
Towards Crowd-aware Indoor Path Planning

Tiantian Liu
†
, Huan Li

†
, Hua Lu

‡
, Muhammad Aamir Cheema

§
, Lidan Shou

♮

†
Department of Computer Science, Aalborg University, Denmark

‡
Department of People and Technology, Roskilde University, Denmark

§
Faculty of Information Technology, Monash University, Australia

♮
College of Computer Science, Zhejiang University, China

{liutt,lihuan}@cs.aau.dk, luhua@ruc.dk, aamir.cheema@monash.edu, should@zju.edu.cn

ABSTRACT
Indoor venues accommodate many people who collectively form

crowds. Such crowds in turn influence people’s routing choices,

e.g., people may prefer to avoid crowded rooms when walking

from A to B. This paper studies two types of crowd-aware indoor

path planning queries. The Indoor Crowd-Aware Fastest Path

Query (FPQ) finds a path with the shortest travel time in the

presence of crowds, whereas the Indoor Least Crowded Path Query

(LCPQ) finds a path encountering the least objects en route. To

process the queries, we design a unified framework with three

major components. First, an indoor crowd model organizes indoor

topology and captures object flows between rooms. Second, a time-

evolving population estimator derives room populations for a future

timestamp to support crowd-aware routing cost computations in

query processing. Third, two exact and two approximate query

processing algorithms process each type of query. All algorithms

are based on graph traversal over the indoor crowd model and use

the same search framework with different strategies of updating the

populations during the search process. All proposals are evaluated

experimentally on synthetic and real data. The experimental results

demonstrate the efficiency and scalability of our framework and

query processing algorithms.

PVLDB Reference Format:
Tiantian Liu, Huan Li, Hua Lu, Muhammad Aamir Cheema, Lidan Shou.

Towards Crowd-aware Indoor Path Planning. PVLDB, 14(8): 1365-1377,

2021.

doi:10.14778/3457390.3457401

1 INTRODUCTION
Indoor route planning queries are among the most fundamental

queries underlying indoor location-based services (LBS) [19, 26, 27,

32, 45]. Such queries can facilitate people in need. For example, in

an airport or a train station, passengers prefer to find the fastest

path from their current position to the boarding gate. In addition

to the shortest or fastest paths, indoor routing supports many

variations that meet practical needs. For instance, customers in

a shopping mall would like to find a path that can cover some given

keywords like a coffee shop and shoes [12]. Meanwhile, indoor

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 8 ISSN 2150-8097.

doi:10.14778/3457390.3457401

venues accommodate many people who collectively form crowds

that may in turn influence people’s routing choices. For example,

crowds may influence one’s moving speed, which will have an effect

on the travel time of a path. In some places like an airport where

passengers are sensitive to travel time, a topologically shortest path

may still incur the too long time and result in missing flight if

the path fails to consider the effect of crowds. In other scenarios,

people en route may prefer to encounter fewer people. For example,

during the COVID-19 pandemic, people would like to find a path

to avoid human contact as much as possible. As another example,

autonomous objects (e.g., driverless cars in an airport) also prefer a

path with fewer people en route to mitigate the interference and

inconvenience caused by contact with people.

In this paper, we formulate and study two crowd-aware indoor

path planning queries. Referring to Figure 1, given a source point 𝑝𝑠 ,

a target point 𝑝𝑡 , and a query time 𝑡 , an Indoor Crowd-Aware Fastest

Path Query (FPQ) returns a path with the shortest travel time in the

presence of crowds, whereas an Indoor Least Crowded Path Query

(LCPQ) returns a path that encounters the least objects en route.

As an indoor path is essentially a series of indoor partitions (basic

topological units like rooms), FPQ’s routing cost is partition-passing
time, whereas an LCPQ’s is partition-passing contact.

v1

v2

v3 v6

v4

v5

v7

d5

d7

d2

d4

door
directionality

doors

R-partition

Q-partition

ps
d1 d4

d1

v4

v1
Pt

d3 d6

d8

object

d9

v8

(distance, time
cost, contact)

(20, 120, 15)(4, 6, 0)

(4, 6, 0)
(8, 12, 0)

(5, 12, 2)

(3, 6, 1)(3, 6, 1)

(16, 24, 0)

(5, 12, 2)(20, 30, 2)

(20, 72, 2)
(3, 6, 1)
d9

d5

d7

d2

d4

ps

d1

Pt
d3

d6

d8

Figure 1: An Example of Floorplan at Query Time 𝑡𝑞

We consider two types of indoor partitions. A Queue Partition
(Q-partition) requests objects to enter and exit in a line, e.g., a

security-check line in an airport or a ticketing entrance in a theater.

A Random Partition (R-partition) refers to a more general case

where there is no restriction on how to pass the partition but one’s

movement slows down when encountering a crowd. Due to the

different topological natures of the Q-partitions and R-partitions,

1365

https://doi.org/10.14778/3457390.3457401
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3457390.3457401

partition-passing time for FPQ and partition-passing contact for

LCPQ should be defined differently for the two partition types.

Existing techniques cannot handle the novel FPQ and LCPQ. First,
techniques for outdoor route planning [2, 3, 5, 11, 14, 29, 36, 39]

do not work for indoor spaces with distinct entities like doors,

walls, and rooms, altogether forming a complex topology. Second,

the existing indoor route planning methods [12, 26, 31, 32] do not

consider the effect of crowds, lacking the modeling foundation for

FPQ and LCPQ. Third, some works study indoor flow and density [20,

21], but they do not touch upon route planning.

To solve FPQ and LCPQ efficiently, we design a crowd-aware

query processing framework. The framework is composed of three

layers. First, the indoor crowd model is the foundation layer of

the framework. The model can handle three kinds of information,

namely indoor topology, indoor geometry, and crowd-evolution. A

time-evolving population estimator derives the future flows and

populations for indoor partitions. The estimated values are used

as basic routing costs in FPQ and LCPQ. The query processing layer

consists of two parts. In part one, two functions, namely partition-

passing time function and partition-passing contact function,

calculate the routing cost for FPQ and LCPQ, respectively. Again, the
differences in routing costs for different partition types are unified

into a single computing process. On top of that, part two provides

two exact and two approximate path search algorithms that each

can process both query types. One of the exact searches uses a global

estimator, whereas the other uses an estimator that only estimates a

partition’s population by looking up its upstream partitions’ flows.

The two approximate algorithms speed up query processing at the

cost of query accuracy. One of them only derives populations for

partial partitions, and the other derives populations only when

necessary. All proposed techniques are experimentally evaluated

on synthetic and real data. The experimental results demonstrate

the efficiency and scalability of the proposed framework and query

processing algorithms. The results also show the two approximate

search algorithms achieve good routing accuracy.

This paper makes the following key contributions.

• We formulate Indoor Crowd-Aware Fastest Path Query (FPQ) and
Indoor Least Crowded Path Query (LCPQ), and propose a unified

processing framework for these queries (Section 2).

• We design an indoor crowdmodel that organizes indoor topology

and captures indoor partition flows and densities (Section 3).

• We devise a time-evolving population estimator to derive future

time-dependent flows and populations for partitions (Section 4).

• We design two exact and two approximate query processing

algorithms that each can process both query types (Section 5).

• We conduct extensive experiments on synthetic and real datasets

to evaluate our proposals (Section 6).

In addition, Section 7 reviews the related work and Section 8

concludes the paper.

2 PRELIMINARIES
Table 1 lists the notations frequently used in this paper.

2.1 Indoor Crowds
An indoor space is divided by walls and doors into indoor partitions.
A Queue Partition (Q-partition) requests objects to enter and

Table 1: Notations
Symbol Meaning
𝑣 , 𝑑 , 𝑝 Partition, door, and indoor point

𝑜 , 𝑂 Object, object set

𝐶 Indoor crowd

𝑡𝑜⊲𝐶 , 𝑡𝐶⊲𝑜 The times 𝑜 joins and leaves 𝐶

RT (𝑑𝑖) The sequence of 𝑑𝑖 ’s report timestamps

UTI (𝑣𝑘) The set of 𝑣𝑘 ’s unit (update) time intervals

𝛿𝑡𝑥 ,𝑡𝑥+1 (𝑣𝑘) 𝑣𝑘 ’s density over [𝑡𝑥 , 𝑡𝑥+1]
𝜌 (𝑣𝑘 , 𝑡𝑐) 𝑣𝑘 ’s lagging coefficient at time 𝑡𝑐
𝑇 (𝑑𝑖 , 𝑑 𝑗 , 𝑣𝑘 , 𝑡𝑐) The time to pass 𝑣𝑘 from 𝑑𝑖 to 𝑑 𝑗 at 𝑡𝑐
𝜅 (𝑑𝑖 , 𝑑 𝑗 , 𝑣𝑘 , 𝑡𝑐) The object contact to pass 𝑣𝑘 from 𝑑𝑖 to 𝑑 𝑗 at 𝑡𝑐

leave sequentially, while a Random Partition (R-partition) has no

such a restriction and objects can enter and leave it randomly. Note
that the type of partition is usually fixed and will change only when

the space layout is redesigned. The issue of topological change is

out of the scope of this paper.

Within a partition, moving objects (e.g., persons) may form a

crowd. Corresponding to the partition types, we formally define an

indoor crowd as follows.

Definition 1 (Indoor Crowd). An indoor crowd 𝐶𝑡𝑠 ,𝑡𝑒 (𝑣𝑘) 1 is a set
of moving objects in a partition 𝑣𝑘 during a certain time interval
[𝑡𝑠 , 𝑡𝑒]. 𝐶.𝜏 denotes the type of crowd 𝐶 .
1) In a Queue Crowd (Q-crowd), objects join and leave the crowd in

the first-in-first-out (FIFO)manner. Formally,∀𝑜𝑖 , 𝑜 𝑗 ∈ 𝐶𝑘∧𝐶𝑘 .𝜏 =

Q, 𝑡𝑜𝑖⊲𝐶𝑘
≤ 𝑡𝑜 𝑗 ⊲𝐶𝑘

⇒ 𝑡𝐶𝑘⊲𝑜𝑖 ≤ 𝑡𝐶𝑘⊲𝑜 𝑗
, where 𝑡𝑜𝑖⊲𝐶𝑘

and 𝑡𝐶𝑘⊲𝑜𝑖

is the time 𝑜𝑖 joins and leaves 𝐶𝑘 , respectively.
2) In a Random Crowd (R-crowd), objects join and leave the crowd

without any ordering restrictions. Formally, ∃𝑜𝑖 , 𝑜 𝑗 ∈ 𝐶𝑘 ∧𝐶𝑘 .𝜏 =

R, 𝑡𝑜𝑖⊲𝐶𝑘
< 𝑡𝑜 𝑗 ⊲𝐶𝑘

, 𝑡𝐶𝑘⊲𝑜𝑖 ≥ 𝑡𝐶𝑘⊲𝑜 𝑗
.

A crowd changes as objects join and leave from time to time.

In other words, the object population and density of a partition

are time-varying, rendering an object’s routing cost passing the

partition to change as well. Therefore, for crowd-aware routing, it is

of fundamental importance to know a crowd’s dynamic population

or density. This demands dynamic data from a localization system.

However, a localization system may not record the exact trajec-

tory or join/leave time of each individual object due to comput-

ing/storage limitations and location privacy concerns. Alternatively,

a system may maintain the current number of objects in each

partition (or a crowd) and records the number of objects joining and

leaving during a time interval. This can be easily achieved, e.g., by

installing a counter at a door. In our setting, each door counter

reports objects’ joining and leaving at a predefined frequency.

This means that the object numbers in a crowd are updated at

a number of discrete timestamps. Specifically, we use a time-

ordered sequence RT (𝑑𝑖) = (𝑡𝑖1, . . . , 𝑡𝑖𝑛) to denote the report
timestamps of the counter at door 𝑑𝑖 . As a result, the update
timestamps relevant to a partition 𝑣𝑘 is a time-ordered sequence

UT (𝑣𝑘) =
⋃

𝑑 𝑗 ∈P2D (𝑣𝑘) RT (𝑑 𝑗) where P2D(𝑣𝑘) refers to all doors

of partition 𝑣𝑘 . Each two consecutive timestamps in the sequence

UT (𝑣𝑘) forms an unit (update) time interval. The set of all such
intervals from UT (𝑣𝑘) is denoted by UTI (𝑣𝑘).

1
When time is not of particular interest, we use𝐶𝑘 to denote 𝑣𝑘 ’s associated crowd.

1366

At the routing query time, it is necessary to know the flows in the

future. However, future exact object numbers from door counters

are unavailable at that moment. To this end, we employ door flow

functions to model the crowd-evolution (detailed in Section 3.2).

We define a partition’s time-parameterized density as follows.

