TopoX to Power-
Graph [15], PowerLyra [10], Blogel [55] and GraphX [17],
running algorithms including PageRank (PR) [7] and Con-
nected Components (CC) [11].

(1) TopoX adopts hybrid-BL (§4.3) for partitioning, and
implements D-GAS (§5.2), D-Cache [15], and the standard
GAS computation models. Although TopoX supports both
synchronous and asynchronous execution directly inherited
from PowerGraph, we focus on the default synchronous mode
of PowerGraph (which is also the sole execution mode for
most existing graph-parallel systems). The radius threshold
(at Lines 15 and 24 in Algorithm 1 for performing fusion)
is γ = 3 for UK-2007 and Twitter and γ = 2 for others.
As shown in §6.6, higher γ might cause imbalance problems.
The degree threshold is the same as PowerLyra (discussed
below).

(2) PowerGraph supports several partitioning strategies
including Grid, Random, Oblivious, Coordinated and HDRF
[40]. For all tested graphs in Table 2, Oblivious and HDRF
always have similar performance and outperform others, as
revealed in [51]. Therefore, (if not specified) the results of
PowerGraph are presented only for its best Oblivious strat-
egy. PowerGraph adopts D-Cache for abelian applications
and the standard GAS for others.

(3) PowerLyra is a variation of PowerGraph and adopts
hybrid-cut with/without Ginger, which places the next low-
degree vertex on the worker that minimizes the expected
replication factor. Our evaluation shows that Ginger im-
proves little performance while causing much higher memory
and communication cost, which has also been suggested in
[51]. Therefore, (if not specified) the results of PowerLyra
are presented for its default hybrid-cut strategy without
Ginger. PowerLyra adopts D-Cache whenever possible. The
default degree threshold in PowerLyra is 100 [10].

(4) The original Blogel is a variation of Pregel adopt-
ing edge-cut which performs poorly for high-degree vertices.
Considering most graphs in Table 2 have high-degree ver-
tices, for fairness we have implemented Blogel-hybrid by
porting the block abstraction (a.k.a. Voronoi cells) to Power-
Lyra. Following [55], we construct blocks only for low-degree
vertices by performing multi-round, multi-source breadth-
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first search (BFS). A master is used to compute the block-
to-worker assignment. Since communication between blocks
is the same as that between vertices in PowerLyra, if the
degree of a block (i.e., number of block neighbors) is larger
than PowerLyra’s degree threshold (100), it will be consid-
ered high-degree and assigned following hybrid-cut. Blogel-
hybrid sets its initial sampling probability (for a vertex to
be a block center) psamp = 0.1%, and increases psamp by
a factor of f = 2 after each round of BFS. The maximum
value of psamp (pmax) is 10%.

(5) GraphX is based on Spark [57] and supports both
edge-cut and vertex-cut partitioning strategies, including
Edge-Partition-1D (EP1D), Edge-Partition-2D (EP2D), Ran-
dom, and Canonical-Random-Vertex-Cut (CRVC).

6.2 Computation Performance
Fig. 6 shows the normalized execution time of PR on UK-

2007, Twitter, UK-2002 and α2.0 graphs, in PowerGraph
(PG), PowerLyra (PL), Blogel-hybrid (BH), and TopoX (re-
spectively with standard GAS and D-GAS).

PR keeps running until convergence in our evaluation.
The baseline is the execution time of PowerGraph with Obliv-
ious (376.6, 140.3, 152.7 and 40.1 seconds for the four graphs,
respectively). TopoX with D-GAS achieves the best per-
formance for all graphs, outperforming PowerLyra by up
to 78.5% (on UK-2007). This is because refactorization
leads to much lower replication factor than other strategies
(Fig. 7), and D-GAS further reduces the communication cost
(bringing an extra reduction of execution time from 12.2% to
18.9%). Blogel-hybrid performs even worse than PL because
its block-level communication does not support PR well.

Fig. 6 also shows the results for CC (which does not sup-
port D-GAS). The baseline is the execution time of Power-
Graph with Oblivious (170.1, 72.5, 62.7 and 16.4 seconds for
the four graphs, respectively). TopoX (with standard GAS)
is again the best for all graphs and outperforms PowerLyra
by up to 71.3% (on UK-2007). Blogel-hybrid is slightly
better than PowerLyra because its block-level communica-
tion adapts well to CC. However, the interference between
construction and separation of high-degree blocks makes
Blogel-hybrid perform worse than TopoX.

Replication factor & network I/O. We measure the
replication factors of PG’s Oblivious, PL’s hybrid-cut, BH’s
Voronoi Cell and TopoX’s TR. The results are shown in
Fig. 7, where TopoX always outperforms others because TR
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effectively exploits topology structures. The interference
between block construction and separation makes Voronoi
Cell have higher replication factors than TR.

