
Lachesis: Automatic Partitioning for UDF-Centric Analytics
Jia Zou

Amitabh Das
Pratik Barhate

Arizona State University
(jia.zou,adas59,pbarhate)@asu.edu

Arun Iyengar
IBM T.J.Watson Research Center

aruni@us.ibm.com

Binhang Yuan
Dimitrije Jankov
Chris Jermaine
Rice University

(by8,dj16,cmj4)@rice.edu

ABSTRACT
Partitioning is effective in avoiding expensive shuffling operations.
However, it remains a significant challenge to automate this process
for Big Data analytics workloads that extensively use user defined
functions (UDFs), where sub-computations are hard to be reused
for partitionings compared to relational applications. In addition,
functional dependency that is widely utilized for partitioning selec-
tion is often unavailable in the unstructured data that is ubiquitous
in UDF-centric analytics. We propose the Lachesis system, which
represents UDF-centric workloads as workflows of analyzable and
reusable sub-computations. Lachesis further adopts a deep reinforce-
ment learning model to infer which sub-computations should be
used to partition the underlying data. This analysis is then applied
to automatically optimize the storage of the data across applications
to improve the performance and users’ productivity.

PVLDB Reference Format:
Jia Zou, Amitabh Das, Pratik Barhate, Arun Iyengar, Binhang Yuan,
Dimitrije Jankov, and Chris Jermaine. Lachesis: Automatic Partitioning for
UDF-Centric Analytics. PVLDB, 14(8): 1262-1275, 2021.
doi:10.14778/3457390.3457392

1 INTRODUCTION
BigData analytics systems such as Spark [63], Hadoop [60], Flink [2],
and TupleWare [12] have been designed and developed to address
analytics on unstructured data which cannot be efficiently repre-
sented in relational schemas. By supplying user-defined functions
(UDFs) written in the host language, such as Python, Java, Scala, or
C++, control structures such as conditional statements and loops
can be used to express complex computations. Such systems pro-
vide high flexibility and make it easy to develop complex analytics
on top of unstructured data, which accounts for most of the world’s
data (above 80% by many estimates [54]).

Most Big Data analytics frameworks are deployed on distributed
clusters and require to partition a large dataset horizontally across
multiple machines [7]. Because a large dataset can be involved in
multiple join-based analytics workloads, finding the optimal parti-
tioning is a non-trivial task [1, 6, 13, 18, 28, 38, 43, 65]. Therefore,
it is urgent to automate this partitioning process. Existing works in
physical database design [1, 23, 28, 38, 43, 65] can well automate
the partitioning for relational datasets. As illustrated in Fig. 1, they

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 8 ISSN 2150-8097.
doi:10.14778/3457390.3457392

enumerate partitioner candidates based on foreign keys and select
the optimal candidate using a cost-based approach.

However, it remains a significant challenge to automate this
process for UDF-centric analytics workloads, as illustrated in Fig. 1.
First, functional dependency that is widely utilized for partition-
ing selection is often unavailable in the unstructured data. Second,
while the cost model based on relational algebra is widely used for
selecting optimal partitioner candidates for relational applications,
there is no widely acceptable cost model for UDF-centric applica-
tions due to the opaqueness of UDFs and objects [49, 67]. Third,
sub-computations are opaque to the system and hard to be reused
and matched for partitionings compared to relational applications.

Partitioner
Candidate
Enumeration

Partitioner
Candidate
Selection

Partitioner
Matching

Foreign Key
Analysis

Historical IR
Graph Analysis

Cost Estimation

No Cost Estimation

Attribute
Matching

Subgraph
Matching

Lineitem

oid: long
pid: long
sid: long
…
…

Order

Part

Supplier

candidate1
candidate2
candidate3

cost = io_cost
+ cpu_cost

candidates
queries

sizes

costs

selector (ranking,
RL, genetic, …)

features

optimal
candidate

Relational

UDF-centric

producer

data

consumer

future
data partitioner

candidate

candidates producer cluster

DRL

optimal
candidate

reward
based on
latency

State Vector

SELECT *
FROM X, Y
WHERE X.a = Y.b

CREATE TABLE X
(…)
PARTITION BY
Hash(a)

data

query

partitioner

Figure 1: Lachesis vs. relational physical database design

Motivating Example.We have three datasets: (1) a collection of
reddit comments objects in JSON ({𝑐}); (2) a collection of reddit
author objects ({𝑎}) in CSV; and (3) a collection of the subreddit
community objects ({𝑠𝑟 }) also in JSON. We need to rank comments
by their impacts. A classifier first predicts whether the author or
the subreddit community is more important for this comment. The
impact score (𝐼𝑐) of a comment (𝑐) is determined by the classifica-
tion result as illustrated in Eq. 1. The classifier may use arbitrary
algorithm, such as a complex deep learning neural network or a
simple conditional branch such as c.score > x.

𝐼𝑐 =

{︄
max{𝑎.𝑙𝑘, 𝑐 .𝑐𝑘} 𝑖 𝑓 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑦 (𝑐) 𝑖𝑠 𝑡𝑟𝑢𝑒
𝑠𝑟 .𝑛𝑠 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

1262

https://doi.org/10.14778/3457390.3457392
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3457390.3457392

The comment importance scores can be computed via a UDF-
customized three-way join, of which the UDF that defines the join
selection predicate is illustrated in Listing. 1.

Unlike SQL applications where in many cases people can simply
follow the foreign keys to perform co-partitioning, UDF-centric
applications may involve arbitrary logic such as the classify() in
the above example. Even the application programmer cannot easily
figure out the optimal partitioning. To make it worse, UDF-centric
applications running over complex objects are almost opaque to
the system, for example, the system does not understand what is
happening inside the join_selection() function as illustrated in
Listing. 1 and thus automatic enumeration, selection, and matching
of partitionings for this problem become difficult.

Listing 1: UDF-centric join selection predicate
bool join_selection (string comment_line, string author_line, string subreddit_line) {

string new_comment_line = schema_resolve(comment_line); //preprocessing
json c = my_json::parse(new_comment_line); //parsing comment json object
if (classify(c) == true) { //need to join with authors

string c_a = c["author"];//derive author name from comment
vector<string> r = my_csv::parse(author_line);//parsing author CSV file
string a_name = r[1]; //derive name from author
return (c_a == a_name);

} else { //need to join with subreddits
string c_sr = c["subreddit"]; //derive subreddit name from comment
json sr = my_json::parse(subreddit_line);//parsing subreddit json object
string sr_name = sr["name"]; //derive name from subreddit
return (c_sr == sr_name); }}

scan

myjson::parse

schema_resolve

classify_v1

switchT F

[] “subreddit”[] “author”

pair

scan

myjson::parse

[]“name”

pair

scan

mycsv::parse

[] “name”

pair

join join

authors.csv comments.json subreddits.json

c_a
c_a

c_sr
c_sr

<c_sr, c>

a_name sr_name

c c

a

<a_name, a> <sr_name, sr>

sr

<c_a, c>

pair

c c

<a, c> <c, sr>

Figure 2: IR graph for Listing. 1: Partitioner candidates for authors,
comments, and subreddits, are illustrated in different colors.

Lachesis: Automatic Partitioning. To address the problems, we
propose a data partitioning optimizer for UDF-centric workloads,
called as Lachesis 1. Lachesis allows user code to be translated into
an Intermediate Representation (IR) that the system can reason. For
example, the code in Listing. 1 is translated to a graph IR as shown
in Fig. 2. We mainly focus on three problems in this work:
Problem 1. Partitioner Candidate Enumeration. In UDF-centric pro-
cessing, a partitioner candidate can be arbitrary logic that is deeply
embedded in a UDF, which is hard to identify. To address the prob-
lem, we first abstract a partitioner candidate as a two-terminal
graph [5, 14, 44] that has only one unique root node (i.e., a source
node that has no parents) and one unique leaf node (i.e., a target
node that has no children). Then we convert the problem into a
subgraph searching and merging problem. (Sec. 3.2.3 and Sec. 4.2)
Problem 2. Partitioner Candidate Selection. A UDF-based partitioner
candidate may involve dynamic control flows and it is hard to pre-
dict its runtime behavior. In addition, the cost model for relational
1Lachesis is the name of a Greek god, who partitions lots and assigns fates to people.
(https://en.wikipedia.org/wiki/Lachesis)

partitioner candidate selection [1, 6, 13, 18, 28, 38, 43, 65] cannot de-
scribe the overhead of manipulations (i.e, parsing, (de)compression,
and (de)serialization) of arbitrary objects [4, 48]. These issues bring
challenges for selecting the optimal partitioner. Therefore, we pro-
pose a deep reinforcement learning (DRL) [32, 37, 50, 51] formula-
tion that is based on a set of unique features extracted from histori-
cal workflows for each partitioner candidate, including frequency,
recency, selectivity, complexity, key distributions, number and size
of co-partitioned datasets, etc.. (Sec. 3.2.2 and Sec. 4.1.3)
Problem 3. Partitioner Matching. Given a query, if its input has been
partitioned using a UDF-based partitioner, the query optimizer
should recognize the partitioning and decide whether a shuffling
stage can be avoided. To facilitate such matching, we abstract the
UDF matching problem into an IR subgraph isomorphism prob-
lem [10] utilizing the two-terminal characteristics of the partitioner
IR graphs. (Sec. 3.2.3 and Sec. 4.2)
Our contributions can be summarized as:
(1) As to our knowledge, we are the first to systematically explore
automatic partitioning for UDF-centric applications. We propose
Lachesis, which is an end-to-end cross-layer system that automati-
cally creates partitions to improve workflow performance.
(2) We propose a set of new functionalities for partitioner candi-
date enumeration, selection, and partitioner matching, based on
subgraph searching and merging, DRL with historical workflow
analysis, and isomorphic subgraph matching.
(3) We implement the Lachesis system and conduct detailed perfor-
mance evaluation and overhead analysis.

2 BACKGROUND
2.1 IR for UDF-centric analytics
User defined function (UDF) is first proposed as an enrichment of
the SQL language, to allow SQL programmers to implement their
own functions for processing relational data. Later, the MapReduce
and dataflow platforms such as Hadoop [60], Spark [63], Flink [2],
further integrate the UDFs with high-level languages like Java,
Python so that even non-relational data such as texts and images
can be easily processed. However, the embedding of opaque func-
tions that lack costing prevents UDF-centric workflows from being
automatically optimized. To address the problem, several technolo-
gies were proposed in the past.

Froid [41] assumes the underlying data to be relational, the query
that invokes the UDF must be a SQL query. Then, Froid transforms
the imperative statements, conditional blocks, and loops in the UDF
into relational algebraic expressions.

In contrast, other existing IRs, including Emma/Lara [3, 29],
Weld [40], PlinyCompute [67], are designed for automatic optimiza-
tion of UDF-centric workloads running on unstructured data.

Weld provides a cross-library IR based on a parallel loop operator
and several declarative builders and mergers for vectors, dictionar-
ies, and groups, to facilitate loop fusion across libraries. In Weld’s
implementation, a (hash) join is represented at low-level by building
and probing the dictionary using the parallel loop operator. A UDF
can be further represented as an abstract syntax tree (AST). Part or
all of the AST tree can be replaced by the invocations of opaque
C/C++ functions, depending on how much details the programmer
wants to expose to the system.