Definition 2 (Time-Parameterized Density). Given a partition 𝑣𝑘
and its unit time interval [𝑡𝑥 , 𝑡𝑥+1] ∈ UTI (𝑣𝑘), its time-parameterized

density over [𝑡𝑥 , 𝑡𝑥+1] is 𝛿𝑡𝑥 ,𝑡𝑥+1 (𝑣𝑘) = |𝐶𝑘 |/Area(𝑣𝑘), where |𝐶𝑘 | is
𝑣𝑘 ’s population over [𝑡𝑥 , 𝑡𝑥+1] and Area(𝑣𝑘) is 𝑣𝑘 ’s area.

The population and density in this paper are time-parameterized

unless mentioned otherwise. A partition 𝑣𝑘 ’s density at an arbitrary

timestamp 𝑡𝑐 is estimated with respect to the unit time interval

covering 𝑡𝑐 . Specifically, we have 𝛿𝑡𝑐 (𝑣𝑘) = 𝛿𝑡𝑥 ,𝑡𝑥+1 (𝑣𝑘) where 𝑡𝑥 ≤
𝑡𝑐 < 𝑡𝑥+1, [𝑡𝑥 , 𝑡𝑥+1] ∈ UTI (𝑣𝑘).

2.2 Problem Formulation
In an indoor routing problem, a basic step is to move from one door

to another through their in-between partition. To measure the cost

to pass a partition, the intra-partition door-to-door distance [12]
for two doors 𝑑𝑖 and 𝑑 𝑗 is

d2d (𝑑𝑖 , 𝑑 𝑗) =
{
|𝑑𝑖 , 𝑑 𝑗 |𝐸 , if D2P⊐ (𝑑𝑖) ∩ D2P⊏ (𝑑 𝑗) ≠ ∅;

∞, otherwise.
(1)

where D2P⊐ (𝑑𝑖) gives the set of partitions that one can enter

through door 𝑑𝑖 and D2P⊏ (𝑑 𝑗) gives those that one can leave

through door 𝑑 𝑗 . Therefore, D2P⊐ (𝑑𝑖) ∩ D2P⊏ (𝑑 𝑗) ≠ ∅ means

𝑑𝑖 and 𝑑 𝑗 share a common partition that one can enter via 𝑑𝑖 and

leave via 𝑑 𝑗 . In this case, the Euclidean distance is used between 𝑑𝑖
and 𝑑 𝑗 . Otherwise, the distance between them is set to infinite.

Definition 3 (Indoor Path). An indoor path from the source 𝑝𝑠
to the target 𝑝𝑡 is 𝜙 = (𝑝𝑠 , 𝑑𝑥 , . . . , 𝑑𝑦, 𝑝𝑡), where (𝑑𝑥 , . . . , 𝑑𝑦) is a
door sequence, 𝑑𝑥 is a leaveable door of 𝑝𝑠 ’s host partition, 𝑑𝑦 is an
enterable door of 𝑝𝑡 ’s host partiton, and each two consecutive doors
𝑑𝑛, 𝑑𝑛+1 (𝑥 ≤ 𝑛 < 𝑦) on 𝜙 have D2P⊐ (𝑑𝑛) ∩ D2P⊏ (𝑑𝑛+1) ≠ ∅. Each
two consecutive path nodes form a path segment. The distance of 𝜙
is computed as dist𝜙 = |𝑝𝑠 , 𝑑𝑥 |𝐸 +

∑𝑦−1

𝑛=𝑥 d2d (𝑑𝑛, 𝑑𝑛+1) + |𝑑𝑦, 𝑝𝑡 |𝐸 .
When there is no crowd, the basic time cost of passing an in-

between partition 𝑣𝑘 from 𝑑𝑖 to 𝑑 𝑗 can be estimated based on the

average object moving speed 𝑠 , i.e., 𝑇 (𝑏) (𝑑𝑖 , 𝑑 𝑗) = d2d (𝑑𝑖 , 𝑑 𝑗)/𝑠 . To
reflect a crowd’s impact, we use the lagging coefficient 𝜌 (𝑣𝑘 , 𝑡𝑐)
that takes into account the crowd’s density and type as follows.

𝜌 (𝑣𝑘 , 𝑡𝑐) =
{

1 + 𝑒𝛿𝑡𝑐 (𝑣𝑘)/D
max
𝑘 , if 𝐶𝑘 .𝜏 = Q;

1 + 𝑒 (𝛿𝑡𝑐 (𝑣𝑘)/D
max
𝑘
)2 , otherwise.

(2)

where 𝛿𝑡𝑐 (𝑣𝑘) is 𝑣𝑘 ’s density at time 𝑡𝑐 andDmax
𝑘

corresponds to the

maximum density
2
of 𝑣𝑘 . For a Q-partition, the ratio 𝛿𝑡𝑐 (𝑣𝑘)/Dmax

𝑘
is applied to reflect the crowding degree. We modify the speed-

density model [35] to calculate the lagging coefficient in Equation 2

which reflects real-world scenarios, e.g., in common sense, a crowd

usually impacts people’s moving speed and results in longer travel

time. Equation 2 guarantees that the coefficient is always greater

than 1 and it increases monotonically as 𝑣𝑘 ’s density increases. For

2
The maximum capacity (and therefore the maximum density) of a partition is usually

known, such as the room capacity for fire safety.

an R-partition, the square of the ratio is used because R-crowds

incur less lagging effect.

Note that other forms of lagging coefficients can be defined and

supported within our framework, e.g., lagging can be multiplied by

the object number for a queue crowd. Since the lagging coefficient

is not our research focus, we simply apply Equation 2 in this study.

Using the lagging coefficient, we can calculate our crowd-aware

and time-dependent partition-passing time as follows.

𝑇 (𝑑𝑖 , 𝑑 𝑗 , 𝑣𝑘 , 𝑡𝑐) = 𝑇 (𝑏) (𝑑𝑖 , 𝑑 𝑗) · 𝜌 (𝑣𝑘 , 𝑡𝑐) (3)

An object needs longer time to pass a more crowded partition.

As a special case, we replace 𝑑𝑖 with 𝑝𝑠 or replace 𝑑 𝑗 with 𝑝𝑡 in

Equation 3, to estimate the cost of a path segment starting with 𝑝𝑠
or ending with 𝑝𝑡 . Accordingly, 𝑣𝑘 is the host partition of 𝑝𝑠 or 𝑝𝑡 .

With the partition-passing time, we can plan the fastest indoor

path for users to avoid undesirable congestion caused by indoor

crowds. An indoor path 𝜙 ’s overall travel time 𝑇𝜙 is computed as

the sum of the time of passing the partition between each path

segment on 𝜙 . The fastest path query problem is defined as follows.

Problem 1 (Indoor Crowd-Aware Fastest Path Query FPQ). Given
a source 𝑝𝑠 and a target 𝑝𝑡 , an indoor crowd-aware fastest path

query FPQ(𝑝𝑠 , 𝑝𝑡 , 𝑡) returns a path 𝜙 (𝑝𝑠 , 𝑑𝑖 , . . . , 𝑑 𝑗 , 𝑝𝑡) such that a)
the overall travel time𝑇𝜙 is minimized and b) 𝜙 is the shortest among
all satisfying a). Formally, �𝜙 ′ ≠ 𝜙 , 𝑇𝜙′ ≤ 𝑇𝜙 ∧ dist𝜙′ < dist𝜙 .

Note that the partition-passing time is determined by the time

one arrives at that partition, while the arrival time, in turn, is

dependent on the partition-passing time of the previous partition.

This calls for on-the-fly computation during the search to obtain

the overall travel time 𝑇𝜙 , which is to be detailed in Section 5.

Example 1. Figure 1 illustrates an indoor space at time 𝑡𝑞 . The
query time and crowd-evolution snapshot are considered. We in-
dicate the distance, partition-passing time and object contact on
each path segment in the top sketch. We suppose that there are
some events in 𝑣7, and 𝑣4, 𝑣6 and 𝑣8 are Q-partitions for ID check
before entering 𝑣7. Given a query FPQ(𝑝𝑠 , 𝑝𝑡 , 𝑡𝑞), there are three
candidate paths, namely 𝜙1 (𝑝𝑠 , 𝑑2, 𝑑5, 𝑑8, 𝑝𝑡), 𝜙2 (𝑝𝑠 , 𝑑1, 𝑑3, 𝑑6, 𝑝𝑡),
and 𝜙3 (𝑝𝑠 , 𝑑1, 𝑑4, 𝑑7, 𝑑9, 𝑝𝑡). Only considering the distance but not the
impact from crowds,𝜙1 is the shortest with a length of 32 meters, while
those of 𝜙2 and 𝜙3 are 35 meters and 48 meters, respectively. However,
𝜙1 is not expected to be the fastest path when crowds are concerned. To
be specific, 𝜙1 goes through a highly crowded R-partition 𝑣3, incurring
a total travel time of 144 seconds. For𝜙2, the low-populated Q-partition
𝑣4 with a long queue is involved, making the total time cost be 96
seconds. Among all, 𝜙3 is expected to be the fastest with an overall cost
of 78 seconds, though it is the longest distance passing 5 partitions.

Another practically interesting problem is to find the shortest

path that contacts the least objects. E.g., it is useful to find a path

that avoids human contact as much as possible in the COVID-19

case. Given a path segment (𝑑𝑖 , 𝑑 𝑗) that goes through a partition

𝑣𝑘 , we calculate the partition-passing contact as follows.

𝜅 (𝑑𝑖 , 𝑑 𝑗 , 𝑣𝑘 , 𝑡𝑐) ={
(|𝑑𝑖 , 𝑑 𝑗 |𝐸 · w) · 𝛿𝑡𝑐 (𝑣𝑘), if 𝐶𝑘 .𝜏 = R;

(w/|𝑑𝑖 , 𝑑 𝑗 |𝐸) · (𝛿𝑡𝑐 (𝑣𝑘) · Area(𝑣𝑘)), otherwise.

(4)

Given a partition 𝑣𝑘 , its enterable door 𝑑𝑖 , and its leaveable door 𝑑 𝑗 ,

for any object reaching 𝑑𝑖 at time 𝑡𝑐 , the partition-passing contact

1367

to pass 𝑣𝑘 and reach 𝑑 𝑗 is defined in terms of the number of objects

covered by the buffer of the path segment. The contact to pass an

R-partition is the partition density multiplied by the buffer area

that is approximated as |𝑑𝑖 , 𝑑 𝑗 |𝐸 · w where w is the buffer width. The
contact to pass a Q-partition is the objects within the w long queue

line centered at the user’s position, i.e., the proportion w/|𝑑𝑖 , 𝑑 𝑗 |𝐸
of the total objects in the queue. This reflects common sense. For

example, if we pass a random crowd, the close contacts are those

who we meet in the buffer width. If we pass a queue crowd, we

only have close distance with those in front of or behind us.

In our implementation, we set w as the unit distance of 1m. For

example, many countries suggest people keep a physical distance

of 1m in the COVID-19 pandemic. Similar to the computation of

the overall travel time 𝑇𝜙 , an indoor path 𝜙 ’s overall contact 𝜅𝜙
is computed as the sum of the partition-passing contacts of path

segments on 𝜙 . Likewise, Equation 4 applies to the path segment

starting with 𝑝𝑠 and ending with 𝑝𝑡 . Accordingly, we formulate the

least crowded path query as follows.

Problem 2 (Indoor Least Crowded Path Query LCPQ). Given a
source 𝑝𝑠 and a target 𝑝𝑡 , an indoor least crowded path query

LCPQ(𝑝𝑠 , 𝑝𝑡 , 𝑡) returns a path 𝜙 (𝑝𝑠 , 𝑑𝑖 , . . . , 𝑑 𝑗 , 𝑝𝑡) such that a) the
overall contact is the least, and b)𝜙 is the shortest among all satisfying
a). Formally, �𝜙 ′ ≠ 𝜙 , 𝜅𝜙′ ≤ 𝜅𝜙 ∧ dist𝜙′ < dist𝜙 .
Example 2. Consider a query LCPQ(𝑝𝑠 , 𝑝𝑡 , 𝑡𝑞) in Figure 1, the
candidates 𝜙1, 𝜙2 and 𝜙3 involve 18, 3 and 5 contacts from the
partitions which they pass, respectively. The query returns 𝜙2 since it
contacts the fewest objects.

2.3 Solution Framework
We propose a crowd-aware query processing framework as illus-

trated in Figure 2.