We run PR and evaluate the average network I/O. The
results are shown in Fig. 8. TopoX outperforms others ex-
cept Blogel-hybrid. But Blogel-hybrid suffers from not only
much longer execution time (Fig. 6) but also several times
longer ingress time (Fig. 10), because it adapts poorly to the
skewness of the graphs. We will evaluate more partitioning
metrics (ingress time and memory usage) in §6.3.

Performance on Spark. We port TopoX to Spark [57] to
illustrate its generality. Fig. 9 compares the execution time
of PR in TopoX (with standard GAS) on Spark, GraphX
and PowerLyra (which also has a Spark-based implementa-
tion). The result shows that TopoX has lower execution time
than all partitioning strategies of GraphX and Powerlyra.
Note that the performance on Spark is lower than that on
the PowerGraph platform, mainly because Spark’s RDD
structure complicates the processing of the GAS phases.
Experiments on Spark for other graphs have similar results.

6.3 Refactorization & Partitioning Cost
We evaluate the ingress time of TopoX and compare it

with that of PowerLyra, PowerGraph and Blogel-hybrid, re-
spectively on UK-2007, Twitter, UK-2002 and α2.0 graphs.
Fig. 10 shows the normalized ingress time. The baseline
is the ingress time of PowerGraph with Oblivious (460.3,
258.8, 95.4 and 51.9 seconds for the four graphs).
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First, the ingress time of TopoX is close to that of Power-
Lyra, because hybrid-BL pipelines not only graph loading
and IET/OET construction (Line 3 in Algorithm 1) but
also refactorization and partitioning. The small extra over-
head is because the workers participate both in IET/OET
construction (which is slightly more complicated than the
preprocessing of others) and in its unique refactorization.
Note that the partitioning results are reusable and thus it
is worth paying for the extra refactorization/partitioning
overhead in most cases.

Second, Blogel-hybrid has much higher ingress time than
others, because the construction of Voronoi cells requires
to sequentially perform the vertex-to-block and block-to-
worker assignments, each causing a movement (and dump)
of the entire graph [55]. In contrast, TopoX pipelines refac-
torization and partitioning and thus introduces little cost.
Further, the Blogel master has to (i) record the changes
of each block, (ii) dynamically compute the block-to-worker
assignments, and (iii) broadcast the assignments to all work-
ers, making it a severe bottleneck for partitioning.

Memory usage. We also evaluate the average memory
consumption of TopoX, PowerLyra and PowerGraph when
partitioning UK-2002. As shown in Fig. 3, TopoX’s refac-
torization could be viewed as a special preprocessing phase,
and thus we measure the memory consumption respectively
for preprocessing and partitioning.

The result is shown in Fig. 11. Partitioning includes graph
loading, preprocessing (like counting degrees in PowerLyra
and refactorization in TopoX), and vertices/edges place-
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Figure 12: Comparison of overall, Gather, Apply
times between TopoX and PowerLyra (PL).

ment; and postprocessing includes finalizing the mirrors in
the partitioned subgraphs. Compared to PowerLyra, TopoX
requires less memory in partitioning owing to its smaller
replication factors, but consumes slightly more in postpro-
cessing because it cannot release the hash tables for locating
neighbors when finalizing the mirrors.

6.4 Why TopoX Outperforms PowerLyra
To understand the advantage of TopoX over PowerLyra,

we evaluate their execution time of the Gather, Apply and
Scatter phases running PR on UK-2002 in TopoX and Power-
Lyra, for different numbers of workers. TopoX uses the
standard GAS (instead of D-GAS) model to highlight the
effect of refactorization. We evaluate not only the overall
execution times but also the time of each GAS phase.

Fig. 12 shows the accumulated execution time, Gather
time and Apply time, using a single core on each machine to
simplify the accumulation. The Scatter time is omitted since
it is negligible compared to the Gather and Apply times.

First, as the number of workers increases, both the over-
all execution times and the Gather times of TopoX and
PowerLyra notably decrease, while the Apply times keep
relatively stable. This is because the Gather phase has
much more computation than the Apply phase, which could
be naturally distributed among the machines. Second, the
Apply times of TopoX are almost always more than 50%
lower than that of PowerLyra, while the Gather times of
TopoX are only slightly lower for all cluster sizes, indicating
the Apply times contribute the most to the advantage of
TopoX over PowerLyra in Fig. 6. Considering the fact that
the Gather and Apply phases have almost the same amount
of communication (as shown in Fig. 2 (a) and (b)), this
difference is mainly because Gather has more computation
than Apply making communication be able to be overlapped
with computation, which weakens the benefits of communi-
cation reduction in TopoX. Clearly, TopoX would benefit
more from refactorization for larger clusters where the ratio
of Gather time to Apply time decreases.