1263

Emma/Lara and PlinyCompute provide an even more declara-
tive IR for a 𝑘-way join operation, which can be abstracted into
following expression that is similar to relational calculus:

{(𝑥1, ..., 𝑥𝑘) |𝑝 (𝑥1, ..., 𝑥𝑘), 𝑥𝑖 ∈ 𝑋𝑖 , 1 ≤ 𝑖 ≤ 𝑘} (2)

except that 𝑝 can be represented as a UDF that processes arbitrary
objects and returns a boolean value, such as the join_selection
as illustrated in Listing. 1. Our proposed approach is designed based
on top of this 𝑘-way join representation.

2.2 Storage Requirements
This work mainly considers two types of data partitioning: (1) per-
sistent partitioning, which is to persist the partitionings of the data
in the underlying storage, so that it can be reused across applica-
tions; and (2) intra-application partitioning, where the partitionings
are enforced at runtime, can only live within the lifetime of an appli-
cation, and is only visible to the application. Many distributed UDF-
centric frameworks, such as Spark [63], support intra-application
partitioning by allowing users to supply a partitioner in the appli-
cation. In addition, SystemML [6], which is a linear algebra library
built on top of Spark, automates the intra-application partitioning
for various matrix manipulations. Intra-application partitioning
is helpful for iterative joins like in PageRank, where the online
repartitioning overhead can be amortized over multiple iterations
in the same application. But such partitioning is inadequate for
a broad class of workloads, such as data pre-processing, where a
dataset is joined only once for each application. Making it worse, a
non-partition-preserving operator such as map may easily remove
an intra-application partitioning [6].

To our surprise, most popular Big Data frameworks such as Spark
do not support persistent partitioning. That’s because their simple
storage APIs [7, 21] cannot convey the partitioning information be-
tween the storage layer and the computation layer [68, 69]. We have
attempted to manually create persistent partitionings for Spark ap-
plications, but that only seems possible for Hive [53] tables via the
bucketBy operator [35]. However, most UDF-centric analytics tasks
cannot represent their arbitrary data in Hive tables. CoHadoop [18]
allows programmers to manually enforce co-partitioning of HDFS
files using MapReduce jobs and then specify this co-location rela-
tionship by changing the HDFS interface and namenode implemen-
tation, but the function used by the partitioning is hidden from the
system. Therefore, the partitioning cannot be automatically reused
or matched without the programmer’s knowledge.
Implementation, Deployment, and Elasticity.We target at sup-
porting both persistent and intra-application partitionings, thus we
choose to implement Lachesis on PlinyCompute [67], which is a
distributed UDF-centric analytics system implemented in C++. We
use our previous work, Pangea [68], as the storage, which allows to
pass the partitionings of datasets to the computation layer so that
the latter can utilize such information to avoid the shuffling. Lach-
esis can be easily extended to support other distributed frameworks
that compile UDF-centric workloads into analyzable IRs, and use a
storage that maintains partitioning information and communicates
such information to the computations.

The partitionings can be even pushed to a cloud storage like S3
that is disaggregated with the computation cluster, as long as the

UDF specifying how a dataset is partitioned into multiple S3 objects
is stored somewhere and queryable to the computations.

To achieve elasticity, when cluster nodes are dynamically added
and removed, we can leverage existing live data migration mech-
anisms [7, 33] to minimize the service interruption for adding/re-
moving nodes. In addition, we can map partitions to cluster nodes
using an elastic strategy such as lazy consistent hashing, following
the SnowFlake’s elastic architecture design [57]. These extensions
are all orthogonal to this work.

3 PROBLEM DEFINITION
In this section, we first analyze and formalize the problems. Then
we summarize the challenges and main ideas.

3.1 Assumptions and Targeting Workloads
The Lachesis approach is based on following assumptions:
(1) The write-once read-many assumption that once a dataset is writ-
ten, it will be read many times. It indicates that creating persistent
partitionings while storing the data can benefit multiple workloads
that take the data as input. Such a pattern is observed in a number
of real-world traces [8, 61, 70].
(2) The recurrent workflow assumption that a majority of workflows
are re-executions on different or incremental datasets, as widely
observed in recent Microsoft and other production traces [8, 26, 27].
Therefore, we can extract partitioner candidates from historical
executions of workflows and reuse these for future datasets. For ex-
ample, if the Comment-Loader application loads a comment dataset
collected in 2019 to storage; and then the Feature-Extractor applica-
tion joins the comments dataset with the authors dataset to create
feature vectors for topic recommendation, the system will think
that the workflow Comment-Loader→ Feature-Extractor may recur.
If Comment-Loader later loads a new dataset collected in 2020 to
storage, the input partitioning desired by the Feature-Extractor may
be a good candidate for pre-partitioning the new dataset.

Lachesis is focused on identifying the optimal horizontal par-
titioner candidates for datasets of arbitrary types, in UDF-centric
analytics workloads that involve shuffle-operations such as equi-
join, group-by, and aggregations. We do not consider the vertical
partitioning of arbitrary objects in Lachesis, because it is more com-
plicated and requires to reason with the object layout, and thus less
popular in UDF-centric systems [2, 12, 63].

Once a partitioner candidate is selected, it will be used to extract
partition key(s) from each object in the dataset, and the objects that
have the same keys will be dispatched to the same node. Therefore,
all types of joins that can be converted into equi-join, such as array
join [15] based on the equality of dimensions, attributes, or both;
and similarity/fuzzy join based on the equality of locality sensitive
hashing [9], can benefit from our work.

In addition, how to map keys to nodes is not a focus of this
work and we use a simple hashing mechanism for that in our imple-
mentation. More advanced mapping techniques, e.g., skew-aware
mapping and elastic mapping as used in array join [15, 16], and
sparsity-aware recursive mapping as used in deduplication for the
partitioning of band-join [31], are all orthogonal to our work, and
can be incorporated to our proposed framework.

1264

3.2 Problem Formulation
We first give an overview of the Lachesis’ workflow. When a dataset
is going to be written to storage, Lachesis will recommend a can-
didate set of IR fragments based on historical producer-consumer
patterns. There are three situations: (1) If the dataset is created
by a producer job that has no historical consumers, no partitioner
candidates can be identified, and thus it will be partitioned using
a default policy such as the round-robin policy [20]. (2) If the pro-
ducer has one or more historical consumers, then, one or more
partitioner candidates may be identified. Then, Lachesis evaluates
all candidates and selects one using a deep reinforcement learn-
ing approach [51]. (3) If an existing dataset is identified to have
bad organizations using certain external algorithms [24], Lachesis
can be applied to identify the optimal partitioner candidate for
reorganizing the dataset.

Lachesis focuses on two processes: (1) when a dataset is going to
be stored or reorganized, the system attempts to automatically enu-
merate, select, and create the optimal partitioning; (2) for running
applications, the system attempts to match, recognize, and utilize
existing partitionings to avoid unnecessary shuffling of data. In this
section, we formalize the representation of IR and partitionings in
UDF-centric workflows, as well as the two processes.

3.2.1 IR and Partitioner Candidates. In this work, we define that
for any workload𝑤 , there exists a mappingℎ that transforms𝑤 into
an IR graph 𝑎 = ℎ(𝑤) = (𝑉 , 𝐸, 𝑆,𝑂). Each node (𝑣 ∈ 𝑉) represents
an atomic computation. This set of atomic computations varies
with IR designs, but usually contains three categories of operators:
(1) Lambda abstraction functions such as a function that returns a
literal (a constant numerical value or string), a member attribute
or a member function from an object; unary functions such as
exp, log, sqrt, sin, cos, tan, etc; or opaque unary functions if the
programmer prefers not to expose the logic, such as classify(),
parse(), schema_resolve(), etc.
(2) Higher-order lambda composition functions such as binary opera-
tors: &&, ||, &, |, <,>, ==, +, -, *, /, pair, conditional operator like
switch? on_true:on_false; etc.
(3) Collection-based operators such as scan and write that read-
s/writes a collection of objects; apply that applies a lambda calculus
expression (i.e., composed of lambda abstractions and higher order
composition functions) to a collection of objects (like map); and
join, aggregate/fold, flatten, filter, etc.
Each edge (𝑒 ∈ 𝐸) represents a data flow or a control flow from the
source node to the destination node, as mentioned. 𝑆 ⊂ 𝑉 is the set
of all scan nodes. 𝑂 ⊂ 𝑉 is a set of write nodes. For example, the
IR derived from Listing. 1 is illustrated in Fig. 2.

As illustrated in the partitioner matching part of Fig. 1, in re-
lational partitioning problems, a partitioner is simply a set of at-
tributes of a relation that can be easily matched to the WHERE
clause of a join query. But in UDF-centric workflows, a partitioner
candidate is implicitly specified in UDFs. For example, the par-
titioner candidate defined in Fig. 3 is implicitly specified in the
function of Listing. 1.

A partitioner candidate is represented as a two-terminal directed
acyclic graph (DAG). It has only one root node that has no parents
(e.g., the scan associated with the dataset to be partitioned) and one
leaf node that has no children (e.g., the switch node in Fig. 3). The

two-terminal graph that represents the partitioner candidate must
be a subgraph in a historical consumer workload’s IR graph. The
leaf node in the subgraph must connect to a pair node for join
in the parent graph. Given a scan node 𝑠𝐷 ∈ 𝑆 that reads from the
dataset D, we can enumerate the partitioner candidates of D as a
set of subgraphs of a consumer IR graph 𝑎 = (𝑉 , 𝐸, 𝑆,𝑂), denoted as
F𝐷 . Each 𝑓𝑘 = (𝑉𝑘 , 𝐸𝑘 , 𝑆𝑘 ,𝑂𝑘) ∈ F𝐷 satisfies 𝑉𝑘 ⊂ 𝑉 , 𝐸𝑘 ⊂ 𝐸, 𝑆𝑘 =

{𝑠𝐷 }, and ∥𝑂𝑘 ∥ = 1.

scan

myjson::parse

schema_resolve

classify_v1

switchT F

[]”subreddit”[]”author”

comments.json

c c

string get_partition_key (string comment_line){
string new_line=schema_resolve(comment_line);//preprocessing
json c = myjson::parse(new_line); //parsing comment
if (classify_v1(c) ==true){//need to join with authors
return c[”author”]; //derive author name from comment

}else{//need to join with subreddits
return c[”subreddit”]; //derive subreddit name from comment

}
}

c

c[”author”] c[”subreddit”]

Figure 3: The 2-terminal graph that represents the partitioner can-
didate of the comments dataset extracted from Fig. 2

In the next two sections, we will formalize the partitioning cre-
ation and matching processes respectively.

3.2.2 Process 1. Creation of Partitionings. We first present a high-
level definition of the problem, as follows. A producing work-
load 𝑝 is going to write D, which is a collection of 𝑛 objects
D = {𝑑𝑖 }, (0 ≤ 𝑖 < 𝑛), to a distributed storage C that consists
of 𝑚 nodes, C = {𝑐 𝑗 }, (0 ≤ 𝑗 < 𝑚). The problem is first to find
a horizontal partitioning 𝑔 : D → C, so that the overall latency
of the producer 𝑝 and consuming workloads of D is minimized,
as denoted in Eq. 3. The set of 𝑙 consuming workloads are repre-
sented asW = {𝑤𝑘 }, (0 ≤ 𝑘 < 𝑙), 𝑙𝑎𝑡𝑝 represents the latency of
the producer, and 𝑓 𝑟𝑒𝑞𝑘 and 𝑙𝑎𝑡𝑘 denote the execution frequency
and latency of𝑤𝑘 respectively. Then the selected partitioning 𝑔𝑜𝑝𝑡
needs to be automatically applied while storing D to the cluster C.