LCPQ
Partition-Passing Contact

Time-evolving Population Estimator
(Section 4, Alg.1 and Alg.2)

Indoor Topology
door directionality, partition connectivity/accessibility

Indoor Geometry
partition shape, door-to-door distance

Indoor Crowd-Evolution
absolute population, door flows

FPQ
Partition-Passing Time

call call

Exact Search
(Alg.3 + Alg.2)

Query Processing (Section 5)

apply to

Indoor Crowd Model (Section 3)

(Alg.4)

Exact Search
Global

(Alg.3 + Alg.1)

Approx.
Search PP
(Strategy 1)

Approx.
Search NT
(Strategy 2)

Figure 2: Crowd-Aware Path Planning Framework

In the bottom, an indoor crowd model (cf. Section 3) maintains

the following aspects of an indoor space: Indoor Topology that

captures the directionality of doors and connectivity/accessibility of

partitions, Indoor Geometry that records the shapes of partitions and
walking distances between two doors, and Indoor Crowd-Evolution
that models the objects joining and leaving the crowds.

Enabled by the indoor crowd model, a time-evolving population
estimator in the middle layer derives populations (and densities)

of partitions at a future time and provides them to the query

algorithms. The population estimation process will be detailed in

Section 4.

In the top layer, crowd-aware search algorithms process FPQ
and LCPQ. Both algorithms are based on graph traversal over the

indoor crowd model. To expand to the next path node with the

minimum cost, FPQ’s algorithm estimates the partition-passing time,

while LCPQ search algorithm estimates the partition-passing contact.

Both costs are estimated based on the time-evolving populations

derived in the middle layer. For both queries, two exact and two

approximate search algorithms are proposed. Their main difference

lies in the strategy of updating population(s) during the search. All

search algorithms will be presented in Section 5. Thanks to modular

construction, our framework can be easily extended or reduced.

For example, to support regular path planning, we only need the

components Indoor Topology and an appropriate query processing

algorithm that can be a variant of Algorithm 3.

3 INDOOR CROWDMODEL
3.1 Model Structure
As an extension of the accessibility graph [17], the indoor crowd
model is a directed, labeled graph 𝐺 (𝑉 , 𝐸, 𝐿𝑉 , 𝐿𝐸) where
1) 𝑉 is the set of vertices, each for an indoor partition.

2) 𝐸 is the set of directed edges such that each edge 𝑒 (𝑣𝑖 , 𝑣 𝑗 , 𝑑𝑘) ∈ 𝐸
means one can reach 𝑣 𝑗 from 𝑣𝑖 through a door 𝑑𝑘 , i.e., 𝑣𝑖 ∈
D2P⊏ (𝑑𝑘) and 𝑣 𝑗 ∈ D2P⊐ (𝑑𝑘).

3) 𝐿𝑉 is the set of vertex labels. Each label in 𝐿𝑉 is attached to

a partition and captured as a five tuple [𝑣𝑖 ,Area(𝑣𝑖),Md2d , 𝜏,

(P𝑖𝑡𝑙 , 𝑡𝑙)]. In particular, 𝑣𝑖 identifies the associated partition,

Area(𝑣𝑖) is 𝑣𝑖 ’s area, Md2d is a matrix that stores the intra-

partition distance (See Equation 1) between each pair of doors

of 𝑣𝑖 . In addition, 𝜏 ∈ {R,Q} indicates the type of 𝑣𝑖 ’s crowd
and (P𝑖𝑡𝑙 , 𝑡𝑙) means that 𝑣𝑖 ’s absolute population at a latest

timestamp 𝑡𝑙 is known as P𝑖𝑡𝑙 . In practice, the model can record

the populations at historical timestamps, though only the latest

population is relevant to a query.

4) 𝐿𝐸 is the edge label set. For an edge (𝑣𝑖 , 𝑣 𝑗 , 𝑑𝑘) ∈ 𝐸, its label

consists of a door flow function 𝑓 (𝑣𝑖 , 𝑣 𝑗 , 𝑑𝑘) that models the

dynamic object flows from 𝑣𝑖 to 𝑣 𝑗 via 𝑑𝑘 and a local array F[𝑡]
storing the actual object flows at each update timestamp 𝑡 .

v1
v6

v7

f(v2 , v5 , d4), F[t]

f(v5 , v2 , d4), F[t]

f(v2, v4, d3), F[t]

f(v
1,

v 2
, d

1)
, F

[t
]

f(v2, v1, d1), F[t]

f(v4, v7, d6
), F[t]

f(v8, v5, d7), F[t]

f(v5, v8, d7), F[t]

f(v
8,

v 7
, d

9)
, F

[t]

f(v7, v8, d9), F[t]

f(v
7,

v 6
, d

8)
, F

[t
]

f(v6, v7, d8), F[t]

f(v6, v3, d5), F[t]

f(v3, v6, d5), F[t]
f(v1, v3, d2)

, F[t]

v8

v3

v4

v5

v2

Area 90m2

Md2d [(d1, d2, 5),
(d2, d1, 5)]

𝛕 R

(P, t) (0, 10:01)

Figure 3: An Example of Indoor Crowd Model

Figure 3 depicts the indoor crowd model corresponding to the

space in Figure 1. Unlike a general time-dependent graph (GTG) [11,

1368

44], our model represents doors as edges and partitions as vertices.

A GTG may model doors as vertices and partitions as edges and

capture time-varying populations or distances as edge weights, but

this way falls short in solving our problem. First, GTG’s vertices

fail to capture the door directionality (e.g., unidirectional security

check doors) directly. Referring to Figure 1,𝑑2 is unidirectional such

that one can only go through 𝑑2 from 𝑣1 to 𝑣3. In a GTG, the edges

cannot be directed because each edge connects two doors and one

can always go from one door to any other door in the same room.

E.g., one cannot go through 𝑑2 from 𝑣3 to 𝑣1, but she can go to any

door in 𝑣1 from 𝑑2 if she is in 𝑣1. The directionality information

can be added in each node, e.g., that for node 𝑑2 can be {(𝑣1, 𝑣3)},

and that for node 𝑑1 can be {(𝑣1, 𝑣2), (𝑣2, 𝑣1)}. However, it will result

in considerably more space and search costs. Second, a GTG will

result in many door-to-door edges for the same partition, which

will render the graph-based search inefficient. The experimental

comparison with GTG is reported in Section 6.

The time-evolving function 𝑓 (𝑣𝑖 , 𝑣 𝑗 , 𝑑𝑘) models the number of

objects flowing from 𝑣𝑖 to 𝑣 𝑗 at each report time interval of 𝑑𝑘 . In

practice, it can be implemented as a time-series prediction model

driven by historical data such as ARIMA [8] and LSTM [22], or it

can be approximated by a queueing distribution function. For the

ease of presentation, in this paper, we employ a specific queueing

distribution function to predict the door flows (Section 3.2). Never-

theless, the door flow function can be replaced by other appropriate

models or functions, which entails no change to any of the other

parts in the overall computation framework (Figure 2).

3.2 Door Flow Function
Following the classic Poisson distribution in queueing theory [7],

we design the following door flow function:

𝑓 (𝑣𝑖 , 𝑣 𝑗 , 𝑑𝑘) : 𝑡 ↦→ P𝑡 , 𝑡 ∈ RT (𝑑𝑘), P𝑡 ∼ Poisson(𝜆) (5)

where 𝑡 ∈ RT (𝑑𝑘) is a report timestamp of 𝑑𝑘 , P𝑡 is the population
that flows from 𝑣𝑖 to 𝑣 𝑗 between 𝑡 and 𝑑𝑘 ’s next report timestamp,

and 𝜆 is the expected value of P𝑡 under Poisson distribution.

The door flow function is parameterized by 𝜆 and fitted based

on a recent period of historical records in a format of (𝑡 ′, P𝑡 ′).
In practice, for each door counter, the most recent timestamps’

flows can be accessed from the local array F in the graph edge. An

independent thread estimates 𝜆 upon suchmost recent records. Note

that the focus of this paper is not to estimate 𝜆 based on historical

data. For its technical details, we refer readers to a previous work [4].

In our setting, at any query time, an up-to-date door flow function

is ready to predict flows for future report timestamps.

4 TIME-EVOLVING POPULATIONS
4.1 Rectifying Door Flows
At a query time 𝑡𝑞 , we can access a partition 𝑣𝑘 ’s latest population

P𝑘𝑡𝑙 at an earlier time 𝑡𝑙 ≤ 𝑡𝑞 from the indoor crowdmodel. To enable

the cost estimation for routing, we need to derive 𝑣𝑘 ’s time-evolving

population and its future inflows/outflows based on P𝑘𝑡𝑙 .
Let [𝑡0, 𝑡1] ∈ UTI (𝑣𝑘) be the unit time interval covering 𝑡𝑙 . We

have P𝑘𝑡0,𝑡1

= P𝑘𝑡𝑙 , meaning that 𝑣𝑘 ’s population over [𝑡0, 𝑡1] is equal
to P𝑘𝑡𝑙 . Subsequently, for a future unit time interval [𝑡𝑥 , 𝑡𝑥+1] ∈

UTI (𝑣𝑘), we compute its population as

P𝑘𝑡𝑥 ,𝑡𝑥+1 = P𝑘𝑡𝑥−1,𝑡𝑥
− out (𝑣𝑘 , 𝑡𝑥) + in(𝑣𝑘 , 𝑡𝑥), 𝑥 = 1, 2, . . . (6)

where out (𝑣𝑘 , 𝑡𝑥) and in(𝑣𝑘 , 𝑡𝑥) are 𝑣𝑘 ’s estimated outflow and

inflow at update timestamp 𝑡𝑥 , respectively.

Suppose that all relevant door flow functions are ready at 𝑡𝑞 . The

inflow and outflow at a future update timestamp can be directly

estimated based on the expected values 𝜆. Formally,

out (𝑣𝑘 , 𝑡𝑥) =
∑

𝑑𝑖 ∈P2D⊏ (𝑣𝑘)∧𝑡𝑥 ∈RT (𝑑𝑖)

∑
𝑣𝑝 ∈D2P⊐ (𝑑𝑖)

𝑓 (𝑣𝑘 , 𝑣𝑝 , 𝑑𝑖) .𝜆

in(𝑣𝑘 , 𝑡𝑥) =
∑

𝑑 𝑗 ∈P2D⊐ (𝑣𝑘)∧𝑡𝑥 ∈RT (𝑑 𝑗)

∑
𝑣𝑞 ∈D2P⊏ (𝑑 𝑗)

𝑓 (𝑣𝑞, 𝑣𝑘 , 𝑑 𝑗) .𝜆

where 𝑑𝑖 (resp. 𝑑 𝑗) is a leaveable (resp. enterable) door updated at

time 𝑡𝑥 and 𝑣𝑝 ∈ D2P⊐ (𝑑𝑖) (resp. 𝑣𝑞 ∈ D2P⊏ (𝑑𝑖)) is its enterable
(resp. leaveable) partition.

However, the estimated flows may be contrary to the real

situation such that a partition’s current population (P𝑘𝑡𝑥−1,𝑡𝑥
in

Equation 6) cannot satisfy its outflow (out (𝑣𝑘 , 𝑡𝑥) in Equation 6). In

this case, flows at doors should be rectified.

A basic idea is to rectify the expected outflow at each step such

that it is not larger than the partition 𝑣𝑘 ’s current population.

Meanwhile, 𝑣𝑘 ’s inflow is naturally rectified as it is derived from the

outflows of its adjacent partitions at the previous step. In general,

a dependency exists between partitions. It demands a suitable way

to rectify the relevant outflows at the update timestamps.

An example is depicted in Figure 4, which rectifies the door

flows globally. To ease the presentation, at each particular update

timestamp 𝑡𝑥 we put the absolute populations and door flows in

a |𝑉 | × |𝑉 | matrix M, where |𝑉 | corresponds to the total number

of partitions. In particular,M[𝑖, 𝑖] refers to partition 𝑣𝑖 ’s absolute

population over unit time interval [𝑡𝑥−1, 𝑡𝑥], whileM[𝑖, 𝑗] (𝑖 ≠ 𝑗)

means the flow value from partition 𝑣𝑖 to 𝑣 𝑗 over the next unit time

interval [𝑡𝑥 , 𝑡𝑥+1]. Referring to Figure 4(a), partition 𝑣1’s population

over [𝑡𝑥−1, 𝑡𝑥] is 3 and that of 𝑣2 is 7. Besides, 𝑣1’s expected outflows

to 𝑣2 and 𝑣3 are 4 and 2, respectively; 𝑣2’s inflow from 𝑣1 and 𝑣3

are 4 and 1, respectively. Considering the space efficiency, in the

implementation, we store the absolute populations on the graph

nodes and the estimated flows on graph edges. That is, the space

complexity at each update timestamp is |𝑉 + 𝐸 |.
A rectification is then applied to each row of the original matrix

as exemplified in Figure 4(b). Specifically, 𝑣1’s current population

(i.e., 3) is less than the summation of its subsequent outflows

(i.e., 4 + 2 = 6). In this case, we scale down the outflows at all

doors to ensure that the actual number of objects outflowing

is exactly equal to the current population. That is, M′[1, 2] =

M[1, 2] · (3/6) = 2 and M′[1, 3] = M[1, 3] · (3/6) = 1, where

M and M′ represent the original and rectified matrix, respectively.

