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ABSTRACT
High-quality labels are expensive to obtain for many machine learn-

ing tasks, such as medical image classification tasks. Therefore,

probabilistic (weak) labels produced by weak supervision tools are

used to seed a process in which influential samples with weak labels

are identified and cleaned by several human annotators to improve

the model performance. To lower the overall cost and computa-

tional overhead of this process, we propose a solution called CHEF

(CHEap and Fast label cleaning), which consists of the following

three components. First, to reduce the cost of human annotators, we

use INFL, which prioritizes themost influential training samples for

cleaning and provides cleaned labels to save the cost of one human

annotator. Second, to accelerate the sample selector phase and the

model constructor phase, we use Increm-INFL to incrementally pro-
duce influential samples, and DeltaGrad-L to incrementally update

the model. Third, we redesign the typical label cleaning pipeline so

that human annotators iteratively clean smaller batch of samples

rather than one big batch of samples. This yields better overall

model performance and enables possible early termination when

the expected model performance has been achieved. Extensive ex-

periments show that our approach gives good model prediction

performance while achieving significant speed-ups.
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1 INTRODUCTION
There is a general consensus that the success of advanced machine

learning models depends on the availability of extremely large

training sets with high-quality labels. Unfortunately, obtaining

high-quality labels may be prohibitively expensive. For example,

labeling medical images typically requires the effort of experts

with domain knowledge. To produce labels at large scale with low

cost, weak supervision tools—such as Snorkel [31]—can be used

to automatically generate probabilistic labels (or weak labels) for
unlabeled training samples by leveraging labeling functions [31].
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Figure 1: The iterative pipeline of cleaning uncertainties
from the labels of training set.

It has been shown in [2, 27, 34], however, that imperfect labeling

functions can produce inferior probabilistic labels, thus hurting the

downstream model quality. Therefore, it is necessary to perform

additional cleaning operations to clean such label uncertainties [27].

The label cleaning process is typically iterative [21, 24], and re-

quires multiple rounds (see Figure 1, loop labeled 1 ). First, given

a cleaning budget 𝐵, the top-𝐵 influential training samples with

probabilistic labels are selected (the sample selector phase). Second,
for those selected samples, cleaned labels are provided by human

annotators (the annotation phase). Third, the MLmodel is calculated

using the updated training set (the model constructor phase), and
returned to the user. If the resulting model performance is not good

enough, the process is repeated with an additional budget 𝐵′
. Other-

wise, it is deployed. Note that since each of these phases may be per-

formed repeatedly, it is important that they be as efficient as possible.

It is also noteworthy that for some applications—such as the medi-

cal image classification task—it is essential to have multiple human

annotators for label cleaning to alleviate their labeling errors [17]

in the annotation phase, thus incurring substantial time overhead

and financial cost. In this paper, we propose a solution called
CHEF (CHEap and Fast label cleaning), to reduce the time
overhead and cost of the label cleaning pipeline and simul-
taneously enhance the overall model performance. Details

of the overall design of CHEF are given next.

Sample selector phase. Finding the most influential training

samples can be done with several different influence measures, e.g.,

the influence function [20], the Data Shapley values [18], the noisy

label detection algorithms [9, 16], the active learning technique

[33] or using a bi-level optimization solution [41]. Unfortunately,

these do not work well for cleaning weak labels. We therefore de-

velop a variant of the influence function called INFL which can

simultaneously detect the most influential samples and suggest
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cleaned labels. One key technical challenge in the efficient imple-

mentation of INFL concerns the explicit evaluation of gradients

on every training sample. We address this challenge by devel-
oping Increm-INFL, which removes uninfluential training
samples early and can thus incrementally recommend the
most influential training samples to human annotators.

Human annotation phase. After influential samples are selected,

the next step is for human annotators to clean the labels of those

samples. Recall thatmultiple human annotators may be used to inde-

pendently label each training sample, and inconsistencies between

the labels are resolved, e.g., by majority vote [17]. To reduce the
cost of the human annotation phase, we consider the sug-
gested clean labels from the sample selector phase as one al-
ternative labeler, which can be combined with results pro-
vided by the human annotators to reduce annotation cost.

Model constructor phase. In previous work [38], we developed

a provenance-based algorithm called DeltaGrad for incrementally
updating model parameters after the deletion or addition of a small

subset of training samples, and showed that it was significantly

faster than recalculating the model from scratch. Since the result

of the human annotation phase can be regarded as the deletion of

top-𝐵 samples with probabilistic labels, and insertion of those same

samples with cleaned labels, we can adapt DeltaGrad for this setting.

This algorithm is called DeltaGrad-L. To accelerate the model
constructor phase, rather than retraining from scratch after
cleaning the labels of a small set of training samples, we in-
crementally update the model using DeltaGrad-L.

Redesign of the cleaning pipeline. The final contribution of this

paper, which is enabled by the reduced cost of the sample selection,

human annotation, and model construction phases, is a re-design

of the pipeline in Figure 1 (see the loop 2 ). Rather than providing

all top-𝐵 influential training samples (and suggesting how to fix

the label uncertainty) at once, the sample selector gives the hu-

man annotator the next top-𝑏 influential training samples, where

𝑏 is smaller than 𝐵 and is specified by the user. The model is then

refreshed using the cleaned labels, and the next top-𝑏 samples to

be given to the human annotator are calculated. This continues

until the initial budget 𝐵 has been exhausted or the expected pre-

diction performance is reached (thus terminating early). This can
not only improve the overall model performance, but also
lead to early termination, thus further saving the cost of hu-
man annotation. Note that to enable incremental computation by

Increm-INFL and DeltaGrad-L, some “provenance” information is

necessary, and can be pre-computed offline in an Initialization step
prior to the start of loop 2 .

We demonstrate the effectiveness of CHEF using several crowd-

sourced datasets as well as real medical image datasets. Our experi-

ments show that CHEF achieves up to 54.7x speed-up in the sample

selector phase, and up to 7.5x speed-up in the model constructor

phase. Furthermore, by using INFL and smaller batch sizes 𝑏, the

overall model quality can be improved.

Summarizing, the contributions of this paper include:

• A solution called CHEF which can significantly reduce the

overall cost of label cleaning by 1) reducing the cost of the

Sample selector phase, the Human annotation phase and the

Model constructor phase respectively and 2) redesigning the

label cleaning pipeline to enable better model performance

and early stopping in the human annotation phase.