𝑔𝑜𝑝𝑡 = arg min
𝑔:D→C

(𝑙𝑎𝑡𝑝 +
∑︂

∀𝑤𝑘 ∈W
(𝑓 𝑟𝑒𝑞𝑘 × 𝑙𝑎𝑡𝑘)) (3)

We further formulate a more detailed model by lowering down
the partitioning functions (𝑔). There exist𝑚𝑛 different partitioning
functions, to prune which, we only consider well-known partition
strategies such as hash partitioning, range partitioning, round robin
partitioning, and random partitioning [66].

A hash partitioner is defined by a function 𝑓𝑘𝑒𝑦𝑃𝑟𝑜 𝑗 that extracts
the partition key from a data item, where the key must have a hash
function defined. For this type of partitioner, given 𝑓𝑘𝑒𝑦𝑃𝑟𝑜 𝑗 , the cor-

responding 𝑔 is defined as 𝑔𝑓𝑘𝑒𝑦𝑃𝑟𝑜 𝑗
ℎℎ

(𝑑𝑖) = ℎ𝑎𝑠ℎ (𝑓𝑘𝑒𝑦𝑃𝑟𝑜 𝑗 (𝑑𝑖))%𝑚,

∀𝑑𝑖 ∈ D. Range partitioners are similar, except that the partition
key must have a comparator defined for sorting; and 𝑔 is accord-
ingly defined as 𝑔𝑓𝑘𝑒𝑦𝑃𝑟𝑜 𝑗𝑟𝑛 (𝑑𝑖) = 𝑟𝑎𝑛𝑔𝑒 (𝑓𝑘𝑒𝑦𝑃𝑟𝑜 𝑗 (𝑑𝑖))%𝑚. Round
robin and random partitionings do not require any functions. The
former is defined as 𝑔𝑟𝑟 (𝑑𝑖) = 𝑛𝑒𝑥𝑡_𝑖𝑛𝑡 ()%𝑚,∀𝑑𝑖 ∈ D, and the
latter is denoted as 𝑔𝑟𝑚 (𝑑𝑖) = 𝑟𝑎𝑛𝑑𝑜𝑚()%𝑚. Therefore, given a set
of 𝑞 different 𝑓𝑘𝑒𝑦𝑃𝑟𝑜 𝑗 for partitioning the dataset 𝐷 , denoted as
F = {𝑓𝑖 }, 0 ≤ 𝑖 < 𝑞, the search space includes all 2𝑞 combinations
of the two partition strategies (i.e. hash or range) and the 𝑞 func-
tions, plus the round robin and random strategies, represented as

1265

GF = {𝑔𝑓0
ℎℎ
, ..., 𝑔

𝑓𝑞−1
ℎℎ
} ∪ {𝑔𝑓0𝑟𝑛, ..., 𝑔

𝑓𝑞−1
𝑟𝑛 } ∪ {𝑔𝑟𝑟 , 𝑔𝑟𝑚}. Thus Eq. 3 can

be lowered into Eq. 4:

𝑔𝑜𝑝𝑡 = arg min
𝑔∈GF

(𝑙𝑎𝑡𝑝 +
∑︂

∀𝑤𝑘 ∈W
(𝑓 𝑟𝑒𝑞𝑘 × 𝑙𝑎𝑡𝑘)) (4)

Latency is influenced by numerous factors such as CPU costs,
I/O costs, hardware parallelism, memory size, network bandwidth.
Because of the lack of a widely acceptable cost model for UDF-
centric analytics, instead of detailing all of these factors, we choose
to use a DRL approach to optimize the objective purely based on the
observed latency (used to compute reward) and features regarding
each partitioner candidate as well as the data and the environment,
which we will describe in detail in Sec. 4.1.3.

3.2.3 Process 2. Match of Partitionings. Supposing the comments
dataset is partitioned by the candidate illustrated in Fig. 3, when the
Feature-Extractor workload (Fig. 2) processes the data, the system
should recognize that the partitioner assoicated with the data is
a desired partitioning of this workload. If the subreddits and au-
thors datasets are also co-partitioned for the workload, the query
optimizer will schedule local joins to avoid the shuffling stages.

A partitioner candidate, except for the random or the round robin
partitioners, is a pair of 𝑓𝑘𝑒𝑦𝑃𝑟𝑜 𝑗 and its partition strategy (hash or
range). Supposing a partitioner candidate, with its IR represented
as 𝑓𝐷 = (𝑉𝐷 , 𝐸𝐷 , 𝑆𝐷 ,𝑂𝐷), has been applied to a dataset D. Then
if an application 𝑤 ∈ W reads from D and we have 𝑎 = ℎ(𝑤) =
(𝑉 , 𝐸, 𝑆,𝑂) as the IR graph of 𝑤 , there must exist a scan node
𝑠𝐷 ∈ 𝑆 that reads from D, denoted as 𝑠𝐷 = 𝑎.𝑓 𝑖𝑛𝑑_𝑠𝑐𝑎𝑛𝑛𝑒𝑟 (D). In
addition, if there exists a subgraph of 𝑎, which is equivalent to 𝑓𝐷 ,
the system’s query scheduler can simply avoid the execution of this
subgraph, because the partitioning represented by this subgraph
has already been applied toD. The identification of such subgraphs
can be abstracted into a subgraph isomorphism problem [10] :Given
two graphs 𝑓𝐷 = (𝑉𝐷 , 𝐸𝐷 , 𝑆𝐷 ,𝑂𝐷) and 𝑎 = (𝑉 , 𝐸, 𝑆,𝑂), a subgraph
isomorphism from 𝑓𝐷 to 𝑎 is to find a function 𝑓 : 𝑉𝐷 → 𝑉 such that
if (𝑢, 𝑣) ∈ 𝐸𝐷 , then (𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸 and if 𝑠 ∈ 𝑆𝐷 , then 𝑓 (𝑠) ∈ 𝑆 .

3.3 Summary of Challenges
UDF-centric applications are very different with relational applica-
tions where costs of a query execution plan are easy to estimate,
and a partitioning predicate can be easily extracted (i.e., searching
in WHERE clause) and reused (i.e., appending a PARTITION BY
predicate). The specific challenges include:
(1) Workload Enumeration. Given an incoming/existing dataset
D, how to obtain the set of consuming workloadsW?
(2) Enumeration of Partitioner Candidates. How to obtain the
set of partitioner candidates F for partitioning a dataset D?
(3) Optimization. How to solve the optimization problem illus-
trated in Eq. 4, with the lack of a widely acceptable cost model?
(4) Match of Partitionings. How to efficiently solve the subgraph
isomorphism problem, which is NP-complete [10]?
These challenges are addressed in Lachesis based on following ideas:
(1) We utilize historical workflow execution information to predict
future workloads based on the workload recurrence patterns.
(2) Partitioner candidates or existing/desired partitionings are just
a special type of subgraphs. Recognizing such subgraphs in an IR
may be simpler than the general subgraph isomorphism problem.

(3) A DRL-based approach that models the dynamic factors purely
through rewards of past decisions may solve the optimization prob-
lem with good adaptivity and also avoid the costs of profiling the
hardware environments as required in a cost model approach.

4 OUR SOLUTIONS
4.1 Creation of Partitionings
4.1.1 Workload Enumeration. Given a producer 𝑝 that is going to
write a datasetD to the storage, and a set of𝑛𝑤 historical workloads
W ′ = {𝑤 ′

𝑖
}, (0 ≤ 𝑖 < 𝑛𝑤), how to enumerate the set of workloads

W that may process D in the future?
Based on the recurrent workflow assumption, if there exists𝑤 ′

𝑖
∈

W ′ with ℎ(𝑤 ′
𝑖
) = (𝑉 ′

𝑖
, 𝐸 ′

𝑖
, 𝑆 ′

𝑖
,𝑂 ′

𝑖
) that is isomorphic to 𝑝 with

ℎ(𝑝) = (𝑉 , 𝐸, 𝑆,𝑂), which means an isomorphism bijection 𝑓 :
ℎ(𝑝) → ℎ(𝑤 ′

𝑖
) exists, then for 𝑜𝐷 ∈ 𝑉 that is the node outputting

D in ℎ(𝑝), there must exist 𝑜 ′
𝐷
∈ 𝑂 ′

𝑖
so that 𝑓 (𝑜𝐷) = 𝑜 ′

𝐷
. Further

more, if ∃ 𝑤 ′
𝑗
∈ W ′ with ℎ(𝑤 ′

𝑗
) = (𝑉 ′

𝑗
, 𝐸 ′

𝑗
, 𝑆 ′

𝑗
,𝑂 ′

𝑗
), 𝑠𝐷 ∈ 𝑆 ′𝑗 , satisfy-

ing that the dataset read by 𝑠𝐷 is created by 𝑜 ′
𝐷
, we can conclude

that 𝑤 ′
𝑗
once consumed the output of 𝑤 ′

𝑖
, so it may consume the

output of 𝑝 in the future (because of the isomorphism between ℎ(𝑝)
and ℎ(𝑤 ′

𝑖
)), and thus we have𝑤 ′

𝑗
∈ W.

We encapsulate the above process into a historical workflow anal-
ysis component. It first reconstructs low-level workflow informa-
tion from execution logs, which is illustrated in Fig. 4(a), where each
node represents an execution of a workload, identified by (app_id,
timestamp) and each edge represents a historical dataset created
by its source node, and consumed by its destination node. It then
further condenses the low-level graph into a skeleton graph [45, 58]
by merging nodes that have the same IRs and thus expect exactly
the same partitionings, as illustrated in Fig. 4(b). In the skeleton
graph, each edge represents a list of historical execution runs in the
form of (app_id, timestamp, input_data_id, output_data_id). Given
a currently running application belonging to group1 that is going
to write a dataset to the storage, based on the skeleton graph in
Fig. 4(b), Lachesis will predict that applications from group2 and
group4 may process the dataset in the future. The matching of
ℎ(𝑤 ′

𝑖
) to ℎ(𝑝) is achieved by offline computing a hash signature for

each workload’s IR graph (ℎ(𝑤 ′
𝑖
)) through enumerating, sorting,

and concatenating all distinct paths that connect a scan node to a
write node [55]. These signatures are stored into a hash table and
then the lightweight online process matches the signature of the
producer’s IR graph (ℎ(𝑝)) against the hash table.

4.1.2 Partitioner Candidate Enumeration. Given a set of consuming
workloadsW enumerated for D, ∀𝑤𝑖 ∈ W(0 ≤ 𝑖 < 𝑛𝑤), we can
further enumerate a set of partitioner candidates, with each being
a subgraph, denoted as 𝑎𝑖 = ℎ(𝑤𝑖) = (𝑉 , 𝐸, 𝑆,𝑂).

As mentioned in Sec. 3.2.1, the subgraph representing a par-
titioner candidate must satisfy that the sole root node is a scan
node (𝑠𝐷 ∈ 𝑆) that reads from D, and the unique leaf node is
a node that connects to a pair node followed by a join node.
Obviously satisfying these conditions makes the subgraph suffi-
cient to serve as a partitioner candidate. To efficiently identify
such subgraphs, we propose a two step approach, as illustrated
in Fig. 5. The first step is to recursively traverse 𝑎𝑖 and enumer-
ate all distinct paths that start at the scan node 𝑠𝐷 and end at

1266

any of the pair→join paths. We formalize this process in Alg. 1.
The second step is to merge all paths that connect the same scan
node and the same leaf node into one graph to serve as one par-
titioner candidate, as illustrated in Alg. 2. Thus we can formalize
the process of enumerating all partitioner candidates from W:
ℎ̂W→F =

⋃︁
𝑤𝑖 ∈𝑊 {𝑚𝑒𝑟𝑔𝑒 (𝑠𝑒𝑎𝑟𝑐ℎ(ℎ(𝑤𝑖)),D, ∅)}.