6.5 D-GAS Vs. Delta-Caching
We evaluate the execution times of TopoX on UK-2002,

as a function of the number of iterations (each containing
three phases of Gather, Apply, and Scatter), respectively
following the delta-caching (D-Cache) and D-GAS models.
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Figure 14: TopoX Performance on various α (2.0,
2.1 and 2.2).

The results are shown in Fig. 13, where the execution
time is affected mainly by two factors, namely, the conver-
gence speed (i.e., how many vertices become inactive in each
iteration) and the per-vertex computation/communication
cost. In the first few iterations, D-GAS has slightly higher
execution time, because most vertices are active in which
case D-GAS has slightly more computation for each vertex
(as introduced in §5.2). After 20 iterations D-GAS achieves
lower execution time because many vertices already get con-
verged in which case D-GAS performs better. TopoX prefers
D-GAS (if applicable) to the standard GAS model when it
needs to run many iterations for more accurate results.

6.6 Self-Evaluation
We evaluate the execution time, ingress time and replica-

tion factors (λ) of TopoX, running PR on α2.0, α2.1 and
α2.2 graphs, respectively. The result (Fig. 14) shows that
all the execution time, ingress time and λ of TopoX decrease
as α increases, because higher α represents sparser edges.

We compare the ingress time and replication factors of
the two partitioning methods (hybrid-BL and hybrid-LRF).
The result (Fig. 15) shows that LRF’s λ is only slightly
lower than that of BL. Clearly, Hybrid-BL should be the
default partitioning strategy for TopoX, because its over-
head is much lower than that of hybrid-LRF.

There are mainly two pre-defined parameters for TopoX,
namely, the degree threshold for differentiating low-degree
and high-degree vertices (Lines 8 and 10 in Algorithm 1),
and the radius threshold for controlling the sizes of super-

ingress time uk-2007 twitter uk-2002 alpha1.8 alpha2.0 netflix
PG 1.000 1 1.000 1 1 0
PL 0.630 0.6 0.690 0.61 0.52 0
TopoX 0.7 0.65 0.76 0.65 0.56 0
BH 3.681826924 4.5 3.471758 3.2 2.9 0
Cube 1
TopoX-3D 0.913043
baseline 1,299.890 18.1109 125.062 150.473 150.473 84.4123

460.3 258.8 95.4 105.8 51.9 8.6
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Figure 16: λ under different degree thresholds.

vertices (Lines 15 and 24 in Algorithm 1). We first evaluate
the impact of degree thresholds on replication factors. The
result (Fig. 16) shows that λ is insensitive to a large range
of degree thresholds (from 64 to 512), which also conforms
to the result of PowerLyra [10].

Next we study the radius threshold of TR. Since the graph
size decides the maximum radius threshold (i.e., when a
super-vertex becomes too large compared to the entire graph)
which will not induce significant imbalance that cannot be
handled in the assignment stage, we focus on the relation
between graph size and radius threshold. We evaluate the
impact of the radius threshold (γ) on UK-2002. We first
evaluate the replication factors (λ) as γ increases from 1 to
10. The result is shown in Fig. 17, where λ (and conse-
quently, the communication cost) decreases as γ increases
but the decreasing rate becomes low after γ ≥ 3.

We run PR for TopoX (with standard GAS) and measure
the execution time of each of the 9 workers for different γ.
The result is also shown in Fig. 17, where 9 colors respec-
tively represent their execution time. When γ > 3, TopoX
tends to have some worker whose execution time might be
notably higher than others, because higher γ leads to larger
super-vertices, which not only increase the possibility of
conflict in parallel refactorization but also intensify the diffi-
culty of load balancing in parallel partitioning. We also test
various γ (= 1 ∼ 10) on the large UK-2007 graph. Similar to
UK-2002, The result for UK-2007 (omitted here) also shows
that higher γ leads to higher performance but meanwhile
is more likely to incur imbalance and dramatically degrade
the overall performance when γ > 4, which is similar to the
results for the middle-sized UK-2002 graph.
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Figure 17: Radius threshold, execution time and λ.

7. RELATED WORK
Graph Partitioning. TopoX is inspired by prior edge-
cut [31, 34, 47, 46, 48], vertex-cut [15, 21, 17, 29, 36, 5],
and hybrid-cut [10] graph-parallel systems. For instance,
Pregel [34] adopts hash-based edge-cut partitioning strategy
to evenly assign vertices to machines, and provides message
passing abstraction for vertices’ interaction along edges. It
follows the BSP (Bulk Synchronous Parallel) model [49]
where all vertex-programs run simultaneously in multiple
super-steps. GraphX [17] partitions a graph on top of Spark
[57] by cutting the vertices and evenly assigning the edges
to machines. It performs graph computation by following
the GAS model (Section 2.3).