• Extensive experimentswhich show the effectiveness of CHEF

on real crowd-sourced datasets and medical image datasets.

The rest of this paper is organized as follows. In Section 2, we

summarize related work. Preliminary notation, definitions and as-

sumptions are given in Section 3, followed by our algorithms, INFL,

Increm-INFL and DeltaGrad-L in Section 4. Experimental results

are discussed in Section 5, and we conclude in Section 6.

2 RELATEDWORK
Incremental updates on ML models In the past few years, sev-

eral approaches for incrementally maintaining different types of

models have emerged [5, 11, 20, 38, 39], which address important

practical problems such as GPDR [32] and training sample valuation

[10]. The DeltaGrad-L algorithm in the model constructor phase is

adapted from our DeltaGrad algorithm [38], which addresses the

problem of incrementally updating strongly convex models after a

small subset of training samples are deleted or added. Note that this

problem is related to the classical materialized view maintenance
problem as mentioned in [39], if we consider ML models as views.

Data cleaning for MLmodels Diagnosing and cleaning errors
or noise in training samples has attracted considerable attention

[9, 16], and is typically addressed iteratively [1, 21, 24]. For exam-

ple, the authors of [16] observed that the noisily labeled samples

were memorized by the model in the overfitting phase, which can

be detected through transferring the model status back to the un-

derfitting phase. [9] identifies and fixes the noisy labels by jointly

analyzing the probability that one noisy label is flipped by the hu-

man annotators and how this label update influences the model

performance. However, it explicitly assumes that the noisy labels

are either 1 or 0, and is therefore not applicable for probabilistic la-

bels. The approach in [21] detects errors in both feature values and

labels. However, it explicitly assumes that the uncleaned samples

are harmful and thus excluded in the training process. In contrast,

we follow the principle of [31] by “including” the training samples

with uncertain labels in the training phase.

Detecting the most influential training samples with un-
certainties As discussed in [1], it is important to prioritize the

most influential training samples for cleaning. This can depend

on various influence measures, e.g., the uncertainty-based mea-

sures in active learning [33], the influence function [20], the data

Shapley value [18], the training loss [14, 16], etc. However, to our

knowledge, none of these techniques can be used to automatically

suggest possibly cleaned labels, apart from [41]. The applicability

of [41] is also limited due to its poor scalability, and some of the

above methods (including [41]) are not applicable in the presence

of probabilistic labels and their regularization.

3 PRELIMINARIES
In this section, we introduce essential notation and assumptions,

and then describe the influence function and DeltaGrad.

3.1 Notation
A 𝐶-class classification task is a classification task in which the

number of classes is 𝐶 . Suppose that the goal is to construct a
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machine learning model on a training set,Z = Z𝑑

⋃︁Z𝑝 , in which

Z𝑑 = {z𝑖 }𝑁𝑑

𝑖=1
= {(x𝑖 , 𝑦𝑖 )}𝑁𝑑

𝑖=1
and Z𝑝 = {z̃𝑖 }

𝑁𝑝

𝑖=1
= {(x̃𝑖 , �̃�𝑖 )}

𝑁𝑝

𝑖=1
,

denoting a set of 𝑁𝑑 training samples with deterministic labels

and 𝑁𝑝 training samples with probabilistic labels, respectively. A

probabilistic label, �̃�𝑖 , is represented by a probabilistic vector of

length𝐶 , in which the value in the 𝑐𝑡ℎ entry (𝑐 = 1, 2, . . . ,𝐶) denotes

the probability that z̃𝑖 belongs to the class 𝑐 . The performance of the

model constructed onZ is then validated on a validation dataset

Z
val

and tested on a test datasetZtest. Note that the size ofZval
and

Ztest are typically small, consisting of samples with ground-truth

labels or deterministic labels verified by the human annotators. Due

to the possibly negative effect brought by the uncleaned training

samples with probabilistic labels, it is reasonable to regularize those

samples in the following objective function (e.g. see [35]):

𝐹 (w) = 1

𝑁
[
∑︂𝑁𝑑

𝑖=1
𝐹 (w, z𝑖 ) +

∑︂𝑁𝑝

𝑖=1
𝛾𝐹 (w, z̃𝑖 ) ] (1)

In the formula above, we usew to represent the model parameter,

𝐹 (w, z) to denote the loss incurred on a sample z with the model

parameter w and 𝛾 (0 < 𝛾 < 1, specified by users) to denote the

weight on the uncleaned training samples. Furthermore, the first

order gradient of this loss can be denoted by ∇w𝐹 (w, z), and the

second order gradient (i.e. the Hessian matrix) by H(w, z). We

further use ∇w𝐹 (w) and H(w) to denote the first order gradient
and the Hessian matrix averaged over all weighted training samples.

To optimize Equation (1), stochastic Gradient Descent (SGD)

can be applied. At each SGD iteration 𝑡 , one essential step is to

evaluate the first-order gradients of a randomly sampled mini-batch

of training samples, ℬ𝑡 (we denote the size ofℬ𝑡 as |ℬ𝑡 |), i.e.:

∇w𝐹 (w,ℬ𝑡 ) =
1

|ℬ𝑡 |
∑︂

z∈ℬ𝑡
𝛾z∇w𝐹 (w, z) ,

in which 𝛾𝑧 is 1 if 𝑧 ∈ Z𝑑 and 𝛾 otherwise.

Plus, since loop 2 in Figure 1 may be repeated for multiple

rounds, we use Z (𝑘)
to denote the updated training dataset after 𝑘

rounds and w(𝑘)
to represent the model constructed on Z (𝑘)

.

3.2 Assumptions
We make two assumptions: the strong convexity assumption, and
the small cleaning budget assumption.

Strong convexity assumption Following [38], we focus on the

models satisfying 𝜇−strong convexity, meaning that the minimal

eigenvalue of each Hessian matrix H(w, z) is always greater than
a non-negative constant 𝜇 for arbitrary w and z. One such model

is the logistic regression model with L2 regularization.

Small cleaning budget assumption Since manually cleaning

labels is time-consuming and expensive, we assume that the cleaning
budget 𝐵 is far smaller than the size of training set,Z.