Algorithm 1 𝑠𝑒𝑎𝑟𝑐ℎ(𝑎𝑖 , 𝑠𝐷 , 𝐹𝑖)
1: INPUT1: 𝑎𝑖 = (𝑉 , 𝐸, 𝑆,𝑂) (the IR graph of one of D’s consuming

workloads 𝑤𝑖 ∈ W)
2: INPUT2: 𝑠𝐷 (the scan node in 𝑎𝑖 that reads from D)
3: INPUT3 and OUTPUT: 𝐹𝑖 (a list of partial partitioner candidates for D

extracted from 𝑎)
4: 𝐹𝑖 ← 𝜙

5: 𝑉 ′ ← {𝑠𝐷 }; 𝐸′ ← ∅; 𝑆′ ← {𝑠𝐷 };𝑂′ ← ∅
6: for 𝑣𝑘 in 𝑠𝐷 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
7: 𝑉 ′ ← 𝑉 ′ ∪ {𝑣𝑘 }
8: 𝐸′ ← 𝐸′ ∪ {𝑒𝑑𝑔𝑒 (𝑠𝐷 , 𝑣𝑘) }
9: 𝑂′ ← {𝑣𝑘 }
10: if ∄𝑝𝑎𝑡ℎ (𝑣𝑘 , 𝑝𝑎𝑖𝑟, 𝑗𝑜𝑖𝑛) then
11: 𝐹 𝑡 ← ∅
12: 𝑠𝑒𝑎𝑟𝑐ℎ ((𝑉 −𝑉 ′) ∪ {𝑣𝑘 }, 𝐸 − 𝐸′, (𝑆 − 𝑆′) ∪ {𝑣𝑘 },𝑂′), 𝑣𝑘 , 𝐹 𝑡)
13: for 𝑓 𝑡 = (𝑉 𝑡 , 𝐸𝑡 , 𝑆𝑡 ,𝑂𝑡) ∈ 𝐹 𝑡 do
14: 𝐹𝑖 ← 𝐹𝑖 ∪ {(𝑉 ′ ∪𝑉 𝑡 , 𝐸′ ∪ 𝐸𝑡), 𝑆′,𝑂𝑡 }
15: end for
16: else
17: if 𝐸′ ≠ ∅ then
18: 𝐹𝑖 ← 𝐹𝑖 ∪ {(𝑉 ′, 𝐸′, 𝑆′,𝑂′) }
19: end if
20: end if
21: end for
22: return 𝐹𝑖

Algorithm 2𝑚𝑒𝑟𝑔𝑒 (𝐹𝑖)
1: INPUT: 𝐹𝑖 (a list of partial partitioner candidates output from Alg. 1)
2: OUTPUT: 𝐹 ′

𝑖
(a list of partitioner candidates)

3: ℎ𝑎𝑠ℎ𝑚𝑎𝑝 ← ∅
4: 𝐹 ′

𝑖
← ∅

5: for 𝑓𝑘 = (𝑉𝑘 , 𝐸𝑘 , 𝑆𝑘 ,𝑂𝑘) ∈ 𝐹𝑖 do
6: if ℎ𝑎𝑠ℎ𝑚𝑎𝑝.𝑐𝑜𝑢𝑛𝑡 ((𝑆𝑘 ,𝑂𝑘)) ≠ 0 then
7: (𝑉 𝑡 , 𝐸𝑡 , 𝑆𝑡 ,𝑂𝑡) ← ℎ𝑎𝑠ℎ𝑚𝑎𝑝 [(𝑆𝑘 ,𝑂𝑘)]
8: ℎ𝑎𝑠ℎ𝑚𝑎𝑝 [(𝑆𝑘 ,𝑂𝑘)] ← (𝑉 𝑡 ∪𝑉𝑘 , 𝐸𝑡 ∪ 𝐸𝑘 , 𝑆𝑘 ,𝑂𝑘)
9: else
10: ℎ𝑎𝑠ℎ𝑚𝑎𝑝 [(𝑆𝑘 ,𝑂𝑘)] ← 𝑓𝑘
11: end if
12: end for
13: for ((𝑆𝑘 ,𝑂𝑘), 𝑓𝑘) ∈ ℎ𝑎𝑠ℎ𝑚𝑎𝑝 do
14: 𝐹 ′

𝑖
= 𝐹 ′

𝑖
∪ {𝑓𝑘 }

15: end for
16: return 𝐹 ′

𝑖

4.1.3 DRL-based Optimization. Once a set of partitioner candi-
dates are enumerated, the next step is to select the optimal one to
apply. There are existing works targeting similar data partitioning
optimization problems in OLAP relational databases [1, 17, 22, 23,
34, 38, 43, 47, 64]. These works, including recent RL-based parti-
tioning advisors [22, 23], are largely depending on the functional

dependency [42] and cost models of relational databases, whichmay
not exist in UDF-centric analytics. In this work, we choose a DRL
approach based on the actor-critic network [50], which integrates
the best of both worlds of value-based (e.g., Q-Learning [19, 59])
and policy-based (e.g., proximal policy optimization [46]) RL. We
use A3C algorithm [37], which is a state-of-the-art algorithm for
learning the actor-critic network [36]. It also allows to use multiple
learning agents to accelerate the training process.

The actor-critic network is based on policy gradient. It takes a
state vector, which describes the environment, as input, and outputs
policy, which is a probability distribution in the action space. Then,
the critic network also takes state as input, and outputs the expec-
tation of value function that will be used together with reward to
compute the policy gradient to improve the learning for both of the
actor and critic networks. The optimization goal of the model is to
minimize the cumulative processing latency of current and future
applications. We formulate the DRL problem in detail as follows.
State. To formualte the state feature vector, we first consider follow-
ing features for each of the 𝑘-most recent partitioner candidates:
1. frequency indicates the total number of historical executions of
the IR where the partitioner candidate is extracted from.
2. distance indicates the average time interval between the most
recent two runs in the candidate’s IR group mentioned in Fig. 4(b).
3. recency indicates the timestamp of the most recent run of appli-
cations in the candidate’s IR group.
4. complexity computes the number of nodes in the subgraph that
represents the partitioner candidate.
5. selectivity indicates the ratio of the average size of the parti-
tion keys extracted to the average size of source objects. This metric
measures the amount of data that should be shuffled at runtime if
this partitioner candidate is desired but not selected.
6. key_distribution indicates the average number of unique val-
ues generated by hashing the output of the partitioner candidates in
historical runs. The key distribution affects the system load balance.
If the output keys are skewed, most of the objects may be stored
on the same worker instance, while only a small portion of objects
are distributed in other workers.
7. num_copartitioned indicates the number of existing datasets
that will be co-partitioned with the data if this partitioner candidate
is selected. These datasets are identified by searching their parti-
tionings in the IR where this partitioner candidate’s IR is extracted.
8. size_copartitioned indicates the total sizes of the co-partitioned
datasets mentioned above.

We compute the pearson correlation coefficient (PCC) [30], which
is a measure of the linear correlation coefficient between two ran-
dom variables, for the reward (which we will describe later) and
each of aforementioned features. The results show that frequency,
num_copartitioned, size_copartitioned are the top three fea-
tures that are mostly correlated with the reward. In addition, the
PCC of recency and distance to the reward will increase with
the temporal locality of the workload patterns. While the rest of
the features have significantly less PCC with reward, they are also
useful in avoiding some bad partitioner candidates, e.g., an aggre-
gation/join key extraction function that maps all elements into a
few keys with skewed distribution by using key_distribution.

Besides the features that describe each of top 𝑘 partitioner can-
didates, the other features we use include the estimated size of the

1267

app1, t1 app2, t2 app3, t3

app1, t4 app7, t6

app4, t5 app2, t7 app8, t8

app5, t9 app6, t10

d1 d2

d3

d4 d5

d6

group1

group2 group3

group4

d7

d8

(a) Low-level Graph

app1, t1 app2, t2 app3, t3

app1, t4 app7, t6

app4, t5 app2, t7 app8, t8

app5, t9 app6, t10

d1 d2

d3

d4 d5

d6

group1

group2 group3

group4

d7

d8

(b) Skeleton Graph

Figure 4: Workflow rep-
resentation (each node is a
workload IR graph)

scan

myjson::parse

schema_resolve

classify_v1

switchT F

[]”subreddit”[]”author”

comments.json

c c

string get_partition_key (string comment_line){
string new_line=schema_resolve(comment_line);//preprocessing
json c = myjson::parse(new_line); //parsing comment
if (classify_v1(c) ==true){//need to join with authors
return c[”author”]; //derive author name from comment

}else{//need to join with subreddits
return c[”subreddit”]; //derive subreddit name from comment

}
}

c

c[”author”] c[”subreddit”]

V’= {}, E’ = {}, O’= {}, SD = scancomments

V’= {scancomments}, E’ = {(scancomments, schema_resolve)}
O’= {schema_resolve},
SD = schema_resolve

V’= {scancomments, schema_resolve}, E’ = {(scancomments,
schema_resolve), (schema_resolve, myjson::parse)},

O’= {myjson::parse},
SD = myjson::parse

V’ = {scancomments, schema_resolve,
myjson::parse, []“author”},

E’ = {(scancomments, schema_resolve),
(schema_resolve, myjson::parse),

(myjson::parse, []“author”)},
O’= {[]“author”},
SD = []“author”

SD.children ={switch}, terminates

V’= {scancomments, schema_resolve,
myjson::parse, []“subreddits”},

E’ = {(scancomments, schema_resolve),
(schema_resolve, myjson::parse),
(myjson::parse, []“subreddits”)},

O’= {[]“subreddits”},
SD = []“subreddits”

SD.children ={switch}, terminates

V’= {scancomments, schema_resolve,
myjson::parse, classify_v1},

E’ = {(scancomments, schema_resolve),
(schema_resolve, myjson::parse),

(myjson::parse, classify_v1)},
O’= {classify_v1},
SD = classify_v1

SD.children ={switch}, terminates

[]“author”

switchT F

classify_v1

switchT Fswitch

[]“subreddits”

T F

scan

schema_resolve

myjson::parse

scan

schema_resolve

myjson::parse

scan

schema_resolve

myjson::parse

f0 f1 f2
S0

O0

S1

O1

S2

O2

Hash Table in Alg. 2

<S=Scan, O= Swtich> f0

f1

f2

Key: <S, O> pairs

Value: IR fragments of
a partitioner candidate
starting from S and
ending at O

Merging in Alg. 2

f0

f1

f2

+

+

partitioner candidate (see Fig. 2)

Alg. 1

Figure 5: Running example for Alg. 1 and Alg. 2

dataset to be dispatched, the number of workers, the number of
cores and sizes of available memory and disk space on each worker.
All features are normalized before being used.
Action Space and Policy. Upon receiving the state vector 𝑠𝑡 , the
RL agent needs to send back an action 𝑎𝑡 that corresponds to the
selected partitioner candidate. The RL agent selects actions based
on a policy, defined as a probability distribution over candidate
lambdas: 𝜋 = 𝜋𝜃 {𝑠𝑡 , 𝑎𝑡 } → [0, 1]. Here 𝜃 is the hidden parameter
that controls the policy, which is represented by the actor neural
network [37]. The action space can be extended to sample and select
more than one actions, for creating multiple replicas, with each
organized using a different partitioning [68, 69].
Reward Function. Lachesis also needs to compute reward 𝑟𝑡−1 for
last action 𝑎𝑡−1. Because latency will increase with data size, we
define the reward function to be the performance speedup of the
total throughput of applications that consume the dataset for which
action 𝑎𝑡−1 is applied, compared to a baseline throughput. The
baseline is the average throughput of the historical executions of
these applications. The reward function is formalized as below.𝑊 𝑡

𝑡−1
represents all workloads that have processed the dataset partitioned
at time 𝑡 − 1, during the period from time 𝑡 − 1 to 𝑡 .𝑊 ′ represents
all historical workloads used for workload enumeration.