Note that non-integer values may appear in the rectification. For

the computation precision, we use non-integer values in the whole

iterative derivation process. Intuitively, the values in the matrix are

a probability estimate, i.e., how likely an object will appear in or

move to a certain partition.

After the rectification, each partition’s population over the next

interval [𝑡𝑥 , 𝑡𝑥+1] is computed based on Equation 6. In particular,

partition 𝑣𝑖 ’s new population is obtained by deducting the overall

1369

v1 v2 v3
v1 3 4 2
v2 2 7 0
v3 0 1 4

(a) original matrix at tx

v1’ s expected outflows

v1’ s
expected
inflows

v1’ s
population
over [tx-1, tx]

fill-in expected inflows and outflows at tx+1 and get original matrix at tx+1

v1 v2 v3
v1 3 2 1
v2 2 7 0
v3 0 1 4

v1’ s rectified outflows

v1 v2 v3
v1 2
v2 8
v3 4

v1’ s population over [tx, tx+1]

rectify merge

v2’ s
population
over [tx, tx+1]

(b) rectified matrix at tx (c) merged populations at tx+1

no changes

Figure 4: An Example of Rectifying Flows Globally

outflows at the 𝑖-th row ofM′ and then adding the overall inflows at
the 𝑖-th column ofM′. Referring to Figure 4(c), 𝑣1’s new population

is 3 − 3 + 2 = 2 while 𝑣2’s is 7 − 2 + 3 = 8. After the merges on

each partition, we fill in the matrix inflows and outflows at the

timestamp 𝑡𝑥+1, and derive the populations iteratively.

4.2 Implementation of Population Estimator
This section presents two versions of population estimators. The

global estimator estimates all partitions’ populations globally (cor-

responding to the example in Figure 4), whereas the local estimator
only estimates a relevant partition’s population by looking up its

upstream partitions flows.

Algorithm 1 PopulationGlobal (future timestamp 𝑡𝑎 , indoor

crowd model 𝐺)

1: get the latest update timestamp 𝑡𝐺
𝑙

from𝐺

2: UT𝐺 ←
⋃
𝑑𝑗 ∈𝐺.𝐷 RT (𝑑 𝑗)

3: A← toArray ({𝑡𝑐 | 𝑡𝑐 ∈ UT𝐺 ∧ 𝑡𝑐 ≥ 𝑡𝐺
𝑙
∧ 𝑡𝑐 ≤ 𝑡𝑎 })

4: for 𝑡𝑐 ∈ A do
5: for 𝑒 (𝑣𝑖 , 𝑣𝑗 , 𝑑𝑘) ∈ 𝐺.𝐸 do
6: if 𝑡𝑐 ∈ RT (𝑑𝑘) then 𝑒.F[𝑡𝑐] ← 𝑓 (𝑣𝑖 , 𝑣𝑗 , 𝑑𝑘) .𝜆
7: else 𝑒.F[𝑡𝑐] ← 0

8: for 𝑣𝑖 ∈ 𝑉 do
9: for 𝑑𝑘 ∈ P2D⊏ (𝑣𝑖) do
10: out𝑖 ← out𝑖 + (𝑣𝑖 , 𝑣𝑗 , 𝑑𝑘) .F[𝑡𝑐]
11: get 𝑣𝑖 ’s latest population record (P𝑖𝑡 , 𝑡) from𝐺

12: if P𝑖𝑡 − out𝑖 < 0 then
13: for 𝑑𝑘 ∈ P2D⊏ (𝑣𝑖) do
14: (𝑣𝑖 , 𝑣𝑗 , 𝑑𝑘) .F[𝑡𝑐] ← (𝑣𝑖 , 𝑣𝑗 , 𝑑𝑘) .F[𝑡𝑐] · P𝑖𝑡 /out𝑖
15: for 𝑣𝑖 ∈ 𝑉 do
16: for 𝑑𝑘 ∈ P2D⊏ (𝑣𝑖) do
17: out𝑖 ← out𝑖 + (𝑣𝑖 , 𝑣𝑗 , 𝑑𝑘) .F[𝑡𝑐]
18: for 𝑑𝑘 ∈ P2D⊐ (𝑣𝑖) do
19: in𝑖 ← in𝑖 + (𝑣𝑗 , 𝑣𝑖 , 𝑑𝑘) .F[𝑡𝑐]
20: P𝑖𝑡𝑐 ← P𝑖𝑡 − out𝑖 + in𝑖 ; add (P𝑖𝑡𝑐 , 𝑡𝑐) to𝐺.𝑣𝑖

The global estimator (Algorithm 1) takes the indoor crowdmodel

𝐺 as input and derives the populations from the latest update

timestamp in𝐺 to a future timestamp 𝑡𝑎 ≥ 𝑡𝑞 . In the beginning, the

globally latest update timestamp 𝑡𝐺
𝑙

over all partitions is obtained

(line 1). Then, the set UT𝐺 of all doors’ report timestamps is

obtained (line 2) and the period of interest is extracted out of

UT𝐺 and organized into an array A (line 3). The algorithm then

progressively derives the populations for each timestamp in A
(lines 4–20). For each timestamp 𝑡𝑐 ∈ A, the algorithm iterates

on each edge 𝑒 (𝑣𝑖 , 𝑣 𝑗 , 𝑑𝑘). If the corresponding door 𝑑𝑘 updates at

𝑡𝑐 , 𝑒’s flow value at 𝑡𝑐 , i.e., 𝑒.F[𝑡𝑐], is assigned with the estimated

flow of the corresponding flow function (line 6). Otherwise, the flow

value 𝑒.F[𝑡𝑐] is assigned with 0 (line 7). Here 𝑒.F is a local array

to maintain the rectified flow at each timestamp. Subsequently,

the algorithm goes through each partition 𝑣𝑖 and aggregates its

expected outflow out𝑖 (lines 8–10). If out𝑖 is greater than the

population P𝑖𝑡 at the latest update timestamp, the estimated flows

at edges need to be rectified following the example in Figure 4

(lines 11–14). Afterwards, the current timestamp 𝑡𝑐 ’s population for

each partition is computed according to Equation 6 and added to𝐺

(lines 15–20). Once the process is finished, all partitions’ populations

at each timestamp can be accessed from the edge nodes of 𝐺 .

Algorithm 1 needs to update the populations for all partitions.

This incurs much unnecessary computation since a path planning

search at a particular time only concerns a number of relevant

partitions and their populations. If these partitions’ populations

and flows can be precisely derived without a global update, the

overall updating cost can be reduced substantially.

The local estimator is formalized in Algorithm 2. It derives a

specific partition’s population in a recursive manner. Its preparation

(lines 1–3) is almost the same as the counterpart in Algorithm 1,

except that the latest update timestamp 𝑡𝑙 in line 1 is with respect

to the input partition 𝑣𝑖 .

Next, the algorithm derives 𝑣𝑖 ’s population in reverse temporal

order (lines 4–24). Specifically, the newest update timestamp 𝑡𝑐 in

A is archived and removed from A (line 5). If 𝑡𝑐 just equals 𝑡𝑙 , the

population is directly obtained from 𝐺 (lines 6–8). Otherwise, 𝑡𝑐
is an earlier timestamp to 𝑡𝑙 , and the algorithm recursively calls

Algorithm 2 to obtain 𝑣𝑖 ’s population P𝑖𝑡𝑐 at 𝑡𝑐 (line 9). Once P𝑖𝑡𝑐 is

derived, the expected flow from each upstream door flow function

(see lines 10-12) is compared to 𝑣𝑖 ’s population. Note that the

intermediate results are maintained in each edge’s local array F[𝑡]
to avoid repeated computations (line 11). If an expected outflow is

larger than P𝑖𝑡𝑐 , a rectification is performed (lines 14–16). In this case,

the rectified outflow is assigned with P𝑖𝑡𝑐 (line 17). Then, the inflows
from all enterable doors are also derived (lines 18-22). For each

enterable door 𝑑𝑘 , if its inflow has not been derived, Algorithm 2

is recursively called to get the adjacent partition 𝑣 𝑗 ’s population

at time 𝑡𝑐 (line 18-20). Note that the inflow from 𝑣 𝑗 to 𝑣𝑖 will be

rectified in this recursion. After that, 𝑣𝑖 ’s overall inflow is obtained

(line 21) and its population is computed (line 22). The last two lines

of Algorithm 2 return the population nearest to the input time 𝑡𝑎 .

Once the partition’s population at a particular arrival time is

derived, the corresponding partition-passing cost (time or contact)

can be computed easily according to Equation 3 or 4. Both global

and local population estimators can be utilized by the exact search

presented in Section 5.1 (see line 17 in Algorithm 3).

1370

Algorithm 2 PopulationLocal (partition 𝑣𝑖 , future timestamp 𝑡𝑎 ,

indoor crowd model 𝐺)

1: get 𝑣𝑖 ’s latest update timestamp 𝑡𝑙 from𝐺

2: UT𝐺 ←
⋃
𝑑𝑗 ∈𝐺.𝐷 RT (𝑑 𝑗)

3: A← toArray ({𝑡𝑐 | 𝑡𝑐 ∈ UT𝐺 ∧ 𝑡𝑐 ≥ 𝑡𝑙 ∧ 𝑡𝑐 ≤ 𝑡𝑎 }) , 𝑡𝑚𝑎𝑥 ← A.max()
4: while A is not empty do
5: 𝑡𝑐 ← A.max() ; A← A \ 𝑡𝑐
6: if 𝑡𝑐 = 𝑡𝑙 then
7: get 𝑣𝑖 ’s latest population record (P𝑖𝑡𝑙 , 𝑡𝑙) from𝐺

8: P𝑖𝑡𝑐 ← P𝑖𝑡𝑙
9: else P𝑖𝑡𝑐 ← PopulationLocal (𝑣𝑖 , 𝑡𝑐 ,𝐺)

10: for 𝑑𝑘 ∈ P2D⊏ (𝑣𝑖) do
11: if (𝑣𝑖 , 𝑣𝑗 , 𝑑𝑘) .F[𝑡𝑐] is null then
12: (𝑣𝑖 , 𝑣𝑗 , 𝑑𝑘) .F[𝑡𝑐] ← 𝑓 (𝑣𝑖 , 𝑣𝑗 , 𝑑𝑘) .𝜆
13: out𝑖 ← out𝑖 + (𝑣𝑖 , 𝑣𝑗 , 𝑑𝑘) .F[𝑡𝑐]
14: if P𝑖𝑡𝑐 − out𝑖 < 0 then
15: for 𝑑𝑘 ∈ P2D⊏ (𝑣𝑖) do
16: (𝑣𝑖 , 𝑣𝑗 , 𝑑𝑘) .F[𝑡𝑐] ← (𝑣𝑖 , 𝑣𝑗 , 𝑑𝑘) .F[𝑡𝑐] · P𝑖𝑡𝑐 /out𝑖
17: out𝑖 ← P𝑖𝑡𝑐
18: for 𝑑𝑘 ∈ P2D⊐ (𝑣𝑖) do
19: if (𝑣𝑗 , 𝑣𝑖 , 𝑑𝑘) .F[𝑡𝑐] is null then
20: PopulationLocal (𝑣𝑗 , 𝑡𝑐 ,𝐺)

21: in𝑖 ← in𝑖 + (𝑣𝑗 , 𝑣𝑖 , 𝑑𝑘) .F[𝑡𝑐]
22: P𝑖𝑡𝑐 ← P𝑖𝑡𝑙

− out𝑖 + in𝑖
23: 𝑡 ← 𝑡𝑚𝑎𝑥

24: return P𝑖𝑡

5 QUERY PROCESSING ALGORITHMS
5.1 Exact Algorithms for FPQ and LCPQ
On top of the indoor crowd model (Section 3), we propose an indoor

path search process in Algorithm 3. Following the spirit of Dijkstra’s

algorithm, our algorithm can handle both FPQ and LCPQ, as long as

a cost measure corresponding to a specific query type is set as the

routing cost of the graph traversal. Algorithm 3 returns an indoor

path 𝜙 from the source 𝑝𝑠 to the target 𝑝𝑡 that satisfies the query

type QT for a particular query time 𝑡𝑞 .