3.3 Influence function
The influence function method [20] is originally proposed to esti-

mate how the prediction performance on one test sample ztest is
varied if we delete one training sample z, or add an infinitely small
perturbation on the feature of z. This is formulated as follows:

I
del

(z) = −∇w𝐹 (w, ztest)⊤H−1 (w) ∇w𝐹 (w, z)

Ipert (z) = −∇w𝐹 (w, ztest)⊤H−1 (w) ∇x∇w𝐹 (w, z) .

We can then leverage I
del

(z) and Ipert (z)𝛿 to approximate the

additional errors incurred on the test sample ztest after deleting the
training sample z, or perturbing the feature of z by 𝛿 .

As [20] indicates, by evaluating the training sample influence

with the above influence function, the “harmful” training samples

on the model prediction (i.e. the one with negative influence) can

be distinguished from the “helpful” ones (i.e. the one with positive

influence). We can then prioritize the most “harmful” training sam-

ples with probabilistic labels for cleaning. In practice, due to the

invisibility of the test samples in most cases, the validation set is

used instead, leading to the following modified influence functions:

I
del

(z) = −∇w𝐹 (w,Zval
)⊤H−1 (w) ∇w𝐹 (w, z) (2)

Ipert (z) = −∇w𝐹 (w,Zval
)⊤H−1 (w) ∇x∇w𝐹 (w, z) (3)

The two formulas above also follow the modified influence function

in [41] which uses a set of trusted validation samples instead of test

samples to estimate the influence of each training sample.

3.4 DeltaGrad
As introduced in [38], DeltaGrad is used to incrementally update

the parameters of a strongly convex model after the removal of a

small subset of training samples, R (|R | ≪ 𝑁 ), and the addition

of another small subset of training samples, A (|A| ≪ 𝑁 ), on

the training dataset Z; both R and A can be empty. Before the

above modifications on the training datasetZ, suppose we derive

the gradients on a randomly sampled mini-batch ℬ𝑡 and calculate

the model parameter, w𝑡 , at the 𝑡𝑡ℎ SGD iteration, Then after R is

deleted and A is added, to obtain the updated model parameter w𝐼
𝑡

at the 𝑡𝑡ℎ SGD iteration, it is essential to evaluate the gradients on

the following updated mini-batch ℬ
′
𝑡 , i.e., (ℬ𝑡 − R) ∪ A𝑡 . Here,

ℬ𝑡 − R represents the remaining training samples inℬ𝑡 after R is

deleted, while A𝑡 denotes a randomly sampled mini-batch from A.

Note thatℬ
′
𝑡 can be further rewritten as (ℬ𝑡 − (ℬ𝑡

⋂︁R)) ∪ A𝑡 .

As a result, the gradient on ℬ
′
𝑡 can be evaluated as follows:

∇w𝐹 (w𝐼
𝑡 ,ℬ

′
𝑡 ) =

1

|ℬ′
𝑡 |

[︁
|ℬ𝑡 |∇w𝐹 (w𝐼

𝑡 ,ℬ𝑡 )

−|ℬ𝑡 ∩ R |∇w𝐹 (w𝐼
𝑡 ,ℬ𝑡 ∩ R) + |A𝑡 |∇w𝐹 (w𝐼

𝑡 , A𝑡 )
]︁
,

(4)

The latter two gradients in the above formula, ∇w𝐹 (w𝐼
𝑡 ,A𝑡 ) and

∇w𝐹 (w𝐼
𝑡 ,ℬ𝑡 ∩ R), can be efficiently calculated due to the small

size of R andA. As a result, computing ∇w𝐹 (w𝐼
𝑡 ,ℬ𝑡 ) becomes the

dominant overhead in evaluating Equation (4) when the mini-batch

size is large. Hence, DeltaGrad aims to reduce the overhead of this

term by incrementally computing it using the Cauchy-mean value

theorem [22] with the approximate Hessian matrix, B𝑡 , as follows:

∇w𝐹 (w𝐼
𝑡 ,ℬ𝑡 ) ≈ B𝑡 (w𝐼

𝑡 −w𝑡 ) + ∇w𝐹 (w𝑡 ,ℬ𝑡 ) . (5)

in which, the product B𝑡 (w𝐼
𝑡 −w𝑡 ) is calculated using the L-BFGS

algorithm [28] while the gradient term ∇w𝐹 (w𝑡 ,ℬ𝑡 ) is cached
during the training phase on the original training datasetZ.

As described in [38], although this approximation is faster than

computing ∇w𝐹 (w𝐼
𝑡 ,ℬ𝑡 ) explicitly, the approximation errors are

not negligible. To balance between the approximation error and

efficiency in DeltaGrad, ∇w𝐹 (w𝐼
𝑡 ,ℬ𝑡 ) is explicitly evaluated in

the first 𝑗0 SGD iterations and every 𝑇0 SGD iterations afterwards,

where 𝑇0 and 𝑗0 are pre-specified hyper-parameters. Note that the

evaluation of Equation (5) also requires to cache and reuse the
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last𝑚0 explicitly computed gradients, in which𝑚0 is also a hyper-

parameter. In [38], 𝑗0, 𝑇0 and𝑚0 are referred to as the number of

“burn-in” iterations, the period and the history size, respectively.

We refer readers to [38] for more details.

4 METHODOLOGY
In this section, we describe the system design in detail for the

sample selector phase (Section 4.1), the model constructor phase

(Section 4.2) and the human annotation phase (Section 4.3).

4.1 The sample selector phase
Sample selection accomplishes two things: 1) it calculates the train-

ing sample influence using INFL in order to prioritize the most influ-

ential uncleaned training samples for cleaning, and simultaneously

suggests possibly cleaned labels for them (see Section 4.1.1); and 2)

it filters out uninfluential training samples early using Increm-INFL

at each round of loop 2 (see Section 4.1.2).

4.1.1 INFL. The goal of INFL is to calculate the influence of an

uncleaned training sample, z̃, by estimating how much additional

error will be incurred on the validation set Z
val

if 1) the proba-

bilistic label of z̃ is updated to some deterministic label; and 2) z̃ is
up-weighted to 1 after it is cleaned. To capture this intuition, we

propose the following modified influence function
1
:

Ipert (z̃, 𝛿𝑦, 𝛾 ) ≈ 𝑁 · (𝐹 (w𝑈 ,Z
val

) − 𝐹 (w,Z
val

))

= −∇w𝐹 (w,Zval
)⊤H−1 (w) [∇𝑦∇w𝐹 (w, z̃)𝛿𝑦 + (1 − 𝛾 ) ∇w𝐹 (w, z̃) ],

(6)

in which 𝛿𝑦 denotes the difference between the original probabilis-

tic label of z̃ and one deterministic label (ranging from 1 to 𝐶) and

w𝑈
denotes the updated model parameters after the label is cleaned

and z̃ is up-weighted. To calculate 𝛿𝑦 , the deterministic label is first

converted to its one-hot representation, i.e. a vector of length 𝐶

taking 1 in the 𝑐𝑡ℎ entry (𝑐 = 1, 2, . . . ,𝐶) for the label 𝑐 and taking 0
in all other entries (recall that 𝐶 represents the number of classes).