𝑟𝑡−1 =

∑︁
𝑤∈𝑊𝑡

𝑡−1

∑︁
D∈𝑤.𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 (D)/

∑︁
𝑤∈𝑊𝑡

𝑡−1
𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (𝑤)∑︁

𝑤′∈𝑊 ′
∑︁
D∈𝑤′ .𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 (D)/

∑︁
𝑤′∈𝑊 ′ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (𝑤′)

Policy Gradient. Policy gradient methods estimate the gradient of
the expected total reward by computing the gradient of cumulative
discounted reward with respect to the policy, which can be repre-
sented as [37]: ∇𝜃𝐸 [

∑︁
𝑡 ≥0 𝛾

𝑡𝑟𝑡 |𝜋𝜃] = 𝐸 [∇𝜃 𝑙𝑜𝑔𝜋𝜃 (𝑠, 𝑎)𝐴𝜃 (𝑠, 𝑎) |𝜋𝜃].
𝐴𝜃 (𝑠, 𝑎) is called advantage function that indicates how much bet-
ter an action is compared to the expected. Each update of the actor
network follows the policy gradient to reinforce actions that lead to
better rewards: 𝜃 ← 𝜃 + 𝛼∇𝜃 𝑙𝑜𝑔𝜋𝜃 (𝑠𝑡 , 𝑎𝑡)𝐴(𝑠𝑡 , 𝑎𝑡) + 𝛽∇𝜃𝐻 (·|𝑠𝑡).

Here, 𝛼 is the learning rate; 𝐻 (·) is the entropy of the policy,
which is to encourage exploration in the action space; and 𝛽 is used
to control the emphasis in exploration over exploitation.

To compute the advantage function 𝐴(𝑠𝑡 , 𝑎𝑡), we need estimate
the value function 𝑉 𝜋𝜃 (𝑠) as 𝑄 (𝑠, 𝑎). The critic network is respon-
sible to learn the estimate of the value function from observed
rewards. All the details of derivation can be found in reference [37].
AnEnd-to-EndAlgorithm. Based on the proposed workflow enu-
meration, partitioner candidates enumeration, and optimization, we
give Alg. 3 to describe the end-to-end partitioning creation process.

Algorithm 3 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔_𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛(𝑝,D,W ′)
1: INPUT1: 𝑝 (the producer workload)
2: INPUT2: D (the dataset to store and partition)
3: INPUT3:W′ (the set of historical workloads)
4: W ←𝑚𝑎𝑡𝑐ℎ (𝑝,W′) {Sec. 4.1.1}
5: F ← ∅
6: for 𝑤𝑖 ∈ W do
7: 𝑎𝑖 ← ℎ (𝑤𝑖) {via DSL/IR: Sec. 3.2.1}
8: 𝑠𝐷 ← 𝑎𝑖 .𝑓 𝑖𝑛𝑑_𝑠𝑐𝑎𝑛𝑛𝑒𝑟 (D){Sec. 3.2.3}
9: 𝐹𝑖 ←𝑚𝑒𝑟𝑔𝑒 (𝑠𝑒𝑎𝑟𝑐ℎ (𝑎𝑖 , 𝑠𝐷 , ∅)) {Sec. 4.1.2: Alg. 1 and Alg. 2}
10: F ← F ∪ 𝐹𝑖
11: end for
12: 𝑔𝑜𝑝𝑡 ← min

𝑔∈GF (𝑙𝑎𝑡𝑝 +
∑︁
∀𝑤𝑘 ∈W (𝑓 𝑟𝑒𝑞𝑘 × 𝑙𝑎𝑡𝑘)){Sec. 4.1.3}

13: for ∀𝑑𝑖 ∈ D do
14: store 𝑑𝑖 to the node 𝑔𝑜𝑝𝑡 (𝑑𝑖)
15: end for

4.2 Matching of Partitionings
In this section, we discuss how to match the partitioning of an
input dataset to the running application (Process 2). While subgraph
isomorphism problem is NP-complete [10], we can utilize the two-
terminal DAG characteristics of the subgraph associated with a
partitioner candidate to provide an efficient solution.

Given a dataset D, we can obtain the IR graph of its partition-
ing through the storage interface, denoted as 𝑓𝐷 = (𝑉𝐷 , 𝐸𝐷 , 𝑆𝐷 =

{𝑠},𝑂𝐷 = {𝑜}). Also given a running application𝑤 that takesD as

1268

one of its inputs, we can obtain𝑤 ’s IR graph 𝑎 = ℎ(𝑤) = (𝑉 , 𝐸, 𝑆,𝑂).
We first locate the scanner node 𝑠𝐷 ∈ 𝑆 that connects toD, and cre-
ate an isomorphic mapping from 𝑠 to 𝑠𝐷 , because these two are root
nodes and they must match with each other due to the uniqueness
of root node. Then we recursively visit each descendant (denoted as
𝑣) of 𝑠𝐷 in IR DAG 𝑎 (we use depth-first search for this step). Each
time meeting a 𝑣 that is a pair->join path, we create a candidate
isomorphic subgraph 𝐼𝐺 (𝑠𝐷 ,𝑣) that connects the root node 𝑠𝐷 and
the leaf node 𝑣 . This step can be accelerated by indexing all join
nodes when constructing the IR graph. Then for each candidate
isomorphic subgraph, we create a signature for each distinct path
from 𝑠𝐷 to 𝑣 by concatenating the node labels along the path. We
can thus derive a unique signature to identify each subgraph by
further concatenating all path signatures sorted in lexicographical
order. By matching the signatures of the 𝑓𝐷 and each candidate
subgraph, we can find all isomorphic subgraphs. The algorithm is
illustrated in Alg. 4. It can be further optimized by using a hashmap
to store the signatures of candidate subgraphs.

Algorithm 4 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔_𝑚𝑎𝑡𝑐ℎ(𝑓𝐷 , 𝑠𝑠𝑠𝑒𝑡𝐷 , 𝑎, 𝑃)
1: INPUT1: 𝑓𝐷 = (𝑉𝐷 , 𝐸𝐷 , 𝑆𝐷 = {𝑠 },𝑂𝐷 = {𝑜 }) (IR of the dataset’s

partitioning)
2: INPUT2: 𝑠𝑠𝑠𝑒𝑡𝐷 (sorted set of signatures for all paths in 𝑓𝐷)
3: INPUT3: 𝑎 = (𝑉 , 𝐸, 𝑆,𝑂) (IR of the running consumer workload)
4: INPUT4: 𝑃 = {𝑝𝑖 } ⊂ 𝑉 (the set of pair->join paths)
5: OUTPUT: 𝐼 (the set of subgraphs in 𝑎 that is isomorphic to 𝑓𝐷)
6: 𝐼 ← 𝜙

7: 𝑠𝐷 = 𝑎.𝑓 𝑖𝑛𝑑_𝑠𝑐𝑎𝑛𝑛𝑒𝑟 (D)
8: for 𝑝𝑖 ∈ 𝑃 do
9: 𝑝𝑎𝑡ℎ_𝑠𝑒𝑡 = 𝑎.𝑓 𝑖𝑛𝑑_𝑎𝑙𝑙_𝑝𝑎𝑡ℎ𝑠 (𝑠𝐷 , 𝑝𝑖)
10: if 𝑝𝑎𝑡ℎ_𝑠𝑒𝑡 ≠ 𝜙 then
11: 𝑠𝑖𝑔_𝑠𝑒𝑡 ← 𝜙

12: for 𝑝𝑎𝑡ℎ ∈ 𝑝𝑎𝑡ℎ_𝑠𝑒𝑡 do
13: 𝑠𝑖𝑔← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 (𝑝𝑎𝑡ℎ)
14: 𝑠𝑖𝑔_𝑠𝑒𝑡 ← 𝑠𝑖𝑔_𝑠𝑒𝑡 ∪ {𝑠𝑖𝑔}
15: end for
16: end if
17: if 𝑠𝑠𝑠𝑒𝑡𝐷 equals to 𝑠𝑜𝑟𝑡𝑒𝑑 (𝑠𝑖𝑔_𝑠𝑒𝑡) then
18: 𝐼 ← 𝐼 ∪ {𝐼𝐺 (𝑠𝐷 ,𝑝𝑖) }
19: end if
20: end for
21: return 𝐼

5 SYSTEM IMPLEMENTATION
We implement Lachesis on top of a baseline system, PlinyCom-
pute [67], which is a UDF-centric analytics framework, using the
Pangea storage [68]2. Lachesis stores information regarding histor-
ical application executions, including the paths, sizes, partitionings
of datasets, IRs, runtime statistics such as execution latency, output
data sizes for each job stage, in a SQLite database. The producer-
consumer relationships among applications are reconstructed to
provide a full picture of historical workflow executions. Given a
producer that materializes a dataset, the historical workflow an-
alyzer can efficiently supply a set of applications that once have
processed the datasets created by the same type of producers. Based

2The Lachesis code is available: https://github.com/asu-cactus/lachesis

on the recurrent workflow assumption, each application in this set
may re-process the dataset in the future. Therefore, any relevant
partitioning computations extracted from these applications may be
considered as a partitioner candidate for this dataset. The historical
workflow analyzer is also responsible for selecting and extracting
features for the top 𝑘 partitioner candidates.
DRL Model Training. The RL model is deployed using Tensor-
Flow. Ideally, the training would occur with actual data loading
and workload execution. However, this will be slow because to
compute the reward, the RL client needs to wait for all of the related
datasets to be loaded using the partition scheme specified in recent
actions and related queries to be executed. To avoid this overhead,
existing DRL approach for relational data partitioning chooses to
bootstrap the model using traces generated by a cost model [22].
While this is a reasonable solution for relational database, there is
no widely-accepted cost models for UDF-centric analytics [49].

To alleviate the training overhead, we propose to transform the
running statistics of a few actual query executions into the esti-
mated statistics of a large set of diversified workloads randomly
generated from the queries. We first select a few queries. (One re-
quirement is that some of these queries should be latency-sensitive
to the partitionings of their input data, e.g., queries involving join
and aggregation.) Then, we enumerate all partitioner candidates for
the inputs of these queries. Furthermore, we run the queries and
measure each query’s latency for each possible partition scheme.

In each iteration, the training component generates a workload
by randomly combining the pre-executed queries with varying
frequencies, and it forms the state simply based on the historical
statistics of all possible partitioner candidates for the queries in
the workload. Then it sends the state to the RL server and obtains
the action for partitioning. Instead of actually partitioning the data
and running the queries from the generated workload, it simply
looks up the latency related to this action and computes reward
from historical latency statistics of these queries.

In this way, we can generate an unlimited number of workloads
for training, and we do not need to actually run any queries of the
workload. The increased number of workloads result in more robust
representations of important features such as frequency, recency,
number of co-partitioned datasets, etc., as mentioned in Sec. 4.1.3.