Algorithm 3 Search (source 𝑝𝑠 , target 𝑝𝑡 , query time 𝑡𝑞 , indoor

crowd model 𝐺 , query type QT)

1: initialize a priority queue Q
2: for each door 𝑑𝑖 ∈ 𝐺.𝐷 do prev [𝑑𝑖] ← null
3: prev [𝑝𝑠] ← null; prev [𝑝𝑡] ← null
4: UT𝐺 ←

⋃
𝑑𝑗 ∈𝐺.𝐷 RT (𝑑 𝑗)

5: 𝑡𝑙 ← max{𝑡 ∈ UT𝐺 | 𝑡 ≤ 𝑡𝑞 }; 𝑡𝑎 ← ∅ ⊲ latest update time 𝑡𝑙 and arrival time 𝑡𝑎

6: if QT = LCPQ then cost0 ← (0, 0, 0) else cost0 ← (0, 0) ⊲ (distance, time, contact) for LCPQ
and (distance, time) for FPQ

7: 𝑆0 ← (𝑝𝑠 , cost0) ⊲ S(node, cost)
8: A𝑆 [𝑝𝑠] ← 𝑆0 ; Q .push(𝑆0)
9: while Q is not empty do
10: 𝑆𝑖 ← Q .pop() ; 𝑑𝑖 ← 𝑆𝑖 .node
11: if 𝑑𝑖 = 𝑝𝑡 then return GetPath(𝑝𝑡 , prev, 𝑝𝑠)
12: if 𝑑𝑖 = 𝑝𝑠 then 𝑣 ← host(𝑝𝑠)
13: else 𝑣 ← D2P⊐ (𝑑𝑖)\ 𝑑𝑖 ’s previous partition
14: mark 𝑑𝑖 as visited
15: 𝑡𝑎 ← max{𝑡 ∈ UT𝐺 | 𝑡 ≤ 𝑡𝑞 + 𝑆𝑖 .cost.time}
16: if 𝑡𝑎 > 𝑡𝑙 then ⊲ further derive populations

17: Population(𝑡𝑎 ,𝐺)
18: 𝑡𝑙 ← 𝑡𝑎

19: if 𝑑𝑖 ∈ P2D⊐ (host(𝑝𝑡)) then
20: Expand(𝑑𝑖 , 𝑝𝑡 ,𝐺, 𝑣, 𝑡𝑎 , 𝑆𝑖 , QT) ⊲ towards target 𝑝𝑡

21: for each unvisited door 𝑑 𝑗 ∈ P2D⊏ (𝑣) do
22: Expand(𝑑𝑖 , 𝑑 𝑗 ,𝐺, 𝑣, 𝑡𝑎 , 𝑆𝑖 , QT)

The algorithm starts with initializing a priority queue Q (line 1)

whose priority is theminimum travel time for FPQ and theminimum

contact for LCPQ. Also, an array prev is initialized to record each

path node’s previous node in the search (lines 2–3). Then, the full

setUT𝐺 of the report timestamps over all doors are obtained (line 4).

With respect to the query time 𝑡𝑞 , the latest update timestamp in

UT𝐺 is found and assigned to 𝑡𝑙 (line 5). Variable 𝑡𝑙 is the latest

population derivation time in the search. Next, the cost of the

current search is initialized (line 6). The cost for LCPQ consists of
overall travel distance, overall travel time, and overall contact value.

The cost for FPQ only contains the first two. The source and initial

cost are put into a stamp 𝑆0, and 𝑆0 is pushed intoQ and maintained

in an array A𝑆 as well (lines 7–8).

After the preparation, the algorithm explores the next path node

towards 𝑝𝑡 in an order controlled by Q (lines 9–22). Specifically,

the stamp 𝑆𝑖 with the lowest cost is popped from Q , and the

corresponding path node 𝑑𝑖 is obtained (line 10). If 𝑑𝑖 is 𝑝𝑡 , i.e., the

searched is complete, the algorithm calls a function GetPath(𝑝𝑡 ,

prev, 𝑝𝑠) to return the reverse path from 𝑝𝑡 to 𝑝𝑠 (line 11). Otherwise,

the algorithm explores the next path node as follows.

First, if the current node is the source 𝑝𝑠 , the current partition 𝑣

is obtained as the host of 𝑝𝑠 (line 12). Otherwise, 𝑣 is assigned as𝑑𝑖 ’s

enterable partition
3
(line 13). Then, 𝑑𝑖 is marked as visited (line 14).

Next, the estimated cost to pass 𝑣 is obtained as 𝑆𝑖 .cost.time and it

is added to the query time 𝑡𝑞 to get the arrival time 𝑡𝑎 to the next

path node (line 15). An alignment to the update timestamps in UT𝐺
is needed for 𝑡𝑎 . The algorithm then determines if the population

needs to be derived to meet the next arrival time 𝑡𝑎 (lines 16–18). If

the latest derivation time 𝑡𝑙 is earlier than 𝑡
𝑎
, a population estimator

is invoked to get 𝑣 ’s derived populations up to 𝑡𝑎 (line 17). Here,

either the global (Algorithm 1) or local estimator (Algorithm 2)

can be used. The performance difference of these two ways will be

experimentally studied in Section 6.

Afterward, it expands to the next node from the current node 𝑑𝑖 .

If 𝑑𝑖 is an enterable door of 𝑝𝑡 ’s host partition, the expansion goes

towards 𝑝𝑡 (lines 19-20). Regardless of whether the current path

reaches 𝑝𝑡 ’s host partition, the expansion should also reach each

unvisited leaveable door of the current partition 𝑣 (lines 21–22).

This ensures that the planned path can leave and re-enter 𝑝𝑡 ’s host

partition when the host is currently too crowded.

The function Expand is formalized in Algorithm 4, which

expands from the current node 𝑝1 to the next possible node 𝑝2

through partition 𝑣 . First, it estimates the cost to reach 𝑝2 from

𝑝1 through an inline function Cost (see lines 7–16). In particular,

the distance between 𝑝1 and 𝑝2 is obtained as the door-to-door

distance if both are doors, or Euclidean distance if either is an

indoor point (lines 8–10). Then, the population of the partition 𝑣𝑘
to pass is obtained from𝐺 (line 11), and the partition-passing time

and contact are computed based on Equations 3 and 4, respectively

(lines 12 and 14). The corresponding cost is then returned according

to the query type QT (lines 13 and 15–16).

Back to Expand in Algorithm 4, once the cost to pass 𝑣 is

obtained, it is added to the current stamp 𝑆𝑖 ’s cost to get the overall

cost in the current expansion, i.e., cost𝑐 (line 1). The tuple-form

cost is summed in an element-wise way. Next, the estimated cost to

reach 𝑝2 so far is obtained from the array A𝑆 (line 2). The algorithm

compares the current estimated cost cost𝑐 to the previously recorded
cost cost𝑝𝑟𝑒 . If cost𝑝𝑟𝑒 does not exist or cost𝑐 is lower, a valid expand
is performed (lines 3–6). Specifically, a new stamp 𝑆 ′ is formed with

3
To ease presentation, here we only show the case that a door connects two partitions.

A complex space can be handled by maintaining a collection of enterable partitions.

1371

the next path node 𝑝2 and the new cost cost𝑐 . It is then pushed toQ .

If an old stamp exists with the same node, the old stamp is updated

by 𝑆 ′ (line 5). Then, 𝑆 ′ is inserted into A𝑆 and 𝑝2’s previous path

node is recorded as 𝑝1.

Algorithm 4 Expand (start node 𝑝1, end node 𝑝2, indoor crowd

model 𝐺 , partition 𝑣 , arrival time 𝑡𝑎 , stamp 𝑆𝑖 , query type QT)

1: cost𝑐 ← 𝑆𝑖 .cost + Cost(𝑝1, 𝑝2, 𝑣, 𝑡
𝑎 ,𝐺) ⊲ element-wise

2: costpre ← A𝑆 [𝑝2] .cost
3: if costpre is null or cost𝑐 < costpre then
4: 𝑆′ ← (𝑝2, cost𝑐)
5: Q .push(𝑆′) ⊲ update if exists

6: A𝑆 [𝑝2] ← 𝑆′; prev [𝑝2] ← 𝑝1

7: function Cost(𝑝1 , 𝑝2 , 𝑣𝑘 , 𝑡
𝑎
,𝐺)

8: dist ← ∅
9: if 𝑝1, 𝑝2 are both doors then dist ← 𝑣𝑘 .Md2d (𝑝1, 𝑝2)
10: else dist ← |𝑝1, 𝑝2 |𝐸
11: get P𝑘

𝑡𝑎
from𝐺

12: time← 𝑇 (𝑝1, 𝑝2, 𝑣𝑘 , 𝑡
𝑎) ⊲ Equation 3

13: if QT = LCPQ then
14: contact ← 𝜅 (𝑝1, 𝑝2, 𝑣𝑘 , 𝑡

𝑎) ⊲ Equation 4

15: return (dist, time, contact)
16: else return (dist, time)

In the exact search, the time-evolving populations are rectified

and computed rigidly timestamp by timestamp. This may result in a

bottleneck in the graph traversal. We intend to reduce the workload

for population derivation by approximation. On the one hand, the

severity of population derivation can be skipped for those less

important partitions, e.g., those far away from the current partition

to pass. On the other hand, some of the update timestamps in the

iterative derivation can be skipped if the population changes within

that iteration period is relatively stable. We proceed to introduce

two approximate search algorithms for FPQ and LCPQ.

5.2 Approximate Algorithms for FPQ and LCPQ
We design two strategies to derive approximate populations.

Strategy 1: Population Derivation for Partial Partitions (PP).
Recall that the population derivation in Algorithm 2 (see line 20)

recursively obtains its adjacent partition’s population to ensure

the overall derivation is fully precise. This recursion terminates

when the outflows of all relevant partitions at all relevant update

timestamps have been rectified. In fact, the door flows from a long

distance or at a very old timestamp only have a slight impact on a

partition’s current population. Therefore, one option is to rectify

only the outflows of the current relevant partition without strictly

processing the outflows of its upstream partitions (i.e., the inflows

to the current relevant partition). To this end, only a minor change

is made to Algorithm 2: line 20 is modified to (𝑣 𝑗 , 𝑣𝑖 , 𝑑𝑘) .F[𝑡𝑐] ←
𝑓 (𝑣 𝑗 , 𝑣𝑖 , 𝑑𝑘) .𝜆. That is, the outflow of an adjacent partition 𝑣 𝑗 is

directly obtained from the corresponding door flow function.

Strategy 2: Population Derivation at Necessary Timestamps
(NT). To further speed up the population derivation for individual

partitions, we consider reducing the workload by only calling

Algorithm 2 at some necessary timestamps. The general idea is

that when we observe that the historical flows of a partition are

relatively stable, we skip the iterative population computations and

directly estimate its population at the arrival time 𝑡𝑎 . Note that

here Strategy 2 is used in combination with Strategy 1 to achieve

the maximum effect of acceleration.

In particular, when the search visits a partition 𝑣𝑘 , the mean 𝜇

and standard deviation 𝜎 of its flow difference (i.e., inflow deducts

outflow) in the historical timestamps are computed as follows.

𝜇 =

(∑
𝑡𝑥 ∈UTpast

(
in(𝑣𝑘 , 𝑡𝑥) − out (𝑣𝑘 , 𝑡𝑥)

))
/|UTpast |

𝜎 =

((∑
𝑡𝑥 ∈UTpast

(in(𝑣𝑘 , 𝑡𝑥) − out (𝑣𝑘 , 𝑡𝑥) − 𝜇)2
)
/|UTpast |

)
1/2

where UTpast is a set of the historical update timestamps of 𝑣𝑘 . The

update timestamps in UTpast will be obtained from the local array

that we maintain for fitting door flow function in Section 3.2.

If 𝜎 is smaller than a pre-defined threshold value 𝜂, it indicates

that 𝑣𝑘 ’s historical flows change only slightly. Thus, we directly

estimate 𝑣𝑘 ’s population according to its historical trend as follows.

P𝑘𝑡𝑎 = P𝑘𝑡𝑙 + 𝜇 · |{𝑡 ∈ UT (𝑣𝑘) | 𝑡𝑙 < 𝑡 ∧ 𝑡 ≤ 𝑡𝑎}| (7)

where 𝑡𝑙 = max{𝑡𝑥 ∈ UT𝐺 | 𝑡𝑥 ≤ 𝑡𝑞} is the latest population update
time as in line 5 of Algorithm 3, 𝜇 is the mean of historical flow

differences, and |{𝑡 ∈ UT (𝑣𝑘) | 𝑡𝑙 < 𝑡 ∧ 𝑡 ≤ 𝑡𝑎}| is the number of

skipped update timestamps from 𝑡𝑙 to 𝑡
𝑎
. In our experiment, 𝜂 = 3

achieves the best performance approaching exact search results.

Otherwise, the search has to call Algorithm 2 (applied with

Strategy 1) to derive population for 𝑣𝑘 .