To recommend the most influential uncleaned training samples

to the human annotators and suggest possibly cleaned labels, we 1)

explicitly evaluate Equation (6) for each uncleaned training sample

for all possible deterministic labels, 2) prioritize the most “harm-

ful” training samples for cleaning, i.e. the ones with the smallest

negative influence values after their labels are updated to some
deterministic labels, and 3) suggest those deterministic labels as the

potentially cleaned labels for the human annotators.

Comparison to [41] As discussed earlier, DUTI [41] can also

recommend the most influential training samples for cleaning and

suggest possibly cleaned labels, which is accomplished through solv-

ing a bi-level optimization problem. However, solving this problem

is computationally challenging, and therefore this method cannot

be used in real-time over multiple rounds (i.e. in loop 2 ).

Computing ∇𝑦∇w𝐹 (w, z̃) At first glance, it seems that the term

∇𝑦∇w𝐹 (w, z̃) cannot be calculated using auto-differentiation pack-

ages such as Pytorch, since it involves the partial derivative with

respect to the label of z̃. However, we notice that this partial deriv-
ative can be explicitly calculated when the loss function 𝐹 (w, z̃) is
the cross-entropy function, which is the most widely used objective

1
The derivation of this formula is similar to that of the original influence function [20],

which is included in the extended technical report [40]

function in the classification task. Specifically, the instantiation of

the loss function 𝐹 (w, z̃) into the cross-entropy function becomes:

𝐹 (w, z̃) = −
∑︂𝐶

𝑘=1
�̃� (𝑘 )

log(𝑝 (𝑘 ) (w, x̃)), (7)

In this formula above, �̃� = [�̃� (1) , �̃� (2) , . . . , �̃� (𝐶) ] is the label of an
input sample z̃ = (x̃, �̃�) and [𝑝 (1) (w, x̃), 𝑝 (2) (w, x̃), . . . , 𝑝 (𝐶) (w, x̃)]
represents the model output given this input sample, which is a

probabilistic vector of length 𝐶 depending on the model parameter

w and the input feature x̃. Then we can observe that Equation

(7) is a linear function of the label �̃�. Hence, ∇𝑦∇w𝐹 (w, z̃) can be

explicitly evaluated as:

∇𝑦∇w𝐹 (w, z̃) = [−∇w log(𝑝 (1) (w, x̃)), . . . ,−∇w log(𝑝 (𝐶 ) (w, x̃)) ] (8)

As a result, each −∇w log(𝑝 (𝑐) (w, x̃)), 𝑐 = 1, 2, . . . ,𝐶 can be calcu-

lated with the auto-differentiation package.

Computing H−1 (w) Recall thatH(w) denotes the Hessian ma-

trix averaged on all training samples. Rather than explicitly cal-

culating its inverse, by following [20], we leverage the conjugate

gradient method [25] to approximately compute the Matrix-vector

product ∇w𝐹 (w,Zval
)⊤H−1 (w) in Equation (6).

4.1.2 Increm-INFL. The goal of using INFL is to quantify the in-

fluence of all uncleaned training samples and select the Top-𝑏 in-

fluential training samples for cleaning. But in loop 2 , this search

space could be reduced by employing Increm-INFL. Specifically,

other than the initialization step, we can leverage Increm-INFL to

prune away most of the uninfluential training samples early in the

following rounds, thus only evaluating the influence of a small set

of candidate influential training samples in those rounds. Suppose

this set of samples is denoted asZ (𝑘)
𝑖𝑛𝑓

for the round𝑘 ; the derivation

of this set is outlined in Algorithm 1. As this algorithm indicates,

the first step is to effectively estimate the maximal perturbations of

Equation (6) at the 𝑘𝑡ℎ cleaning round for each uncleaned training

sample z̃ and each possible label change 𝛿𝑦 (see line 2), which are

assumed to take I0 (z̃, 𝛿𝑦, 𝛾) (see Theorem 1 for its definition) as

the perturbation center. Then the first part ofZ (𝑘)
𝑖𝑛𝑓

consists of all

the training samples which produce the Top-𝑏 smallest values of

I0 (z̃, 𝛿𝑦, 𝛾) with a given 𝛿𝑦 (see line 6). For those 𝑏 smallest values,

we also collect the maximal value of their upper bound, 𝐿. We then

include in Z (𝑘)
𝑖𝑛𝑓

all the remaining training samples whose lower

bound, is smaller than 𝐿 with certain 𝛿𝑦 (see line 5). This indicates

the possibility of those samples becoming the Top-𝑏 influential

samples.

As described above, it is critical to estimate the maximal pertur-

bation of Equation (6) for each uncleaned training sample, z̃, and
each label perturbation, 𝛿𝑦 , which requires the following theorem.

Theorem 1. For a training sample z̃ = (x̃, �̃�) which has not been
cleaned before the 𝑘𝑡ℎ round of loop 2 , the following bounds hold
for Equation (6) evaluated on the training sample z̃ and a label per-
turbation 𝛿𝑦 :

| − I (𝑘 )
pert (z̃, 𝛿𝑦, 𝛾 ) − I0 (z̃, 𝛿𝑦, 𝛾 ) −

1 − 𝛾

2

𝑒1𝜇 −
𝐶∑︂
𝑗=1

𝛿𝑦,𝑗𝑒1 ∥H( 𝑗 ) (w(𝑘 ) , z̃) ∥ |

≤
∑︂𝐶

𝑗=1
|𝛿𝑦,𝑗 |𝑒2 ∥H( 𝑗 ) (w(𝑘 ) , z̃) ∥ + 1 − 𝛾

2

𝑒2𝜇,
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in which,
I0 (z̃, 𝛿𝑦, 𝛾) = v⊤ [∇𝑦∇w𝐹 (w(0) , z̃)𝛿𝑦 + (1 − 𝛾)∇w𝐹 (w(0) , z̃)], v⊤ =