6 EVALUATION
In this section, we mainly want to answer following questions:
(1) What are the performance gains that can be achieved by Lach-
esis’s automatic persistent partitioning for different types of Big
Data analytics applications? (Sec. 6.2, 6.3, 6.4)
(2) How much online and offline overhead is incurred during the
automatic partitioning process? (Sec. 6.5)
(3) How effective is the DRL training process and how much time
and efforts are required for training? (Sec. 6.6)

6.1 Environment Setup
6.1.1 Workloads. To answer the questions, we implement a set of
representative workloads including:
(1) Reddit data integration workflows. We implement two dy-
namic workflows: one is the motivating example illustrated in Fig. 2;
the other is a deep learning model inference workflow.

1269

(2) TPC-H Queries. We implement ten TPC-H queries (Q1, Q2,
Q3, Q4, Q6, Q12, Q13, Q14, Q17, Q22). Each table is represented as
a collection of C++ objects and each predicate is wrapped as a UDF.
The producer workloads load eight TPC-H datasets (lineitems,
orders, customers, parts, suppliers, partsupp, regions, and nations),
to the storage, and then the queries run to process the loaded data.
(3) PageRank Analytics workflow. We implement a web analyt-
ics workflow that consists of two workloads: pre-processing the
web pages, and running PageRank iterations on the pages [39].

6.1.2 Baselines. For the TPC-H benchmarks, we compare Lachesis
to the partition schemes suggested by a commercial distributed data-
base. For other workloads, because there are no existing automatic
partitioners that can work with UDF-centric workloads to process
arbitrary data types, we measure the performance speedup by com-
paring the consuming workload’s latency of applying Lachesis to
different baselines listed as follows.
(1) Heuristics that are typically used by a database administrator [23,
64]: one is to co-partition all datasets with the most frequent joined
dataset (i.e. Heuristics(a)) and the other is to co-partition all datasets
with the largest dimension table (i.e. Heuristics(b)).
(2) The round robin dispatching strategy, which is to dispatch each
page of data to a cluster node in order. This is an effective way to
guarantee load balance for large dataset, and is adopted by many
storage systems such as IBM GPFS [20].
(3) For the Reddit workflow-1 and the PageRank workflow, we also
compare Lachesis to a reactive approach [24].

6.1.3 Environment Setup. We use three AWS clusters; (1) Environ-
ment 1, which is a cluster that has three r4.2xlarge instances. Each
r4.2xlarge instance has 8 CPU cores, 61GBmemory, up to 10GB net-
work connection. (2) Environment 2, which has eleven r4.2xlarge
instances, up to 10 GB network connection. (3) Environment 3,
which has six m2.4xlarge instances. Each instance has 8 CPU cores,
68 GB memory, up to 1 GB network connection. In each cluster, one
instance serves as the master and the rest of the instances serve as
workers. Each instance uses 200GB Elastic Block Store SSD.

6.2 Reddit Data Integration Workflows
We compare the performance of two Reddit data integration work-
flows by using different partitioning strategies. In each workflow,
three workloads are responsible for loading the Reddit comments in
JSON format (up to 100millions of comments objects, 128 gigabytes
in total), Reddit authors data in CSV format (78 millions of authors
objects, 10 gigabytes in total), and subreddits data in CSV format
(3.7 gigabytes in total).3

We store the raw files in a S3 bucket, and the time to copy all the
files from S3 to the master node of the cluster is 76 seconds. Such
loading happens only once and the loaded data will be repeatedly
processed and the following measurements do not include this time.

6.2.1 Workflow-1: three-way dynamic join. For this experiment,
we use 10% of data from the three Reddit datasets in Environment
1; and use all data in Environment 2. After loading the data to
storage, theworkflow performs a three-way join similar to Listing. 1,
depending on a classifier that simply checks whether the value of

3Reddit datasets are download from http://files.pushshift.io/reddit/.

(a) speedup

(b) shuffled bytes

Figure 6: Reddit Workflow-1

a comment’s score is larger than a constant. In this workflow, the
classifier results in around 50% of comments to join with authors,
and 50% of comments to join with subreddits.

Because the workflow contains only one three-way join, both
heuristics-a and b choose to partition the comment objects based
on author name. Existing physical database design advisors enu-
merate partition keys based on foreign keys. These tools will either
choose to partition the Reddit comments dataset along the author
name, or along the subreddit channel. So we added heuristics-c to
partition along the subreddit channel for completeness. Only our
Lachesis approach can identify and exploit the UDF-based parti-
tioner candidate as illustrated in Fig. 3. As a result, Lachesis achieves
1.4× speedup in the two-worker cluster and 2.4× speedup in the
ten-worker cluster, as shown in Fig. 6(a). The total amount of data
shuffled in the Environment 2 is illustrated in Fig. 6(b). Furthermore,
we observe that with the round-robin partitioning, in Environment
2, in average, it needs to shuffle 32 gigabytes to co-locate with the
authors data; and 29 gigabytes to shuffle for co-locating with the
subreddits data, after compression using Snappy v1.5.

As mentioned at the beginning of Sec. 3.2, Lachesis’ function-
alities for enumerating and matching partitioner candidates can
be used to repartition existing datasets based on new incoming
queries (i.e., reactive approach). We thus design several scenarios
that are composed of repeated executions of two queries: Q1, a
two-way join of reddit authors and comments; and Q2, the three-
way dynamic join that we just discussed. The results are illustrated
in Fig. 7. When Q1 is repeatedly executed, the reactive approach
chooses to co-partition the comments and authors datasets by the
UDF that parses the author name; Then when Q2 is repeatedly exe-
cuted, the reactive approach chooses to further partition a subset of
the comments dataset by the UDF that parses the subreddit name.
If the queries are executing in a pattern of Q1, Q2, Q1, Q2, ..., the
reactive approach only chooses to repartition once based on the
author-extraction UDF. Lachesis and Heuristics-a/b always choose
to pre-partition the comments and authors datasets based on the
author-extraction UDF in all of these patterns. We can see that if a
query execution pattern repeatedly occurs, the Lachesis-Reactive
approach can achieve similar or slightly better performance.

1270

Figure 7: Comparison of Lachesis-reactive and Lachesis in Envi-
ronment 1. 𝑘Q1 𝑘Q2 is to execute Q1 for 𝑘 times and then Q2 for 𝑘
times. 𝑘(Q1Q2) is to repeat the execution of Q1 and Q2 for 𝑘 times.

6.2.2 Workflow-2: Reddit Comment Classification based on Deep
Neural Network (DNN). We implement a DNN model serving work-
flow4 that classifies whether a Reddit comment should join with
author info or subreddit channel info, as mentioned in the motivat-
ing example in Sec. 1. Considering that features are extracted from
all the attributes regarding the comment object, occurrences of
words in a large dictionary, and ngrams, this is a high-dimensional
machine learning problem.

This workflow consists of six jobs: (1) blocking, which is to ex-
tract a pre-computed feature vector from a comment object through
an index, and block the feature vectors of a batch of comments into
many 2-dimensional 1000 × 1000 matrix blocks; (2) layer-1, which
passes the feature blocks to the first fully-connected layer that has
1000 neurons and a 1000-dimensional bias vector with Relu acti-
vation, and outputs 𝑦1; (3) layer-2, which passes 𝑦1 to the second
fully-connected layer that has 2000 neurons and a 2000-dimensional
bias vector with Relu activation, and outputs 𝑦2; (4) layer-3, which
is the output layer that consists of 2 neurons for the two labels and
a 2-dimensional bias vector, and outputs 𝑦𝑜 ; (5) flattening, which
applies softmax activiation to 𝑦𝑜 to get the probability distribution
over the labels for each comment, and flattens result tensor blocks
to a set of comment label objects; (6) labeling, which joins the batch
of comments with the label objects, so that each comment’s label
attribute is filled with the prediction.

We run the experiment with 200000 to 1 million features in En-
vironment 1, using a batch size of 1000. All values are using double
precision. We observe that in this case, by only partitioning the
persistent datasets such as reddit comments, the weight and bias
matrices of layer-1, layer-2, and layer-3, it achieves only moderate
performance gain, labeled as Lachesis-persistent in Fig. 8. By addi-
tionally co-partitioning intermediate data such as the output of the
blocking, layer-1, layer-2, layer-3, and flattening, we can achieve
the maximum performance gain, labeled as Lachesis-full in Fig. 8.

Although this workflow has more than ten datasets that are
inputs to join operations, for each dataset, usually only one or two
partitioner candidates exist. So the Lachesis-full result is similar to
Heuristics-a and Heuristics-b. Given the many datasets involved
and the complexity of the workflow, it is hard for programmers to
manually figure out and manage the partitionings. The productivity
brought by automatic partitioning is a great benefit of Lachesis.

A significant portion of overall performance gain (1.3× to 1.6×
speedup) is coming from the blocking stage and the layer-1 stage.
The blocking stage transforms and aggregates the batch of com-
ments that is merely 1 megabytes in total to a set of feature blocks
that have 2GB to 10GB in total size depending on the number of
features. Because Lachesis chooses to partition comments by its
unique identifier, comments are evenly distributed across worker
threads. However, the round-robin approach distributes data by
4The model architecture is consistent with the simple FFN example in TensorFlow [52], but imple-
mented in PlinyCompute [67] using Tensor Relational Algebra [25, 62].

Figure 8: Performance of Workflow 2 for a batch of inferences

pages, which causes skewed distributions due to the small size of a
batch. The layer-1 stage includes a join of a numNeurons×numFeatures
weight matrix and a numFeatures×batchSize input matrix, which
can benefit from Lachesis by avoiding shuffling. Without Lach-
esis, for 1 million features, we observed about 8.5GB gets shuffled
(5.6GB w/ compression), in Environment 1. Most of the shuffling
gets avoided with Lachesis-full.

The latency of the layer-2, layer-3, flattening, and labeling will
not change with the increase in number of features because the
joins in these stages are determined by factors such as the number
of neurons and the batch size. Despite of small shuffle sizes in
these stages, Lachesis can still achieve about 15% performance gain
because the removal of the shuffling phases reduces the CPU costs.

6.3 TPC-H Refactored with Objects and UDFs
We implement all eight TPC-H tables as eight C++ classes. Then
we implement ten TPC-H queries that involve aggregations and/or
joins and can be represented using PlinyCompute computations.
We load data that is generated using dbgen at scale SF-10 into a
Environment 1; and load data at scale SF-100 into Environment
2. For this experiment, we compare to round-robin (RR) partition-
ing, Heuristics-a, Heuristics-b, and the partitionings automatically
created by a commercial distributed database using a cost-based
physical database design advisor (denoted as CostModel). The se-
lected partitionings and the total execution latency of ten queries
for each partitioning strategy are shown in Tab. 1 and Tab. 2. The
measured latency for each query is illustrated in Fig. 9.

In both environments, Lachesis achieves the best performance.
In Environment 1, it outperforms the second best strategy, which
is Heuristic-a, by 12%. In Environment 2, Lachesis outperforms
Heuristic-b, which is the second best, by 6%. The CostModel ap-
proach shows the worst performance in both enviornments, which
indicates that the cost model of a relational database system is not
applicable to a UDF-centric analytics system that involves more
complicated overhead for manipulating arbitrary objects.