5.3 Complexity Analysis
The main difference of the four algorithms’ complexity is related

to population derivation. Therefore, we focus on comparing the

four ways of population derivation. Assume that we estimate a

partition’s population at a future timestamp, and the derivation

involves 𝑘 unit time intervals.

The time complexity of the global population estimator (Al-

gorithm 1) is 𝑘 |𝑉 | · u, where u is the unit computational cost

for a partition at an update timestamp. For the local estimator

(Algorithm 2) which only considers the current partition and its

upstream partitions, its time complexity is

(
𝑘 |𝑉 | − ((𝑘 −1)𝑛𝑘 + (𝑘 −

2)𝑛𝑘−1 + · · · + 𝑛2)
)
· u, where 𝑛 is the average number of enterable

door per partition.

For two approximate strategies, PP rectifies only the outflows

of the current certain partition without strictly processing the

outflows of its upstream partitions, so the time complexity of PP’s
population derivation per partition is only 𝑘u. NT omits population

estimations for some partitions with the relatively stable flow. Thus

for a partition in consideration, the time complexity depends on

its flow stability. That is, if it is stable, we do not estimate the

population; otherwise, the complexity is also 𝑘u.

6 EXPERIMENTS
For either FPQ or LCPQ, we implement four search algorithms.

Specifically, *PQ is Algorithm 3 calling Algorithm 2, *PQ-G is

Algorithm 3 calling Algorithm 1, *PQ-PP is the approximate search

using Strategy PP, and *PQ-NT is the approximate search using

Strategy NT. All algorithms are implemented in Java and run on a

PC with a 2.30GHz Intel i5 CPU and 16 GB memory.

6.1 Results on Synthetic Data
6.1.1 Settings. Indoor Space. Using a real-world floorplan

4
, we

generate a multi-floor indoor space where each floor takes 1368m

4
https://longaspire.github.io/s/fp.html (Last accessed date: 2021/04/16)

1372

https://longaspire.github.io/s/fp.html

× 1368m. The irregular hallways are decomposed into smaller but

regular partitions following the decomposition algorithm in [43].

As a result, we obtain 141 partitions and 216 doors on each floor.

We duplicate the floorplan 3, 5, 7, or 9 times to simulate different

indoor spaces. All parameter settings are listed in Table 2 with

default values in bold. The four staircases of each two adjacent

floors are connected by stairways, each being 20m long. On each

floor, we randomly pick 14 out of all those partitions having two

doors as the Q-partitions while regarding all others as R-partitions.

Table 2: Parameter Settings
Parameters Description Settings

floor Floor number 3, 5, 7, 9
|𝑜 | Partition’s maximum object number 300, 600, 900, 1200, 1500

TI (s) Time interval 5, 10, 15, 20
s2t (m) The shortest distance from 𝑝𝑠 to 𝑝𝑡 900, 1100, 1300, 1500, 1700

Populations and Flows. We generate each partition’s popula-

tion at an initial time randomly from 0 to |𝑜 | (see Table 2). We set

the max capacity of a partition 𝑣 as 𝐴𝑟𝑒𝑎(𝑣) · 𝛽 (𝛽 is 1 per m
2
in

this paper). Note that the initial population will not exceed the max

capacity. The parameter 𝜆 of each door flow function is varied from

0 to 3
5
. We use a variable TI (5, 10, 15, or 20 seconds) to control

the length of the unit update time interval of partitions. To this

end, all doors’ initial report timestamps are aligned and they only

report the flows in every 𝑛 · TI seconds (𝑛 = 1, 2, . . . , 5 is randomly

decided for each door counter).

Query Instances.We use a parameter s2t to control the shortest
distance from the source point 𝑝𝑠 and the target point 𝑝𝑡 . First, we

randomly select a point 𝑝𝑠 from the indoor space. Second, we find

a door 𝑑 whose indoor distance to 𝑝𝑠 approximates s2t. Then, we
expand from 𝑑 to find a random point 𝑝𝑡 whose indoor distance

to 𝑝𝑠 approaches s2t. For each s2t value, we generate 100 different
pairs to form query instances.

Baseline Methods. We use a general time-dependent graph

(GTG) to form a baseline. Each vertex in GTG represents a door and

the weight of each edge is the cost between two doors, i.e., the time

cost for FPQ or the contact for LCPQ. To be fair, we employ a Dijkstra-

based algorithm (*PQ-GTG) without precomputation and combine

it with our exact population estimator to process queries. Since

GTG fails to represent the door directionality directly, we assume

all doors are bidirectional in comparative experiments. Another

baseline is the adaptive method based on the indoor crowd model

(*PQ-A) that keeps updating and recomputing the optimal route at

every node until the user gets to the target point.

Performance Metrics. To compare the efficiency of different

search algorithms, we run each query instance ten times and

measure their average running time and memory cost. We also

look into the accuracy of the four searches. In particular, the query

hit rate is the fraction of query instances whose search result equals

its gold standard result among all 100 instances. The gold result

is returned by searching over the detailed simulated trajectories.

Moreover, we measure the relative error of the estimated routing

cost against the gold result. The estimated cost refers to overall

travel time 𝑇𝜙 for FPQ and overall contact 𝜅𝜙 for LCPQ. Taking FPQ

as an example, the relative error is 𝛾 = |𝑇 (𝐸)
𝜙
−𝑇 (𝐺)

𝜙
|/𝑇 (𝐺)

𝜙
where

5
The value is set according to our analysis of real data. The door flow of a

hallway/staircase is relatively more than that of a room.

𝑇
(𝐸)
𝜙

and 𝑇
(𝐺)
𝜙

is the overall travel time corresponding to the exact

search and gold result, respectively.

6.1.2 Search Performance of FPQ. Comparison in default set-
ting. The measures of different FPQ algorithms are reported in

Table 3. FPQ-NT performs the best in terms of the running time and

memory because it skips the iterative population computations and

directly estimates its population at the arrival time in each node.

FPQ and FPQ-G perform similarly as two exact searches, implying

that the two exact estimators achieve similar efficiency in the

default setting. Besides, they are the best in terms of hit rate and

relative error. The baseline FPQ-GTG uses the exact estimator that

we propose, so its accuracy is the same as FPQ and FPQ-G. However,
FPQ-GTG incurs the highest time and memory costs due to the large

size of GTG (cf. Section 3). FPQ-PP works as accurately as the exact

algorithms, which reflects the effectiveness of Strategy PP. Also,
FPQ-PP saves some time and memory. FPQ-NT and FPQ-A perform

worse in terms of hit rate and relative error. FPQ-NT skips some

intermediate update timestamps, making its population derivation

less accurate. FPQ-A expands to next nodes by reevaluation, making

its result only optimal locally rather than globally. Note that the

running time (and memory) of FPQ-A is the sum of that at all nodes

in a path. Indeed, FPQ-A keeps updating until a user gets to the

target point, while other methods return the path before departure.

We omit FPQ-GTG and FPQ-A in the subsequent experiments as the

comparison results show a similar trend to that here.

Effect of s2t. We vary the distance s2t between 𝑝𝑠 and 𝑝𝑡
from 900m to 1700m and test the four FPQ algorithms. Referring

to Figure 5, all algorithms’ running time increases linearly with

the source-target distance, since a larger s2t involves a larger

expansion range as well as more candidate path nodes. Among

all algorithms, FPQ-NT runs fastest because it skips the iterative

population computation and directly estimates its population at the

arrival time in each node. Moreover, the time costs of approximate

searches FPQ-PP and FPQ-NT increase very slowly as s2t increases.
In contrast, the exact searches FPQ and FPQ-G are sensitive to s2t
because they need to compute more population.

Figure 6 reports on the memory consumption. The memory

use of FPQ and FPQ-G grows faster than the others due to an

extra cost of rigid population derivation. Contrary to our intuition,

FPQ incurs more memory cost than FPQ-G. In our test, the search

framework needs to explore a large number of partitions. FPQ-G’s
global population derivation shares intermediate results across all

partitions. For a large s2t, FPQ-Gmay find more shared intermediate

results, and thus consumes less memory than FPQ.
Figure 7 reports on the relative errors, for FPQ, FPQ-PP and

FPQ-NT.6 For different s2t values, FPQ achieves a lower error. As

a sacrifice for search efficiency, FPQ-NT skips some intermediate

update timestamps, so its accuracy of population derivation drops

more significantly. As s2t increases, FPQ-NT deteriorates rapidly

while FPQ and FPQ-PP perform quite stably. A larger s2t leads
to more updated timestamps to derive populations. As a result,

FPQ-NT’s relatively aggressive strategy of skipping timestamps

incurs more estimation errors. In contrast, FPQ and FPQ-PP derive

6
We exclude FPQ-G as its accuracy is the same with FPQ.

1373

Table 3: Comparison of Algorithms for FPQ and LCPQ on Synthetic Data (best result in bold)
FPQ FPQ-G FPQ-PP FPQ-NT FPQ-GTG FPQ-A LCPQ LCPQ-G LCPQ-PP LCPQ-NT LCPQ-GTG LCPQ-A

Running Time (ms) 584 585 208 25 2857 189 446 461 131 20 2532 163

Memory (KB) 115 112 111 12 278 14 182 192 144 7 257 8

Hit Rate (%) 98 98 98 95 98 94 83 83 83 60 83 87
Relative Error 4.37E-08 4.37E-08 4.37E-08 8.09E-08 4.37E-08 0.1233 0.0128 0.0128 0.0129 0.1113 0.0128 0.1256

populations timestamp by timestamp, and so the impact of s2t is
slight.

Effect of TI .According to Figure 8, all four algorithms run faster

with a larger update time interval TI . Still, FPQ-NT performs best

in both measures as it approximates population derivation in both

time and space aspects. We omit the result of the memory cost

because it has a similar trend with the running time. On the other

hand, referring to Figure 9, FPQ-NT’s relative error decreases as all
doors’ TI enlarges. This shows that onemay consider skippingmore

timestamps when the flow update at doors is not that frequent.

Effect of floor. We vary the floor number to test the scalability

of our algorithms. Referring to Figure 10, all algorithms’ search

time increases steadily with more floors since more candidate path

nodes are involved. FPQ-PP and FPQ-NT run faster than FPQ and

FPQ-G. Moreover, the running time of the two approximate searches

grows more slowly. Figure 11 reports the memory cost of the four

algorithms. FPQ-NT needs less memory and is more scalable since

it skips some timestamps. We omit the results of relative errors. In

the tests, both measures are insensitive to the floor number since

the returned path stays unchanged for a given query instance.

We omit the results of varying |𝑜 | on FPQ because different initial
object numbers have little impact on the search performance.

6.1.3 Search Performance of LCPQ. Comparison in default set-
ting. The resulting trend of LCPQ is similar to that of FPQ. As
reported in the right part of Table 3, LCPQ-NT is the best in terms

of running time and memory due to its skipping strategy, while

LCPQ-GTG incurs the highest time andmemory costs due to the large

graph size. LCPQ-A gets the best hit rate while the exact searches
achieve a better result on the relative error. Different from FPQ,
LCPQ is highly sensitive to populations. A little error in population

derivation can lead to a very different returned path. Hence, the

accuracy performance is slightly unstable for the tested algorithms.

Effect of s2t. Referring to Figure 12, the running time of each

algorithm grows as s2t increases. In terms of memory, the results

in Figure 13 show that LCPQ and LCPQ-G need more memory

than the other two. LCPQ-NT uses the least memory since it skips

intermediate timestamps to reduce workload.

Figure 14 reports on the relative errors of exact and approxi-

mate searches. Compared to LCPQ and LCPQ-PP, LCPQ-NT incurs

significantly higher errors. As we mentioned before, LCPQ query

is highly sensitive to the population. A little error in population

derivation can lead to a very different returned path. Therefore,

LCPQ-NT performs poorly when a larger s2t is used.
Effect of TI . Referring to Figures 15 and 16, all algorithms

incur less time and memory costs as TI increases since a larger TI
leads to fewer callings of population derivation. The approximate

approaches LCPQ-PP and LCPQ-NT always perform better in search

efficiency. Referring to Figure 17, all algorithms’ search effectiveness

deteriorates with an increasing TI . As less flow information is

observed when TI becomes larger, the relative errors accumulate.

Likewise, LCPQ’s search effectiveness is worse than that of FPQ, due
to its more stringent requirements on population derivation.

Effect of |𝑜 |. We test different initial object numbers on LCPQ
query processing. As an observation, the running time and memory

cost are almost insensitive to |𝑜 |, since the algorithms do not process

each individual object. So we omit the results here. Interestingly,

increasing |𝑜 | will affect the result accuracy. Referring to Figure 18,

as more objects are involved, all methods achieve a lower relative

error. We attribute it to that a larger population base is less affected

by the flow estimation error and leads to a smaller relative error.