−∇w𝐹 (w(𝑘) ,Zval)⊤H−1 (w(𝑘) ), 𝛿𝑦 = [𝛿𝑦,1, 𝛿𝑦,2, . . . , 𝛿𝑦,𝐶 ],
H( 𝑗) (w(𝑘) , z̃) =

∫
1

0
−∇2

w log(𝑝 ( 𝑗) (w(0) + 𝑠 (w(𝑘) − w(0) ), x̃))𝑑𝑠 ,
𝜇 = ∥

∫
1

0
H(w(0) + 𝑠 (w(𝑘) − w(0) ), z̃)𝑑𝑠∥, and

𝑒1 = v⊤ (w(𝑘) − w(0) ), 𝑒2 = ∥v∥∥w(𝑘) − w(0) ∥.

To reduce the time overhead, the integrated Hessian matrices,∫
1

0
H(w(0) + 𝑠 (w(𝑘) −w(0) ), z̃)𝑑𝑠 and H( 𝑗) (w(𝑘) , z̃), are approxi-

mated by their counterparts evaluated at w(0)
, i.e., H(w(0) , z̃) and

−∇2

w log(𝑝 ( 𝑗) (w(0) , x̃)). As a consequence, the bounds can be cal-

culated by applying several linear algebraic operations on v, w(𝑘)
,

w(0)
and some pre-computed formulas, i.e., the norm of the Hessian

matrices, ∥−∇2

w log(𝑝 ( 𝑗) (w(0) , x̃))∥ and ∥H(w(0) , z̃)∥, and the gra-
dients, ∇𝑦∇w𝐹 (w(0) , z̃) and ∇w𝐹 (w(0) , z̃), which can be computed

as “provenance” information in the initialization step. Note that

pre-computing ∇𝑦∇w𝐹 (w(0) , z̃) and ∇w𝐹 (w(0) , z̃) is quite straight-
forward by leveraging Equation (8). Then the remaining question

is how to compute ∥ − ∇2

w log(𝑝 ( 𝑗) (w(0) , x̃))∥ and ∥H(w(0) , z̃)∥
efficiently without explicitly evaluating the Hessian matrices. Since

those two terms calculate the norm of one Hessian matrix, we there-

fore only take one of them as a running example to describe how

to compute them in a feasible way, as shown below.

Pre-computing ∥H(w(0) , z̃)∥ Since 1) a Hessian matrix is sym-

metric (due to its positive definiteness); and 2) the L2-norm of a

symmetric matrix is equivalent to its eigenvalue with the largest

magnitude [26], the L2 norm of one Hessian matrix is thus equiva-

lent to its largest eigenvalue. To evaluate this eigenvalue, we use the

Power method [12], which is discussed in the extended technical

report [40].

Time complexity of Increm-INFL By assuming that there

are 𝑛 samples left after Increm-INFL is used, the dimension of

vectorized w is𝑚, and the running time of computing the vector v
and the gradient (∇𝑦∇w𝐹 (w, z̃) or ∇w𝐹 (w, z̃)) is denoted by 𝑂 (𝑣)
and 𝑂 (Grad) respectively, the time complexity of Increm-INFL is

𝑂 (𝑣) +𝑁𝐶 (𝑂 (𝐶𝑚) +𝑂 (𝑚) +𝑂 (𝐶)) +𝑛𝑐𝑂 (Grad) (see the extended
technical report [40] for a detailed analysis).

Algorithm 1 Increm-INFL

Input: The number of samples to be cleaned at the 𝑘𝑡ℎ round: 𝑏

Output: A set of prioritized training samples for cleaning: Z (𝑘 )
𝑖𝑛𝑓

1: Initialize Z (𝑘 )
𝑖𝑛𝑓

= {}
2: Calculate I0 (z̃, 𝛿𝑦, 𝛾 ) and the perturbation bound on this term by us-

ing Theorem 1 for each uncleaned sample, z̃ = (x̃, �̃�) , and each label

perturbation, 𝛿𝑦 = �̃� − 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑐), (𝑐 = 1, 2, . . . ,𝐶)
3: Add the training samples producing Top-𝑏 smallest I0 (z̃, 𝛿𝑦, 𝛾 ) toZ (𝑘 )

𝑖𝑛𝑓

4: obtain the largest perturbation upper bound, 𝐿, for all Top-𝑏 smallest

I0 (z̃, 𝛿𝑦, 𝛾 )
5: For any remaining training sample, z̃, if its lower perturbation bound

of I0 (z̃, 𝛿𝑦, 𝛾 ) is smaller than 𝐿 with a certain 𝛿𝑦 , add it to Z (𝑘 )
𝑖𝑛𝑓

6: Return Z (𝑘 )
𝑖𝑛𝑓

4.2 The model constructor phase (DeltaGrad-L)
At the 𝑘𝑡ℎ round of loop 2 , after the human annotators clean the

labels for a set of 𝑏 influential training samples, R (𝑘)
, provided by

the Sample selector, the next step is to update the model parameters

in the Model constructor. To reduce the overhead of this step, we

can regard the process of updating labels as two sub-processes, i.e.

the deletions of the training samples, R (𝑘)
(with the associated

weight, 𝛾 ), and the additions of those training samples with the

cleaned labels (with the updated weight, 1), thus facilitating the use

of DeltaGrad. Specifically, the following modifications to Equation

(4) are required: 1) the input deleted training samples should be

R (𝑘)
; 2) the input cached model parameters and the corresponding

gradients become the ones obtained at the 𝑘 − 1𝑠𝑡 round of the

loop 2 ; 3) instead of randomly sampling a mini-batch A𝑡 from

the added training samples A, A𝑡 should be replaced with the re-

moved training samples fromℬ𝑡 , i.e.,ℬ𝑡
⋂︁R (𝑘)

, but with updated

labels; 4) the cleaned training samples and the uncleaned train-

ing samples so far are weighted by 1 and 𝛾 respectively (this only

slightly modifies how the loss is calculated for each mini-batch).

Recall that in DeltaGrad, there are three hyper-parameters, i.e. the

number of “burn-in” iterations, 𝑗0, the period, 𝑇0, and the history

size,𝑚0, which are thus also essential for DeltaGrad-L.