Taking Q17 for example, in both environments, Lachesis chooses
to co-partition the lineitem table and the part table on partkey. As a
result, for this query, Lachesis achieves 5× speedup in Environment
1 and 3× speedup in Environment 2, compared to Hueristics-a. We
also observe that for Q04, Hueristics-a significantly outperforms

1271

(a) Environment 1: SF-10

(b) Environment 2: SF-100

Figure 9: TPC-H performance (refactored with objects and UDFs)

Table 1: Comparisons of TPC-H Partitionings in Environment 2
RR Heuristics-a Heuristics-b CostModel Lachesis

customer - c_custkey c_custkey c_custkey c_custkey
nation - n_nationkey n_nationkey n_nationkey n_regionkey
partsupp - ps_partkey ps_partkey ps_partkey ps_suppkey
region - r_regionkey r_regionkey r_regionkey r_regionkey
lineitem - l_orderkey l_partkey l_orderkey l_partkey
orders - o_orderkey o_orderkey o_custkey o_orderkey
part - p_partkey p_partkey p_partkey p_partkey
supplier - s_suppkey s_suppkey s_suppkey s_nationkey

Table 2: Comparisons of Total Latency for ten TPC-H queries.
RR Heuristics-a Heuristics-b CostModel Lachesis

Environment 1 1088 sec 758 sec 939 sec 1153 sec 672 sec
Environment 2 1121 sec 1285 sec 1002 sec 1701 sec 944 sec

other partition approaches because it chooses to co-partition the
lineitems table and the orders table which is desired by this query.

6.4 PageRank
In the PageRank application, a producer workload extracts a set
of Page objects from web pages. Each Page object includes a url
member that specifies the page, and a vector of urls this page links
to. Then in the consumer workload, each iteration involves a join
operation that joins the set of Page objects and the set of Rank
objects. Each Rank object includes a url member, and a rankmember
of double type. we set the number of iterations to five by default,
and use the default damping factor 0.85. Each PageRank iteration
requires to join the ranks of links (denoted as ranks) with the link
adjacency matrix (denoted at links). Then the output will be used
to update ranks. If ranks and links are co-partitioned for the join,
no shuffling is required for all iterations. Otherwise, each iteration
will require shuffling.

We benchmark the PageRank application in Environment 3. The
producer randomly generates and pre-processes 40 million to 100
million Page objects. Each Page object has five neighbors on average.
Lachesis chooses to pre-partition the set of Pages and the set of
Ranks using the Page object’s and Rank object’s url member access
functions extracted from the IR. We compare Lachesis to round-
robin partitioning and a reactive approach that co-partitions ranks
and links after the first iteration. The reactive approach also relies
on Lachesis to recognize partitioning candidates.

The results are illustrated in Fig. 10. We observe that in Environ-
ment 3, Lachesis can achieve up to 6.5× speedup by comparing to
the round-robin partitioning; and can achieve up to 1.8× speedup by
comparing to the reactive approach. In addition, when we increase

Figure 10: PageRank performance comparison

(a) Shuffled Bytes (b) Shuffling Latency

Figure 11: Shuffling in PageRank w/o Lachesis (Environment 3)

the number of iterations, the performance gain achieved by the
Lachesis’ pre-partition approach compared to the Lachesis’ reactive
approach will gradually drop, because the partitioning overhead is
amortized to more iterations.

The shuffled bytes information as well as the input data size in-
formation is illustrated in Fig. 11(a). Through analysis, as illustrated
in Fig. 11(b), when round-robin partitioning is utilized for process-
ing 100 millions of pages, the shuffling of the links and the ranks
accounts for 75% of the total latency. Through pre-partitioning and
re-partitioning (as in the reactive approach), the query optimizer
can recognize the useful partitioning and remove these two shuf-
fling stages. Thus all the overheads related to shuffling including
hashing, data copying, and network transferring are eliminated
accordingly. We also observe that the shuffling overhead increases
significantly faster with the size of inputs than the rest of the over-
heads, because of the non-determinism in the shuffling process. For
example, for shuffling the ranks for 100 millions Page objects, in
one iteration, it takes 190 seconds on the slowest machine while
less than 100 seconds on the fastest machine.

6.5 Overhead Analysis
In Lachesis, the overheads can be divided into three parts: the offline
part that can be amortized to all partitioning requests; the online
overhead for the producer that can be amortized to multiple exe-
cutions of consuming workloads; and the online overhead for the
consumer. In this section, we measure and analyze these overheads.

The offline overheads include creating signatures for historical
IR graphs, and creating a skeleton graph from historical workflow
graphs. Such overheads are sensitive to the number of workflows,
number of workloads in each workflow, and number of operations
in each workload. To better understand the offline overhead for
large-scale workflows, we collect above statistics from real-world
production workflow traces available in the publicly Workflow
Trace Archive (WTA) [56]. For each trace, we generate workflow
graphs following its statistics and apply our algorithms to the syn-
thetic workflow graphs. As illustrated in Tab. 3, we find that the
measured offline overhead of constructing skeleton graphs and
creating signatures in one r4.2xlarge instance for the scale of real-
world workflows is merely up to 14 minutes, which can be further
accelerated by using multiple machines.

1272

Table 3: Offline overhead for real-world traces. The trace names
are given byWTA.WF represents the number ofworkflows; T repre-
sents the number of tasks in a workflow; SG-latency denotes the la-
tency for constructing the skeleton-graph; and SN-latency denotes
the latency of creating IR signatures. (latency unit: seconds)

TraceName WF T SG-latency SN-latency
S1. Askalon Old 4,583 167,677 1 1
S2. Askalon New 1,835 91,599 1 1
S3. LANL 1,988,397 475,555,927 26 12
S4. Pegasus 56 10,573 1 1
S5. Shell 3,403 10,208 1 1
S6. SPEC 400 28,506 1 1
S7. Two Sigma 41,607,237 50,518,481 717 3
S8. WorkflowHub 10 14,275 1 1
S9. Alibaba 4,210,365 1,356,691,136 94 39
S10. Google 494,179 17,810,002 8 1

Table 4: Producer Latency Comparison (unit: seconds).
data to store w/ partition w/o partition overhead
15 millions of author objects 42 42 0%
78 millions of author objects 203 185 10%
20 millions of comment objects 744 726 2%
112 millions of comment objects 4, 505 4, 119 9%

At runtime, a data storage request will trigger online overheads
at the producer’s side that cover: (1) communicating with the DRL
server, which is several milliseconds’ overhead as measured; (2)
dispatching the data to the storage using the partitioner automati-
cally selected by the DRL model. This incurs up to 10% overhead as
illustrated in Tab. 4, which is significantly cheaper than the shuffle
operations at the consumers’ side.

The online overhead at the consumer’s side for processing a
query involves matching of the query’s IR to the partitioners associ-
ated with the input datasets to decide whether to avoid the shuffling
stage. We measure this overhead by comparing the latency of en-
abling Lachesis, and simply disabling Lachesis. The overhead is
smaller than one second for most of the workloads.

We see that compared to the significant performance speedup
achieved for the consuming workloads, both of the offline and on-
line overheads are relatively small. Particularly the offline overhead
can be amortized to many runs and the online overhead is negligi-
ble. The net performance gain will be further enlarged according
to the write-once-read-many assumption as mentioned in Sec. 3.1.

6.6 Training Overhead and Effectiveness
We choose TPC-H queries (rewritten in UDFs) [11] to create the
statistics for simulating the training process. That’s because it in-
volves relatively more partitioner candidates than other workloads
we have, and though TPC-H’s UDFs are simple, we find the com-
plexity of UDFs is a relatively less important feature for selecting
the optimal partitionings, compared to other features (Sec 4.1.3).
We first run three queries in TPC-H workload: Q01, Q02, Q04 using
all possible partitioning scheme combinations, to generate statis-
tics for actual runs, which takes 51 hours in Environment 1 with
SF-10 datasets. There are in total ten partitioner candidates related
to those queries, which can be used to enumerate 432 partition
scheme combinations across all TPC-H datasets. For each partition
scheme combination, we run the three training queries respectively
in Environment 1, so that we can obtain statistics for 1296 actual
runs. We also generate statistics for three different queries: Q04,
Q12, Q17 in Environment 3, also using the SF-10 datasets. Because
these three queries involve only a few tables, it only enumerates 17

-20

30

0 1000 2000 3000 4000 5000

Lo
ss

Number of Epochs
Figure 12: Training loss in Lachesis

different partitioning scheme combinations for the orders, lineitems,
and parts datasets. It takes about three hours to create 51 actual
runs. Using the training data augmentation technique proposed in
Sec. 5, unlimited workloads can be created from these actual runs
for training.

Both the actor and critic neural networks have three fully con-
nected layers. The first hidden layer has 128 neurons and the second
hidden layer has 64 neurons. In both networks, the first two layers
use leaky relu as activation function. For the output layer, the actor
network uses softmax, and the critic network uses linear activation.
We carefully tune the learning rate (𝛼), entropy weight (𝛽) and the
number of neurons at the hidden layer. Fig. 12 illustrates how the
training loss changes with epochs. We use a batch size of 16, and
an epoch has 96 iterations. The RL-based approach takes about ten
hours to run 5000 epochs with an RL server located on an r4.2xlarge
instance. We find that the RL-based approach can be effective in
different environments, with different data sizes, and it also requires
significant manpower in training, and tuning hyper parameters like
entropy value, batch size, model architecture, learning rate, etc..

For each data creation with at least two extracted partitioner
candidates, we select the top three partitioner candidates (including
round-robin) to formulate the state vector and action space. We
find that the RL-based approach can be effective in different envi-
ronments, with different data sizes, and it also requires significant
manpower in training and tuning hyper parameters.

7 CONCLUSION
In this paper, we argue that automatically creating data partition-
ings for Big Data applications is an important and challenging task
for UDF-centric workloads. We propose Lachesis to address the
problem, which includes a unique set of functionalities for extract-
ing, reusing, and matching of sub-computations in UDFs. Lachesis
also provides a data placement optimizer based on a deep rein-
forcement learning approach and historical workflow analysis. The
evaluation results demonstrate that Lachesis brings significant per-
formance speedup for various UDF-centric analytics applications
such as data integration, deep learning model serving, web analyt-
ics, and analytics queries. The proposed approach is effective with
different data sizes and environments. Most importantly, Lachesis
significantly reduces the efforts required on the part of enterprise
IT professionals and data scientists who may not have sufficient
systems tuning skills for creating partitionings for UDF-centric
analytics applications.

ACKNOWLEDGMENTS
We sincerely appreciate all comments from anonymous reviewers.
The work presented in this paper has been supported by the ASU
FSE start-up funding, AWS Cloud Credits for Research program,
Google GCP research credits program, and DARPA MUSE award
No. FA8750-14-2-0270.

1273

REFERENCES
[1] Sanjay Agrawal, Vivek Narasayya, and Beverly Yang. 2004. Integrating vertical

and horizontal partitioning into automated physical database design. In Proceed-
ings of the 2004 ACM SIGMOD international conference on Management of data.
ACM, 359–370.

[2] Alexander Alexandrov and et al. 2014. The Stratosphere platform for big data
analytics. VLDB 23, 6 (2014), 939–964.

[3] Alexander Alexandrov, Andreas Kunft, Asterios Katsifodimos, Felix Schüler,
Lauritz Thamsen, Odej Kao, Tobias Herb, and Volker Markl. 2015. Implicit
parallelism through deep language embedding. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. 47–61.

[4] Michael Armbrust, Tathagata Das, Aaron Davidson, Ali Ghodsi, Andrew Or, Josh
Rosen, Ion Stoica, Patrick Wendell, Reynold Xin, and Matei Zaharia. 2015. Scaling
spark in the real world: performance and usability. Proceedings of the VLDB
Endowment 8, 12 (2015), 1840–1843.

[5] WolfgangWBein, Jerzy Kamburowski, andMatthias FM Stallmann. 1992. Optimal
reduction of two-terminal directed acyclic graphs. SIAM J. Comput. 21, 6 (1992),
1112–1129.

[6] Matthias Boehm, Michael W Dusenberry, Deron Eriksson, Alexandre V Ev-
fimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Freder-
ick R Reiss, Prithviraj Sen, Arvind C Surve, et al. 2016. Systemml: Declarative
machine learning on spark. Proceedings of the VLDB Endowment 9, 13 (2016),
1425–1436.