We omit the result about different floor numbers because it

exhibits a trend similar to the counterpart of FPQ searches.

6.2 Results on Real Data
We collect a real dataset from a seven-floor, 2700m × 2000m

shopping mall in Hangzhou, China. There are ten staircases each

being roughly 20m long, and 977 partitions connected by 1613

doors
7
. The max capacity of a partition 𝑣 is 𝐴𝑟𝑒𝑎(𝑣) · 1 per𝑚2

. We

collected 1,598 object trajectories with totally more than 90,000

positioning records on 2017/01/05. Nearly 12% of two consecutive

locations are not topologically-connected, i.e., not in the same

partition or two adjacent partitions. The object movements in-

between are uncertain. To count flows against uncertainty, we

applied a proven probabilistic method [20] as follows. First, for

every two consecutive locations not topologically-connected, a set

Φ of valid sub-paths are found. Those sub-paths longer than twice

the shortest sub-path are excluded as the object unlikely took them.

Second, the probability that the object took sub-path 𝜙𝑖 ∈ Φ is

computed as P(𝜙𝑖) = 1/𝑙𝑒𝑛𝑔𝑡ℎ (𝜙𝑖)∑
𝜙𝑘 ∈Φ 1/𝑙𝑒𝑛𝑔𝑡ℎ (𝜙𝑘) . This way, a shorter sub-

path has a higher probability to be taken. Finally, the flow of a door

𝑑 is the sum of P(𝜙𝑖)s for all 𝜙𝑖s through 𝑑 . On top of the low-level

flow computing, we sampled each door’s flow every 10 seconds and

used the samples to construct our indoor crowd model.

Figure 25 exemplifies a few trajectories, where𝑚𝑖 (𝑡 𝑗) denotes
the positioning location of a MAC address𝑚𝑖 at time 𝑡 𝑗 . For𝑚1 (𝑡3)
and𝑚1 (𝑡4) that are not topologically-connected, two possible in-
between paths are found, namely 𝜙1 (𝑚1 (𝑡3), 𝑑3, 𝑑5),𝑚1 (𝑡4)) of 20m
long and 𝜙2 (𝑚1 (𝑡3), 𝑑2, 𝑑4),𝑚1 (𝑡4)) of 25m long. Their probabilities

are P(𝜙1) = 1/20

1/20+1/25
≈ 0.556 and P(𝜙2) = 1/25

1/20+1/25
≈ 0.444. We

sampled door flows as shown in the right part of Figure 25. E.g., door

𝑑4’s flow during [𝑡 ′
4
, 𝑡 ′

5
] is 1 + 0.444 = 1.444 (𝑚2 with a probability

of 1 and𝑚1 with a probability of 0.444).

Comparison in default setting. We compare different meth-

ods for FPQ and LCPQ using real data and report the results in

Table 4. In terms of the running time and memory, *PQ-NT performs

best while *PQ-GTG is the worst. This is because *PQ-NT skips the
iterative population computations while *PQ-GTG uses an exact

7
We assume that there is no Q-partition in this shopping mall. We varied the fraction of

Q-partitions/R-partitions on synthetic data, but it shows little impact on all algorithms.

1374

900 1100 1300 1500 1700
s2t (m)

0
200
400
600
800
1000

Ru
nn

in
g

Ti
m

e
(m

s)

FPQ
FPQ-G
FPQ-PP
FPQ-NT

Figure 5: FPQ Time vs. s2t

900 1100 1300 1500 1700
s2t (m)

0
50
100
150
200
250

M
em

or
y

(K
B

)

FPQ
FPQ-G

FPQ-PP
FPQ-NT

Figure 6: FPQMem. vs. s2t

900 1100130015001700
s2t (m)

10 11
10 10
10 9
10 8
10 7
10 6
10 5

Re
la

ti
ve

 E
rr

or FPQ
FPQ-PP

FPQ-NT

Figure 7: FPQ’s 𝛾 vs. s2t

5 10 15 20
TI (s)

0
300
600
900
1200

Ru
nn

in
g

Ti
m

e
(m

s)

FPQ
FPQ-G

FPQ-PP
FPQ-NT

Figure 8: FPQ Time vs. TI

5 10 15 20
TI (s)

10 15

10 13

10 11

10 9

10 7

Re
la

ti
ve

 E
rr

or

FPQ FPQ-PP FPQ-NT

Figure 9: FPQ’s 𝛾 vs. TI

3 5 7 9
floor

0

400

800

1200

Ru
nn

in
g

Ti
m

e
(m

s) FPQ
FPQ-G
FPQ-PP
FPQ-NT

Figure 10: FPQ Time vs. floor

3 5 7 9
floor

0
50
100
150
200
250
300

M
em

or
y

(K
B

)

FPQ
FPQ-G

FPQ-PP
FPQ-NT

Figure 11: FPQ Mem. vs. floor

900 1100 1300 1500 1700
s2t (m)

0

200

400

600

800

Ru
nn

in
g

Ti
m

e
(m

s)

LCPQ
LCPQ-G

LCPQ-PP
LCPQ-NT

Figure 12: LCPQ Time vs. s2t

900 1100 1300 1500 1700
s2t (m)

0
50
100
150
200
250

M
em

or
y

(K
B

)

LCPQ
LCPQ-G

LCPQ-PP
LCPQ-NT

Figure 13: LCPQ Mem. vs. s2t

900 1100130015001700
s2t (m)

0.0
0.03
0.06
0.09
0.12
0.15

Re
la

ti
ve

 E
rr

or

LCPQ
LCPQ-PP
LCPQ-NT

Figure 14: LCPQ’s 𝛾 vs. s2t

5 10 15 20
TI (s)

0

200

400

600

800

Ru
nn

in
g

Ti
m

e
(m

s)

LCPQ
LCPQ-G

LCPQ-PP
LCPQ-NT

Figure 15: LCPQ Time vs. TI

5 10 15 20
TI (s)

0

100

200

300

400

M
em

or
y

(K
B

) LCPQ
LCPQ-G

LCPQ-PP
LCPQ-NT

Figure 16: LCPQ Mem. vs. TI

5 10 15 20
TI (s)

0.0
0.04
0.08
0.12
0.16
0.2

Re
la

ti
ve

 E
rr

or
LCPQ
LCPQ-PP
LCPQ-NT

Figure 17: LCPQ’s 𝛾 vs. TI

300 600 900 12001500
O

0.0
0.04
0.08
0.12
0.16
0.2

Re
la

ti
ve

 E
rr

or

LCPQ
LCPQ-PP
LCPQ-NT

Figure 18: LCPQ’s 𝛾 vs.𝑂

900 1100 1300 1500 1700
s2t (m)

0

1000

2000

3000

Ru
nn

in
g

Ti
m

e
(m

s)

FPQ
FPQ-G

FPQ-PP
FPQ-NT

Figure 19: FPQ Time vs. s2t (Real)

900 1100 1300 1500 1700
s2t (m)

0
100
200
300
400
500

M
em

or
y

(K
B

)

FPQ
FPQ-G

FPQ-PP
FPQ-NT

Figure 20: FPQMem. vs. s2t (Real)

900 1100130015001700
s2t (m)

10 16

10 15

10 14

10 13

Re
la

ti
ve

 E
rr

or

FPQ
FPQ-PP
FPQ-NT

Figure 21: FPQ’s 𝛾 vs. s2t (Real)

900 1100 1300 1500 1700
s2t (m)

0

500

1000

1500

2000

Ru
nn

in
g

Ti
m

e
(m

s)

LCPQ
LCPQ-G

LCPQ-PP
LCPQ-NT

Figure 22: LCPQ Time vs. s2t (Real)

900 1100 1300 1500 1700
s2t (m)

0
100
200
300
400

M
em

or
y

(K
B

)

LCPQ
LCPQ-G

LCPQ-PP
LCPQ-NT

Figure 23: LCPQ Mem. vs. s2t (Real)

900 1100130015001700
s2t (m)

0.0

0.2

0.4

0.6

0.8

Re
la

ti
ve

 E
rr

or

LCPQ
LCPQ-PP
LCPQ-NT

Figure 24: LCPQ’s 𝛾 vs. s2t (Real)

estimator but involves more nodes than does our indoor crowd

model. In terms of hit rate and relative error, the results are similar

to the counterparts in synthetic data.

m1(t1)

m1(t2) m1(t3)

m1(t4)
m2(t1)

m2(t2)

m2(t3)

m2(t4)

d1

d2

d3

d4

d5

v1 v2

v3

v4

v5
t1’ t2’ t3’ t4’ t5’ t6’

t1 t2 t3 t4

t2

t2

t1 t3

t1 t3

t4

t4

d1 d3 d5

d1 d2 d4

d2 d4

𝜙1(m1)
𝑃 𝜙! = 0.556

𝜙2(m1)
𝑃 𝜙" = 0.444

𝜙(m2)

Time Index

Figure 25: An Example of the Trajectory Data

Effect of s2t. Figures 19 and 20 report on running time and

memory use of different FPQ searches. All incur more time and

memory costs as s2t increases. Compared to FPQ-PP and FPQ-NT,
FPQ and FPQ-G are more memory- and time-consuming. Compared

to the counterparts on synthetic data, the search costs are higher

since the shopping mall is of a larger scale. Referring to Figure 21,

FPQ-PP/FPQ-NT’s search accuracy deteriorates with a larger s2t.
The results in Figures 22 and 23 exhibit similar trends as those in

Figures 19 and 20. LCPQ-NT’s relative error is much higher than that

of LCPQ and LCPQ-PP, and it grows faster—more update timestamps

involved due to a greater s2t lead to less accurate cost estimates.

Compared to FPQ, LCPQ has higher relative errors as reported in

Figure 24. As defined, partition-passing contact is more sensitive to

the derived populations than the partition-passing time.

6.3 Summary of Results
First, in terms of running time and memory, the two approximate

searches perform better than the two exact counterparts as work-

loads reduce. Besides, Strategy NT costs less time and memory than

Strategy PP since NT further utilizes historical information to skip

timestamps. For hit rate and relative error, PP outperforms NT in that
NT skips many timestamps on the basis of PP, further decreasing
the accuracy of intermediate results.

Second, the two approximate searches for FPQ perform better

than those for LCPQ in terms of hit rate and error rate. The reason

is that the partition-passing time is less sensitive to the populations

compared to the partition-passing contact.

Third, a larger s2t leads to more time and memory consumptions

but worse result accuracy, while a larger TI exhibits an almost

opposite trend. In general, a larger s2t or a smaller TI means more

timestamps for which we need to derive populations. This is critical

to the cost estimation. More floors mean more doors/partitions to

explore, which lowers the search efficiency. More initial objects

render the population derivation spatially more uniform and thus

leads to a higher hit rate and lower relative error.

1375

Table 4: Comparison of Algorithms for FPQ and LCPQ on Real Data (best result in bold)
FPQ FPQ-G FPQ-PP FPQ-NT FPQ-GTG FPQ-A LCPQ LCPQ-G LCPQ-PP LCPQ-NT LCPQ-GTG LCPQ-A

Running Time (ms) 1900 1997 67 11 25559 53 992 1047 28 10 13895 45

Memory (KB) 367 393 61 1 669 2 307 341 30 1 568 2

Hit Rate (%) 99 99 99 98 99 98 88 88 88 67 88 90
Relative Error 1.86E-15 1.86E-15 1.86E-15 4.38E-14 1.86E-15 0.1492 0.0546 0.0546 0.0546 0.6606 0.0546 0.062

Fourth, for the two baselines, *PQ-GTG performs poorly on

efficiency because GTG contains more nodes to process. *PQ-A
seems good in terms of both efficiency and effectiveness. However,

a user of *PQ-A cannot obtain the path before departure because

*PQ-A needs to keep updating during expansion.

In general, the results show that the search algorithm with

Strategy PP performs best. It costs relatively less time and memory

and achieves good query result accuracy. Strategy NT applies well
to the cases where door flows are updated frequently. In such a case,

skipping some timestamps can improve efficiency without causing

excessive errors in population estimates. More experimental results

are available in an extended version [25].

7 RELATEDWORK
Outdoor Time-Dependent Routing. In this setting, public trans-

portation networks [5, 14, 36] and road networks [2, 3, 11, 29, 39]

are modeled as discrete and continuous time-dependent graphs,

respectively. Solutions for public transportation networks cannot

solve our problem because they are mainly for a time-dependent

graph with a static timetable for each station. On the other hand,

approaches for road networks do not work for indoor spaces

because road network models do not support entities like doors,

walls and rooms that together form a complex topology.