TopoX differs from them in adopting a novel refactoriza-
tion scheme to achieve a balanced graph before partitioning
by leveraging the topology information. Recently proposed
vertex-splitting methods [30, 39] split a high-degree vertex
into small ones to avoid bottlenecks, but they cannot place
a large set of neighboring vertices in one machine. TopoX
outperforms these systems in computation while only intro-
ducing small overhead.

Coarsening partitioning. Blogel [55] is a variation of
the (edge-cut) Pregel [34] system, which performs multiple
rounds of multi-source BFS to obtain and evenly distribute
Voronoi [13] cells (i.e., blocks) to workers. A vertex v be-
longs to a block only if the block’s center is closer to v
than any other blocks’ centers. Blogel differentiates intra-
and inter-block communication to reduce communication
cost through aggregation. Similar to Blogel, Giraph++ [47]
coarsens a graph by grouping its vertices into subgraphs
and opens up the subgraph structure to programmers to
realize several algorithm-specific optimizations for traversal
and aggregation applications. However, Giraph++ performs
even worse than Blogel both in partitioning and in computa-
tion, because Giraph++ extends ParMetis [25] for coarsen-
ing, which is quite expensive [55] since it contains multiple
rounds of matching phases (each having 2 supersteps) fol-
lowed by a collapsing phase. Grape [14], G-Miner [9] and
TurboGraph++ [26] also adopt coarsening and have similar
problems with Blogel and Giraph++.

TopoX differs from them mainly in the following aspects.
First, Blogel’s edge-merging coarsens the original topology
and requires aggregation of all vertices in a block before
communication at each superstep, which cannot support the
GAS model. In contrast, TopoX assigns vertices in a super-
vertex to a worker while still supporting the more flexible

vertex-level communication. Second, the construction of
Voronoi cells requires Blogel to perform the vertex-to-block
and block-to-worker assignments in sequence, which is time-
consuming. In contrast, TopoX pipelines refactorization and
partitioning and thus introduces little extra cost.

Dynamic and clustering partitioning. Some studies
[20, 37, 56, 50, 54] are focused on dynamic and clustering
partitioning for large-scale graphs. They incrementally par-
tition the graph as vertices/edges are added and removed
while still providing desirable computation and communi-
cation efficiency. For instance, LEOPARD [20] integrates
a replication algorithm with the partitioning algorithm to
reduce the number of replicated edges. Sedge [56] introduces
a two-level partition structure, primary and secondary par-
titions, to handle queries with dynamic graphs. Vaquero et
al. [50] design an dynamic partitioning algorithm that uses
a lightweight heuristic relying only on local vertex informa-
tion to provide a tradeoff between edge-cut efficiency and
partitioning balance. Following their schemes, TopoX could
easily realize dynamic topology maintenance.

Streaming partitioning. Partitioning may incur high
overhead on large graphs, sometimes even higher than com-
putation. Recent studies design mechanisms for streaming
partitioning [48, 46, 61, 19]. For example, Fennel [48] de-
signs a lightweight mechanism for streaming partitioning
[46] which perform partitioning at the same time of graph
loading. gSketch [61] combines traditional streaming tech-
nique and sketch partitioning to improve query estimation in
graph streams. Inspired by these studies, TopoX pipelines
not only graph loading and edge table construction but also
refactorization and partitioning.

HPC-enabled graph computation. Some studies [63,
59, 43, 53, 22, 12, 35, 33, 44, 18] apply traditional HPC
and database techniques (like shared memory, RDMA, ver-
sioning, and transactions) to enhance graph computation.
For example, Ligra [44] is a single-machine graph process-
ing framework for shared-memory multicore systems, which
designs simple routines for mapping over edges/vertices to
accelerate graph traversal algorithms that operate on sub-
graphs. Grazelle [18] is a pull-based shared-memory graph
processing framework, which parallelizes/vectorizes graph
computation loops by designing (i) the scheduler-aware in-
terface to reduce write traffic and synchronization and (ii)
the Vector-Sparse edge-representation format to enable loop
vectorization. These studies are focused on powerful shared-
memory machines with tens of cores and TB of memory, and
thus are not for COTS (commercial off-the-shelf) clusters in
the cloud. Since refactorization is general and orthogonal to
these techniques, our proposal could be integrated to them
for larger graphs and higher performance in distributed en-
vironments.

8. CONCLUSION
This paper introduces TopoX, a new graph-parallel sys-

tem that refactorizes the topology of a skewed graph into
a more communication-efficient one. Extensive evaluation
results show that TopoX outperforms state-of-the-art graph-
parallel systems while only introducing small overhead. In
the future, we will study the adaptive mechanism for dy-
namic maintenance by adopting on-demand edge migration,
and apply HPC techniques to TopoX for higher communi-
cation and computation performance.
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