[7] Dhruba Borthakur. 2008. HDFS architecture guide. HADOOP APACHE PROJECT
http://hadoop. apache. org/common/docs/current/hdfs design. pdf (2008).

[8] Yanpei Chen and et al. 2012. Interactive analytical processing in big data systems:
A cross-industry study of mapreduce workloads. VLDB 5, 12 (2012), 1802–1813.

[9] Zhimin Chen, Yue Wang, Vivek Narasayya, and Surajit Chaudhuri. 2019. Cus-
tomizable and scalable fuzzy join for big data. Proceedings of the VLDB Endowment
12, 12 (2019), 2106–2117.

[10] Stephen A Cook. 1971. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of computing. 151–
158.

[11] Transaction Processing Performance Council. 2008. TPC-H benchmark specifica-
tion. Published at http://www. tcp. org/hspec. html 21 (2008), 592–603.

[12] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Ugur Cetintemel,
and Stanley B Zdonik. 2015. Tupleware:" Big" Data, Big Analytics, Small Clusters..
In CIDR.

[13] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay Setty,
and Jörg Schad. 2010. Hadoop++: making a yellow elephant run like a cheetah
(without it even noticing). Proceedings of the VLDB Endowment 3, 1-2 (2010),
515–529.

[14] Richard J Duffin. 1965. Topology of series-parallel networks. J. Math. Anal. Appl.
10, 2 (1965), 303–318.

[15] Jennie Duggan, Olga Papaemmanouil, Leilani Battle, and Michael Stonebraker.
2015. Skew-aware join optimization for array databases. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data. 123–135.

[16] Jennie Duggan and Michael Stonebraker. 2014. Incremental elasticity for array
databases. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. 409–420.

[17] George Eadon, Eugene Inseok Chong, Shrikanth Shankar, Ananth Raghavan,
Jagannathan Srinivasan, and Souripriya Das. 2008. Supporting table partitioning
by reference in oracle. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data. 1111–1122.

[18] Mohamed Y Eltabakh, Yuanyuan Tian, Fatma Özcan, Rainer Gemulla, Aljoscha
Krettek, and John McPherson. 2011. CoHadoop: flexible data placement and its
exploitation in Hadoop. Proceedings of the VLDB Endowment 4, 9 (2011), 575–585.

[19] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. 2016. Contin-
uous deep q-learning with model-based acceleration. In International Conference
on Machine Learning. PMLR, 2829–2838.

[20] K. Gupta and et al. 2011. GPFS-SNC: An enterprise storage framework for virtual-
machine clouds. IBM Journal of Research and Development 55, 6 (2011), 2–1.

[21] HBase [n.d.]. HBase. https://hbase.apache.org/.
[22] Benjamin Hilprecht, Carsten Binnig, and Uwe Roehm. 2019. Learning a Partition-

ing Advisor with Deep Reinforcement Learning. arXiv preprint arXiv:1904.01279
(2019).

[23] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. 2020. Learning a Parti-
tioning Advisor for Cloud Databases. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 143–157.

[24] Stratos Idreos, Martin L Kersten, Stefan Manegold, et al. 2007. Database Cracking..
In CIDR, Vol. 7. 68–78.

[25] Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris Jer-
maine, and Zekai J Gao. 2019. Declarative Recursive Computation on an RDBMS.
Proceedings of the VLDB Endowment 12, 7 (2019).

[26] Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag, Marc
Friedman, Yifung Lin, Konstantinos Karanasos, and Sriram Rao. 2018. Com-
putation reuse in analytics job service at Microsoft. In Proceedings of the 2018

International Conference on Management of Data. ACM, 191–203.
[27] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, ShravanMatthur Narayana-

murthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru
Krishnan, Janardhan Kulkarni, et al. 2016. Morpheus: Towards Automated SLOs
for Enterprise Clusters.. In OSDI. 117–134.

[28] Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. 2014. Build-
ing efficient query engines in a high-level language. Proceedings of the VLDB
Endowment 7, 10 (2014), 853–864.

[29] Andreas Kunft, Asterios Katsifodimos, Sebastian Schelter, Sebastian Breß,
Tilmann Rabl, and Volker Markl. 2019. An intermediate representation for
optimizing machine learning pipelines. Proceedings of the VLDB Endowment 12,
11 (2019), 1553–1567.

[30] Joseph Lee Rodgers and W Alan Nicewander. 1988. Thirteen ways to look at the
correlation coefficient. The American Statistician 42, 1 (1988), 59–66.

[31] Rundong Li, Wolfgang Gatterbauer, and Mirek Riedewald. 2020. Near-Optimal
Distributed Band-Joins through Recursive Partitioning. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 2375–2390.

[32] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[33] Harold C Lim, Shivnath Babu, and Jeffrey S Chase. 2010. Automated control for
elastic storage. In Proceedings of the 7th international conference on Autonomic
computing. 1–10.

[34] Yi Lu, Anil Shanbhag, Alekh Jindal, and Samuel Madden. 2017. AdaptDB: adaptive
partitioning for distributed joins. Proceedings of the VLDB Endowment 10, 5 (2017),
589–600.

[35] Hien Luu. 2018. Spark SQL (Foundations). In Beginning Apache Spark 2. Springer,
87–145.

[36] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive
video streaming with pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. 197–210.

[37] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchro-
nous methods for deep reinforcement learning. In International Conference on
Machine Learning. 1928–1937.

[38] Rimma Nehme and Nicolas Bruno. 2011. Automated partitioning design in
parallel database systems. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data. ACM, 1137–1148.

[39] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[40] Shoumik Palkar, James J Thomas, Anil Shanbhag, Deepak Narayanan, Holger
Pirk, Malte Schwarzkopf, Saman Amarasinghe, Matei Zaharia, and Stanford
InfoLab. 2017. Weld: A common runtime for high performance data analytics. In
Conference on Innovative Data Systems Research (CIDR).

[41] Karthik Ramachandra, Kwanghyun Park, K Venkatesh Emani, Alan Halverson,
César Galindo-Legaria, and Conor Cunningham. 2017. Froid: Optimization of
imperative programs in a relational database. Proceedings of the VLDB Endowment
11, 4 (2017), 432–444.

[42] Raghu Ramakrishnan and Johannes Gehrke. 2000. Database management systems.
McGraw-Hill.

[43] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy Lohman. 2002. Automating
physical database design in a parallel database. In Proceedings of the 2002 ACM
SIGMOD international conference on Management of data. ACM, 558–569.

[44] John Riordan and Claude E Shannon. 1942. The number of two-terminal series-
parallel networks. Journal of Mathematics and Physics 21, 1-4 (1942), 83–93.

[45] Jose F Rodrigues Jr, Agma JM Traina, Christos Faloutsos, and Caetano Traina Jr.
2006. SuperGraph visualization. In Eighth IEEE International Symposium on
Multimedia (ISM’06). IEEE, 227–234.

[46] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[47] Amir Shaikhha, Yannis Klonatos, and Christoph Koch. 2018. Building efficient
query engines in a high-level language. ACM Transactions on Database Systems
(TODS) 43, 1 (2018), 4.

[48] Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen Wang, Berthold
Reinwald, and Fatma Özcan. 2015. Clash of the titans: MapReduce vs. Spark
for large scale data analytics. Proceedings of the VLDB Endowment 8, 13 (2015),
2110–2121.

[49] Juwei Shi, Jia Zou, Jiaheng Lu, Zhao Cao, Shiqiang Li, and Chen Wang. 2014.
MRTuner: a toolkit to enable holistic optimization formapreduce jobs. Proceedings
of the VLDB Endowment 7, 13 (2014), 1319–1330.

[50] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. Nature 529, 7587 (2016), 484–489.

[51] Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-
duction. MIT press Cambridge.

1274

[52] tensorflow [n.d.]. FFN example with tensorflow.
https://www.kaggle.com/hbaderts/simple-feed-forward-neural-network-
with-tensorflow.

[53] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive: a
warehousing solution over a map-reduce framework. Proceedings of the VLDB
Endowment 2, 2 (2009), 1626–1629.

[54] Vernon Turner, John F Gantz, David Reinsel, and Stephen Minton. 2014. The
digital universe of opportunities: Rich data and the increasing value of the internet
of things. IDC Analyze the Future (2014), 5.

[55] Leslie G Valiant. 1979. The complexity of enumeration and reliability problems.
SIAM J. Comput. 8, 3 (1979), 410–421.

[56] Laurens Versluis, Roland Math, Sacheendra Talluri, Tim Hegeman, Radu Prodan,
Ewa Deelman, and Alexandru Iosup. 2020. The Workflow Trace Archive: Open-
Access Data fromPublic and Private Computing Infrastructures. IEEE Transactions
on Parallel and Distributed Systems (2020).

[57] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Motivala,
and Thierry Cruanes. 2020. Building An Elastic Query Engine on Disaggregated
Storage. In 17th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 20). 449–462.

[58] Lanjun Wang, Shuo Zhang, Juwei Shi, Limei Jiao, Oktie Hassanzadeh, Jia Zou,
and Chen Wangz. 2015. Schema management for document stores. Proceedings
of the VLDB Endowment 8, 9 (2015), 922–933.

[59] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[60] T. White. 2012. Hadoop: The Definitive Guide. O’Reilly Media.
[61] Yahoo [n.d.]. Yahoo! Cloud Trace. https://webscope.sandbox.yahoo.com/catalog.php?dat

atype=s.

[62] Binhang Yuan, Dimitrije Jankov, Jia Zou, Yuxin Tang, Daniel Bourgeois, and
Chris Jermaine. 2020. Tensor Relational Algebra for Machine Learning System
Design. arXiv preprint arXiv:2009.00524 (2020).

[63] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: cluster computing with working sets. In USENIX HotCloud.
1–10.

[64] Erfan Zamanian, Carsten Binnig, and Abdallah Salama. 2015. Locality-aware
partitioning in parallel database systems. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 17–30.

[65] Jingren Zhou, Nicolas Bruno, and Wei Lin. 2012. Advanced partitioning tech-
niques for massively distributed computation. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data. ACM, 13–24.

[66] Jingren Zhou, Per-Ake Larson, and Ronnie Chaiken. 2010. Incorporating partition-
ing and parallel plans into the SCOPE optimizer. In 2010 IEEE 26th International
Conference on Data Engineering (ICDE 2010). IEEE, 1060–1071.

[67] Jia Zou, R Matthew Barnett, Tania Lorido-Botran, Shangyu Luo, Carlos Mon-
roy, Sourav Sikdar, Kia Teymourian, Binhang Yuan, and Chris Jermaine. 2018.
PlinyCompute: A platform for high-performance, distributed, data-intensive tool
development. In Proceedings of the 2018 International Conference on Management
of Data. ACM, 1189–1204.

[68] Jia Zou, Arun Iyengar, and Chris Jermaine. 2019. Pangea: monolithic distributed
storage for data analytics. Proceedings of the VLDB Endowment 12, 6 (2019),
681–694.

[69] Jia Zou, Arun Iyengar, and Chris Jermaine. 2020. Architecture of a distributed
storage that combines file system, memory and computation in a single layer.
The VLDB Journal (2020), 1–25.

[70] Jia Zou, Ming Zhao, Juwei Shi, and Chen Wang. [n.d.]. WATSON: A Workflow-
based Data Storage Optimizer for Analytics. In Proceedings of the 36th Interna-
tional Conference on Massive Storage Systems and Technology (MSST 2020).

1275