From an algorithmic perspective, the solutions for outdoor time-

dependent routing are mainly Dijkstra-based algorithms [5, 9, 11,

44], A
∗
algorithms [3, 29], label-based methods [28, 36, 40, 41]

(mainly for time-dependent graphs with timetables), and adaptive

approaches [2, 3, 13]. Most of these works do not consider crowds

that influence people’s routing choices.

Traffic-aware Routing. Some works [10, 29, 38] prepare the

traffic information by mining historical trajectory data and assume

it is known when routing. Shang et al. [30] study traffic-aware

fastest path query using a traffic-aware spatial network. Some

adaptive approaches [2, 3, 13] can also solve traffic-aware routing

problems through continuous reevaluation. Although these works

consider the traffic impact, none of them estimates the traffic in the

near future when processing a query.

Indoor Routing. Lu et al. [26] propose a distance-aware indoor

space model to facilitate indoor shortest path query. To speed

up distance-aware indoor pathfinding, Shao et al. [32] design

IP/VIP-tree that enable more aggressive pruning. VIP-tree also

supports trip planning based on neighbour expansion [31]. Feng

et al. [12] study indoor top-𝑘 keyword-aware routing query that

finds 𝑘 routes that have optimal ranking scores integrating keyword

relevance and distance cost. Other works [18, 23, 24, 27, 45] consider

more constraints for indoor routing. However, none of these

aforementioned works considers dynamic crowds that are essential

to LCPQ and FPQ.
Flows, Crowds and Density. Some existing works study the

estimation of flows [33, 34], crowds [6, 37], or dense regions [15, 16]

outdoors. However, they all fall short in indoor spaces mainly for

two reasons. First, indoor positioning techniques are usually RFID,

Wi-Fi, and Bluetooth, which make coarser-grained location data

than outdoor GPS data. Second, the indoor topology is so different

from the outdoor topology that indoor crowd modeling must

consider carefully the connectivity among doors and partitions.

Some existing works consider flows and densities in indoor venues.

Ahmed et al. [1] propose two graph-based indoor movement models

to map raw tracking records into records with object entry and

exit times in particular locations. Li et al. propose to find the top-

𝑘 popular indoor semantic locations [20] with the highest flow

values using probabilistic location samples, and the currently top-

𝑘 indoor dense regions [21] by considering the uncertainty of

online positioning reports. However, all these works [1, 20, 21]

are different from our work. First, our density analysis is based

on coarse-grained flow values reported at door counters, not the

point-based localization results count for individual moving objects.

Second, our work focuses on path planning in the presence of

indoor crowds, while the previous works aim to find interesting

location patterns.

8 CONCLUSION AND FUTUREWORK
We study two types of crowd-aware indoor path planning queries.

The FPQ returns a path with the shortest travel time in the presence

of crowds; the LCPQ returns a path encountering the least objects

en route. To solve FPQ and LCPQ, we design a unified framework

that consists of 1) an indoor crowd model that organizes indoor

topology and captures indoor flows and densities; 2) a time-evolving

population estimator that derives future time-dependent flows

and populations for relevant partitions; 3) two exact and two

approximate query processing algorithms that each can process

both query types. We conduct extensive experiments to evaluate

our proposals. The results demonstrate the efficiency and scalability

of the proposals and disclose the performance differences among

all four algorithms.

There exist several directions for future research. First, it is

interesting to consider other crowd models, e.g., learning crowd

distributions and functions from historical data. Also, it is relevant

to further speed up query processing by using an index, e.g.,

combining the object layer in the composite indoor index [42, 43]

with a modified IP/VIP-Tree [32] whose distance matrices are

extended with time attributes. Last but not least, it is possible to

extend our proposals to support continuous monitoring of the

fastest or least crowded paths.

ACKNOWLEDGMENTS
This work was supported by IRFD (No. 8022-00366B), ARC (No.

FT180100140 and DP180103411), the Key R&D Program (Zhejiang,

China) (No. 2021C009) and NSFC (No. 62050099). Huan Li and Hua

Lu are the corresponding authors.

1376

REFERENCES
[1] Tanvir Ahmed, Torben Bach Pedersen, and Hua Lu. 2017. Finding dense

locations in symbolic indoor tracking data: modeling, indexing, and processing.

GeoInformatica 21, 1 (2017), 119–150.
[2] Mostafa K Ardakani and Lu Sun. 2012. Decremental algorithm for adaptive

routing incorporating traveler information. COR 39, 12 (2012), 3012–3020.

[3] Mostafa K Ardakani and Madjid Tavana. 2015. A decremental approach with the

A* algorithm for speeding-up the optimization process in dynamic shortest path

problems. Measurement 60 (2015), 299–307.
[4] Marllyn Tuley Boswell et al. 1966. Estimating and testing trend in a stochastic

process of Poisson type. AMS 37, 6 (1966), 1564–1573.
[5] Gerth Stølting Brodal and Riko Jacob. 2004. Time-dependent networks as models

to achieve fast exact time-table queries. ENTCS 92 (2004), 3–15.
[6] Giovanna Castellano, Ciro Castiello, Corrado Mencar, and Gennaro Vessio. 2020.

Crowd detection in aerial images using spatial graphs and fully-convolutional

neural networks. IEEE Access 8 (2020), 64534–64544.
[7] Prem C Consul and Gaurav C Jain. 1973. A generalization of the Poisson

distribution. Technometrics 15, 4 (1973), 791–799.
[8] Javier Contreras, Rosario Espinola, Francisco J Nogales, and Antonio J Conejo.

2003. ARIMA models to predict next-day electricity prices. T-PWRS 18, 3 (2003),
1014–1020.

[9] Kenneth L Cooke and Eric Halsey. 1966. The shortest route through a network

with time-dependent internodal transit times. JMAA 14, 3 (1966), 493–498.

[10] Ugur Demiryurek, Farnoush Banaei-Kashani, Cyrus Shahabi, and Anand

Ranganathan. 2011. Online computation of fastest path in time-dependent spatial

networks. In SSTD. 92–111.
[11] Bolin Ding, Jeffrey Xu Yu, and Lu Qin. 2008. Finding time-dependent shortest

paths over large graphs. In EDBT. 205–216.
[12] Zijin Feng, Tiantian Liu, Huan Li, Hua Lu, Lidan Shou, and Jianliang Xu. 2020.

Indoor top-k keyword-aware routing query. In ICDE. 1213–1224.
[13] Hector Gonzalez, Jiawei Han, Xiaolei Li, Margaret Myslinska, and John Paul

Sondag. 2007. Adaptive fastest path computation on a road network: a traffic

mining approach. In VLDB. 794–805.
[14] Randolph W Hall. 1986. The fastest path through a network with random time-

dependent travel times. Transp. Sci. 20, 3 (1986), 182–188.
[15] Xing Hao, Xiaofeng Meng, and Jianliang Xu. 2008. Continuous density queries

for moving objects. In MobiDE. 1–7.
[16] Xuegang Huang and Hua Lu. 2007. Snapshot density queries on location sensors.

In MobiDE. 75–78.
[17] Christian S Jensen, Hua Lu, and Bin Yang. 2009. Graph model based indoor

tracking. In MDM. 122–131.

[18] Dae-Ho Kim, Beakcheol Jang, and Jong Wook Kim. 2018. Privacy-preserving top-

𝑘 route computation in indoor environments. IEEE Access 6 (2018), 56109–56121.
[19] Huan Li, Hua Lu, Feichao Shi, Gang Chen, Ke Chen, and Lidan Shou. 2018.

TRIPS: A system for translating raw indoor positioning data into visual mobility

semantics. PVLDB 11, 12 (2018), 1918–1921.

[20] Huan Li, Hua Lu, Lidan Shou, Gang Chen, and Ke Chen. 2018. Finding most

popular indoor semantic locations using uncertain mobility data. TKDE 31, 11

(2018), 2108–2123.

[21] Huan Li, Hua Lu, Lidan Shou, Gang Chen, and Ke Chen. 2018. In search of indoor

dense regions: An approach using indoor positioning data. TKDE 30, 8 (2018),

1481–1495.

[22] Yuxuan Liang, Songyu Ke, Junbo Zhang, Xiuwen Yi, and Yu Zheng. 2018. Geoman:

Multi-level attention networks for geo-sensory time series prediction. In IJCAI.
3428–3434.

[23] Liu Liu, Sisi Zlatanova, Bofeng Li, Peter van Oosterom, Hua Liu, and Jack Barton.

2019. Indoor routing on logical network using space semantics. ISPRS INT J
GEO-INF 8, 3 (2019), 126.

[24] Tiantian Liu, Zijin Feng, Huan Li, Hua Lu, Muhammad Aamir Cheema, Hong

Cheng, and Jianliang Xu. 2020. Shortest path queries for indoor venues with

temporal variations. In ICDE. 2014–2017.
[25] Tiantian Liu, Huan Li, Hua Lu, Muhammad Aamir Cheema, and Lidan Shou. 2021.

Towards crowd-aware indoor path planning (extended version). arXiv preprint
arXiv:2104.05480 (2021).

[26] Hua Lu, Xin Cao, and Christian S Jensen. 2012. A foundation for efficient indoor

distance-aware query processing. In ICDE. 438–449.
[27] Wenyi Luo, Peiquan Jin, and Lihua Yue. 2016. Time-constrained sequenced route

query in indoor spaces. In APWeb. 129–140.
[28] Karl Nachtigall. 1995. Time depending shortest-path problems with applications

to railway networks. EJOR 83, 1 (1995), 154–166.

[29] Giacomo Nannicini, Daniel Delling, Dominik Schultes, and Leo Liberti. 2012.

Bidirectional A* search on time-dependent road networks. Networks 59, 2 (2012),
240–251.

[30] Shuo Shang, Hua Lu, Torben Bach Pedersen, and Xike Xie. 2013. Finding traffic-

aware fastest paths in spatial networks. In SSTD. 128–145.
[31] Zhou Shao, Muhammad Aamir Cheema, and David Taniar. 2018. Trip planning

queries in indoor venues. Comput. J. 61, 3 (2018), 409–426.
[32] Zhou Shao, Muhammad Aamir Cheema, David Taniar, and Hua Lu. 2016. VIP-tree:

an effective index for indoor spatial queries. PVLDB 10, 4 (2016), 325–336.

[33] Cong Tang, Jingru Sun, Yichuang Sun, Mu Peng, and Nianfei Gan. 2020. A general

traffic flow prediction approach based on spatial-temporal graph attention. IEEE
Access 8 (2020), 153731–153741.

[34] Yufei Tao, George Kollios, Jeffrey Considine, Feifei Li, and Dimitris Papadias.

2004. Spatio-temporal aggregation using sketches. In ICDE. 214–225.
[35] Mark R Virkler and Sathish Elayadath. 1994. Pedestrian speed-flow-density

relationships. Number HS-042 012.

[36] Sibo Wang, Wenqing Lin, Yi Yang, Xiaokui Xiao, and Shuigeng Zhou. 2015.

Efficient route planning on public transportation networks: A labelling approach.

In SIGMOD. 967–982.
[37] Shunzhou Wang, Yao Lu, Tianfei Zhou, Huijun Di, Lihua Lu, and Lin Zhang.

2020. SCLNet: Spatial context learning network for congested crowd counting.

Neurocomputing 404 (2020), 227–239.

[38] Yong Wang, Guoliang Li, and Nan Tang. 2019. Querying shortest paths on time

dependent road networks. PVLDB 12, 11 (2019), 1249–1261.

[39] Victor Junqiu Wei, Raymond Chi-Wing Wong, and Cheng Long. 2020.

Architecture-intact oracle for fastest path and time queries on dynamic spatial

networks. In SIGMOD. 1841–1856.
[40] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. 2014.

Path problems in temporal graphs. PVLDB 7, 9 (2014), 721–732.

[41] Huanhuan Wu, Yuzhen Huang, James Cheng, Jinfeng Li, and Yiping Ke. 2016.

Reachability and time-based path queries in temporal graphs. In ICDE. 145–156.
[42] Xike Xie, Hua Lu, and Torben Bach Pedersen. 2013. Efficient distance-aware

query evaluation on indoor moving objects. In ICDE. 434–445.
[43] Xike Xie, Hua Lu, and Torben Bach Pedersen. 2014. Distance-aware join for

indoor moving objects. TKDE 27, 2 (2014), 428–442.

[44] Ye Yuan, Xiang Lian, Guoren Wang, Yuliang Ma, and Yishu Wang. 2019.

Constrained shortest path query in a large time-dependent graph. PVLDB 12, 10

(2019), 1058–1070.

[45] Yan Zhou, Hong Chen, Yueying Huang, Yunxin Luo, Yeting Zhang, and Xiao Xie.

2018. An indoor route planning method with environment awareness. In IGARSS.
2906–2909.

1377