4.3 The human annotation phase
As discussed in Section 1, the Sample selector not only suggests

which samples should be cleaned, but also suggests the candidate

cleaned labels, which can be regarded as one independent label an-

notator. When multiple annotators exist, we aggregate their labels

by using majority vote to resolve possible label conflicts.

DiscussionNote that only DeltaGrad-L and Increm-INFL explic-

itly rely on the strong convexity assumption on the model class. In

contrast, INFL is potentially applicable for general machine learn-

ing models. Hence, we also conducted some initial experiments to

evaluate the performance of INFL when neural network models are

used (see the extended technical report [40]).

5 EXPERIMENTS
We conducted extensive experiments in Python 3.6 and PyTorch

1.7.0 [29]. All experiments were conducted on a Linux server with

an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz, 3 GeForce 2080

Titan RTX GPUs and 754GB of main memory.

5.1 Experimental setup
Two types of datasets are used, one of which is annotated with

ground-truth labels but no human generated labels, while the other

is fully annotated with crowdsourced labels but only partially anno-

tated by ground-truth labels. The former type (referred to as Fully
clean datasets) is used to evaluate the quality of labels suggested by

INFL by comparing them against the ground-truth labels. The latter

type (referred to as Crowdsourced datasets) is used for evaluating

the performance of our methods in more realistic settings. The two

types of datasets are briefly described next.

Fully clean datasets: Three real medical image datasets are used:

MIMIC-CXR-JPG (MIMIC for short) [19], Chexpert [17] and Dia-

betic Retinopathy Detection (Retina for short) [13]. The datasets
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are used to identify whether one or more diseases or findings exist

for each image sample. In the experiments, we are interested in

predicting the existence of findings called “Lung Opacity”, “the

referable Diabetic Retinopathy” and “Cardiomegaly” for MIMIC,

Retina and Chexpert, respectively.

Crowdsourced datasets: Three realistic crowdsourced datasets

are used: Fashion 10000 (Fashion for short)
2
[23], Fact Evaluation

Judgement (Fact for short)
3
, and Twitter sentiment analysis (Twitter

for short)
4
. Only a small portion of samples in the datasets have

ground-truth labels while the rest are labeled by crowdsourcing

workers (e.g., the labels of the Fashion dataset are collected through

the Amazon Mechanical Turk (AMT) crowdsourcing platform). The

Fashion dataset is an image dataset for distinguishing fashionable

images from unfashionable ones; the Fact dataset uses RDF triples

to represent facts about public figures and the classification task is

to judge whether or not each fact is true; and the Twitter dataset

consists of plain-text tweets on major US airlines for sentiment

analysis, i.e., identifying positive or negative tweets. For the Fashion

and Fact datasets, extra text is also associated with each sample,

e.g. user comments on each image in Fashion and the evidence for

each fact in Fact, which is critical for producing probabilistic labels

(see discussion below).

Since some samples in the datasets have missing or unknown

ground-truth labels, we remove them in the experiments. Also,

except for MIMIC which has 579 validation samples and 1628 test

samples, other datasets do not have well-defined validation and test

set. For example, as of the time the experiments were performed,

the test samples of Chexpert had not been released. To remedy this,

we partition the Chexpert validation set into two parts to create

validation and test sets, each of which have 234 samples. Since

there was no validation set for Retina, we randomly select roughly

10% of the training samples, i.e., 3512 samples, as the validation set.

Similarly, for the Twitter and Fact datasets, we randomly partition

the set of samples with ground-truth labels as the validation set and

test set, and regard all the other samples as the training set. Since

ground-truth labels are not available in the Fashion dataset, we

randomly select roughly 0.5%
5
of the samples as the validation set

and test set, each containing 146 samples. The “ground-truth” labels

for those samples are determined by aggregating human annotated

labels using majority vote. The remaining samples in this dataset

are then regarded as training samples. In the end, the six datasets,

i.e., MIMIC, Retina, Chexpert, Fashion, Fact and Twitter include

∼78k,∼31k,∼38k,∼29k,∼38k and ∼12k training samples.

Producing probabilistic labelsDue to the lack of probabilistic
labels or labeling functions [31] for the datasets, we can choose to

leverage [3], [37] or [7] to automatically derive suitable labeling

functions and thus probabilistic labels in the experiments. Note

that [3] and [37] deal with text data (including the text associated

with image data) while [7] targets pure image data. However, the

2
available at http://skuld.cs.umass.edu/traces/mmsys/2014/user05.tar (accessed 26 Jul.

2021)

3
available at https://sites.google.com/site/crowdscale2013/shared-task/task-fact-eval

(accessed 26 Jul. 2021)

4
available at https://github.com/naimulhuq/Capstone/blob/master/Data/Airline-Full-

Non-Ag-DFE-Sentiment%20(raw%20data).csv (accessed 26 Jul. 2021)

5
This ratio is determined based on the observation that in the Twitter and Fact datasets,

the percentage of samples with ground-truth labels is less than 1% of the size of the

entire dataset.

time and space complexity of [7] is quadratic in the dataset size,

and does not scale to large image datasets such as our Fully clean
datasets. Furthermore, no text information is available for images

in Fully clean datasets, so it is not feasible to use [3] or [37]. As

a result, random probabilistic labels are produced for all training

samples. For Crowdsourced datasets, we apply [3] on the extra text

information in Fashion (e.g. user comments for each image) and the

plain-text tweets in Twitter dataset to produce probabilistic labels.

For Fact dataset, the two texts for each sample (i.e. the RDF triples

and the associated evidence) are compared using [6] to generate

labeling functions.

Human annotator setup For Crowdsourced datasets, we can
use the crowdsourced labels as the cleaned labels for the uncleaned

training samples. However, such labels are unavailable in Fully
clean datasets. To remedy this, we note that the error rate of manu-

ally labeling medical images is typically between 3% and 5% , but

sometimes can be up to 30% [4]. We therefore produce synthetic

human annotated labels by flipping the ground truth labels of a ran-

domly selected 5% of the samples
6
. We assume three independent

annotators, and aggregate their labels as the cleaned labels using

majority vote (denoted INFL (one)). Since INFL can suggest cleaned

labels, those labels can be used as cleaned labels by themselves for

the uncleaned samples (denoted INFL (two)) or be combined with

labels provided by two other simulated human annotators for label

cleaning (denoted INFL (three)).

Model constructor setup Throughout the paper we assume

that strong convexity holds on theMLmodels. Therefore, in this sec-

tion, to justify the performance advantage of our design as a whole

(including Increm-INFL, DeltaGrad-L and INFL), we focus on a sce-

nario where pre-trained models are leveraged for feature transfor-

mation and then a logistic regressionmodel is used for classification,

which has emerged as a convention for medical image classification

tasks [30]. Specifically, in the experiments, we use a pre-trained

ResNet50 [15] for the image datasets (Fully clean datasets and Fash-

ion), and use a pre-trained BERT-based transformer [8] for the text

datasets (Fact and Twitter). Stochastic gradient descent (SGD) is

then used in the subsequent training process with a mini-batch size

of 2000, and weight 𝛾 = 0.8 on the uncleaned samples. Early stop-

ping is also applied to avoid overfitting. Other hyper-parameters

for model training are varied across different datasets (see Table 1).

We also vary 𝛾 for a more extensive comparison in [40].

As discussed in Section 1, other than the initialization step, we

can construct the models by either retraining from scratch (denoted

Retrain) or leveraging DeltaGrad-L for incremental updates. For

the latter case, the hyper-parameters of DeltaGrad-L are configured

as𝑚0 = 2, 𝑗0 = 10 and 𝑇0 = 20 for all six datasets.

Table 1: The hyper-parameters for each dataset

Dataset MIMIC Retina Chexpert Fashion Fact Twitter

Learning rate 0.0005 0.001 0.02 0.05 0.005 0.01

L2 regulariza-

tion

0.05 0.05 0.05 0.001 0.01 0.01

# of epochs 150 200 200 200 150 400

6
Recall that although the samples have probabilistic labels, their true labels are known

by construction.
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Sample selector setup We assume that the clean budget 𝐵 =

100, meaning that 100 training samples are cleaned in total. We

further vary the number of samples to be cleaned at each round,

i.e. the value of 𝑏.

Baseline against INFL We compare INFL against several base-

line methods that can also prioritize the most influential samples

for label cleaning in the sample selector, including the original

version of the influence function, i.e. Equation (2) [20] (denoted

by INFL-D), two active learning methods—least confidence based

sampling method (denoted by Active (one)) and entropy based sam-

pling method (denoted by Active (two)) [33]—and one noisy sample

detection algorithm, O2U [16]. Note that for fair comparison, Equa-

tion (1) is used for model training no matter which method is used

in the sample selector.

Note that there also exist many other potential baseline methods,

such as DUTI [41] and TARS [9]. However, they are not applicable

in the presence of either probabilistic labels or the regularization on

uncleaned training samples. Therefore, we adjust the experimental

set-up to create a fair comparison between INFL and those methods,

which is included in the extended technical report [40].

Baseline against DeltaGrad-L and Increm-INFL Recall that

DeltaGrad-L incrementally updates the model after some training

samples are cleaned. We compare this with retraining the model

from scratch (denoted as Retrain). We also compare the running

time for selecting the influential training samples with and without

Increm-INFL. When Increm-INFL is not used, it is denoted as Full.

Figure 2: Comparison of running time between DeltaGrad-L
and Retrain

5.2 Experimental design
In this section, we design the following three experiments:

Exp1 In this experiment, we compared the model prediction

performance after INFL and other baselinemethods (including INFL-

D, Active (one), Active (two), and O2U) are applied to select 100

training samples for cleaning. Recall that there are three different

strategies that INFL can use to provide cleaned labels and their

performance is compared. To show the benefit of using a smaller

batch size 𝑏, we choose two different values for 𝑏, i.e. 100 and

10. Since the ground-truth labels are available for all samples in

Fully clean datasets, we count how many of them match the labels

suggested by INFL.

Exp2 This experiment compares the running time of select-

ing the Top-𝑏 (with 𝑏 = 10) influential training samples (denoted

Time𝑖𝑛𝑓 ) with and without using Increm-INFL at each round in

the Sample selector phase. Recall that the most time-consuming

step to evaluate Equation (6) is to compute the class-wise gradi-

ents for each sample, ∇𝑦∇w𝐹 (w, z̃), and the sample-wise gradients,

∇w𝐹 (w, z̃). Therefore, its running time (denoted as Time𝑔𝑟𝑎𝑑 ) is

also recorded. For Increm-INFL, the time to compute the bounds in

Theorem 1 is also included in Time𝑖𝑛𝑓 .

Exp3 The main goal of this experiment is to explore the differ-

ence in running time between Retrain and DeltaGrad-L for updating

the model parameters in the Model constructor phase. In addition,

the model parameters produced by DeltaGrad-L and Retrain are not

exactly the same [38], which could lead to different influence values

for each training sample and thus produce different models in subse-

quent cleaning rounds. Therefore, we also explore whether such dif-

ferences produce divergent prediction performance for DeltaGrad-L

and Retrain.

(a) Twitter (b) Fashion

Figure 3: Visualization of the validation samples, test sam-
ples and themost influential training sample 𝑆 (‘+’, ‘-’ and ‘X’
denote the positive ground-truth samples, negative ground-
truth samples and the sample 𝑆 respectively)

5.3 Experimental results
Exp1 Experimental results are given in Table 2

7
. We observe that

with fixed 𝑏, e.g., 10, INFL (two) performs best across almost all

datasets. Recall that INFL (two) uses the derived labels produced

by INFL as the cleaned labels without additional human annotated

labels. Due to its superior performance, especially on Crowdsourced
datasets, this implies that the quality of the labels provided by INFL

could actually be better than that of the human annotated labels.

To further understand this phenomenon, we compared the labels

suggested by INFL against their ground-truth labels for Fully clean
datasets. It turns out that over 70% are equivalent (89 for Retina, 79

for Chexpert and 95 for MIMIC). Note that even the ground-truth

labels of these three datasets are not 100% accurate. In the Chexpert

dataset, for example, the ground-truth labels are generated by an

automated labeling tool rather than being labeled by human anno-

tators, thereby leading to possible labeling errors. Those erroneous

labels may not match the labels provided by INFL, thus leading to

worse model performance (see the performance difference between

INFL (one) and INFL (two) for Chexpert dataset).

However, the above comparison could not be done for Crowd-
sourced datasets due to the lack of ground-truth labels. We therefore

investigate the relationship between the samples with ground-truth

7
Due to space, the error bars of F1 scores are not shown, but are included in the

extended technical report [40]
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Table 2: Comparison of the model prediction performance (F1 score) after 100 training samples are cleaned

b=100 b=10

uncleaned INFL

(one)

INFL

(two)

INFL

(three)

INFL-

D

Active

(one)

Active

(two)

O2U INFL

(one)

INFL (two) INFL (two) +

DeltaGrad

INFL

(three)

MIMIC 0.6284 0.6292 0.6293 0.6293 0.6283 0.6287 0.6287 0.1850 0.6292 0.6293±0.0011 0.6292±0.0005 0.6292

Retina 0.5565 0.5580 0.5582 0.5581 0.5556 0.5568 0.5568 0.1314 0.5579 0.5582±0.0003 0.5610±0.0010 0.5581

Chexpert 0.5244 0.5286 0.5297 0.5289 0.5246 0.5246 0.5246 0.5281 0.5287 0.5300±0.0018 0.5295±0.0030 0.5291

Fashion 0.5140 0.5178 0.5177 0.5177 0.5143 0.5145 0.5145 0.5152 0.5178 0.5181±0.0131 0.5195±0.0144 0.5180

Fact 0.6595 0.6601 0.6609 0.6603 0.6596 0.6600 0.6600 0.6598 0.6601 0.6609±0.0043 0.6609±0.0065 0.6602

Twitter 0.6485 0.6594 0.6680 0.6594 0.6518 0.6515 0.6515 0.6490 0.6578 0.6697±0.0058 0.6597±0.0027 0.6586

Table 3: Running time of Increm-INFL and Full

Time𝑖𝑛𝑓 (s) Time𝑔𝑟𝑎𝑑 (s)

Full Increm-INFL Full Increm-INFL

MIMIC 151.4±0.5 2.77±0.03 (54.7x) 145.4±0.7 0.17±0.03 (855x)
Retina 74.0±0.6 1.36±0.04 (54.4x) 70.8±0.6 0.21±0.03 (337x)
Chexpert 72.5±0.2 17.9±1.9 (4.1x) 69.3±0.2 14.7±1.5 (4.7x)
Fashion 66.4±3.6 8.7±0.6 (7.6x) 57.1±3.3 0.81±0.07 (70.5x)
Fact 73.8±4.0 6.1±0.8 (12.1x) 72.5±6.0 4.7±0.1 (15.4x)
Twitter 33.1±2.3 14.1±0.4 (2.3x) 30.2±1.1 12.7±0.1 (2.4x)

labels and the influential samples identified by INFL. Specifically,

we use t-SNE [36] to visualize the samples with ground-truth labels

for the Twitter and Fashion datasets after the feature transforma-

tion using the pre-trained models (see Figure 3). As described in

Section 5.1, those samples belong to the validation or test set. In

addition, in this figure, we indicate the position of the most influ-

ential training sample 𝑆 identified by INFL. As this figure indicates,

the sample 𝑆 is proximal to the samples with negative ground-truth

labels for the Twitter dataset (positive for the Fashion dataset). To

guarantee accurate predictions on those nearby ground-truth sam-

ples, it is therefore reasonable to label 𝑆 as negative (positive for

Fashion dataset), which matches the labels provided by INFL but

differs from ones given by the human annotators. This indicates the

high quality of the labels given by INFL. Thus, when high-quality

human labelers are unavailable, INFL can be an alternative labeler

for reducing the labeling cost without harming the labeling quality.

Table 2 also exhibits the benefit of using smaller batch sizes 𝑏

since it results in better model performance when INFL, especially

INFL (two), is used for some datasets (e.g, see its model perfor-

mance comparison between 𝑏 = 100 and 𝑏 = 10 for the Twitter

dataset in Table 2). Intuitively, INFL only quantifies the influence

of cleaning single training sample rather than multiple ones. There-

fore, the larger 𝑏 is, the more likely that INFL selects a sub-optimal

set of 𝑏 samples for cleaning. Ideally, 𝑏 should be one, meaning

that one training sample is cleaned at each round. However, this

can inevitably increase the number of rounds and thus the overall

overhead. Intuitively speaking, a medium size of 𝑏 is a reasonable

choice to balance the model performance and the total running

time, which is empirically demonstrated in [40].

Exp2 In this experiment, we compare the running time of Increm-

INFL and Full in selecting the Top-b influential training samples

(Time𝑖𝑛𝑓 ) at each cleaning round of the loop 2 (with 𝑏 = 10).

Due to space, we only include results for the last round in Table 3,

which are similar to results in other rounds. As Table 3 indicates,

Increm-INFL is up to 54.7x faster than Full, which is due to the

significantly decreased overhead of computing the class-wise gradi-

ents for each sample (i.e. Time𝑔𝑟𝑎𝑑 ) when Increm-INFL is used. To

further illustrate this point, we also record the number of candidate

influential training samples whose influence values are explicitly

evaluated with and without using Increm-INFL. The result indicates

that due to the early removal of uninfluential training samples us-

ing Increm-INFL, we only need to evaluate the influence of a small

portion of training samples, thus reducing Time𝑔𝑟𝑎𝑑 by up to two

orders of magnitude and thereby significantly reducing the total

running time, Time𝑖𝑛𝑓 . In addition, we observe that Increm-INFL

always returns the same set of influential training samples as Full,

which thus guarantees the correctness of Increm-INFL.

Exp3 Experimental results of Exp3 are shown in Figure 2. The

first observation is that DeltaGrad-L can achieve up to 7.5x speed-

up with respect to Retrain on updating the model parameters. As

shown in Section 5.2, the models updated by DeltaGrad-L are not

exactly the same as those produced by Retrain, which might cause

different model performance between the two methods. However,

we observe that the models constructed by those two methods have

almost equivalent prediction performance (see the second to last

column in Table 2). This indicates that it is worthwhile to leverage

DeltaGrad-L for speeding up the model constructor.

6 CONCLUSIONS
In this paper, we propose CHEF, which can reduce the overall cost

of the label cleaning pipeline and achieve better model performance

than other approaches; it may also allow early termination in the

human annotation phase. Extensive experimental studies show the

effectiveness of our solution over a broad spectrum of real datasets

when strongly convex models are used. How to extend CHEF, in

particular, Increm-INFL and DeltaGrad-L, beyond strongly convex

models is left as future work.
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