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ABSTRACT
Easy-to-use programming interfaces paired with cloud-scale pro-

cessing engines have enabled big data system users to author ar-

bitrarily complex analytical jobs over massive volumes of data.

However, as the complexity and scale of analytical jobs increase,

they encounter a number of unforeseen problems, hotspots with

large intermediate data on temporary storage, longer job recov-

ery time after failures, and worse query optimizer estimates being

examples of issues that we are facing at Microsoft.

To address these issues, we propose Phoebe, an efficient learning-

based checkpoint optimizer. Given a set of constraints and an ob-

jective function at compile-time, Phoebe is able to determine the

decomposition of job plans, and the optimal set of checkpoints to

preserve their outputs to durable global storage. Phoebe consists

of three machine learning predictors and one optimization module.

For each stage of a job, Phoebe makes accurate predictions for:

(1) the execution time, (2) the output size, and (3) the start/end

time taking into account the inter-stage dependencies. Using these

predictions, we formulate checkpoint optimization as an integer

programming problem and propose a scalable heuristic algorithm

that meets the latency requirement of the production environment.

We demonstrate the effectiveness of Phoebe in production work-

loads, and show that we can free the temporary storage on hotspots

by more than 70% and restart failed jobs 68% faster on average with

minimum performance impact. Phoebe also illustrates that adding

multiple sets of checkpoints is not cost-efficient, which dramatically

reduces the complexity of the optimization.
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1 INTRODUCTION
Big data platforms have democratized scalable data processing over

the last decade, giving developers the freedom of writing complex

programs (also referred to as jobs) without worrying about scaling

them [3, 9, 15, 42, 44, 49, 50, 61]. However, this flexibility has also
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Figure 1: Cosmos job size

led developers into building very large analytical programs that can

put the underlying platform under stress. For instance, the scale

and flexibility of Cosmos [9, 13, 45], a big data analytics platform

at Microsoft, empower developers to author large jobs composed

of pipelines of SQL-like query statements which are compiled into

query plans composed of up to thousands of stages (executable
units composed by one or more operators) running over hundreds

of thousands of processing units scheduled by YARN [53]. Figure 1

shows how the Cosmos workloads in one of the clusters have

evolved over the past two years: we see that the total number of

tasks per job (each corresponding to one process executed in one

container) has grown by 34% (shown in blue), while the volume of

input data has grown by 80% (shown in orange). Large analytical

jobs lead to several operational problems.

1. Large jobs result inmachine hotspots that run out of local
storage space due to temporary data. Big data systems typically

persist intermediate outputs on local SSDs until the end of the

query. However, large query plans end up consuming a substantial

amount of temporary storage. Figure 2 (left) shows, for one Cosmos

cluster, the cumulative distribution of available local SSD storage

that is used for storing temporary data. We can see that for different

Stock Keeping Units (SKUs), 15 − 50% of the machines run out of

local storage on SSDs. This results in not only expensive spilling

to HDDs and hence processing slowdown, but also an increase

in incidents reporting job failures due to SSD outages. Currently,

to avoid the SSD shortage, we need to either cap the number of

containers running on each machine (thus wasting expensive CPU

and memory resources)
1
, or scale the CPU and memory together

with the temporary storage in the newer SKUs.

2. Large jobs are prone to longer re-starting time in case of
failures. Figure 2 (right) shows the failure rates of jobs with in-

creasing runtimes. We observe that even though a majority of the

1
Alternate solution could be to make YARN scheduler aware of the SSD utilization.

However, additional parameters are not only harder to tune cluster-wide but also

increase the scheduling overhead, which could translate into high costs at scale.
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Figure 2: The Empirical Cumulative Density Function
(ECDF) for SSD usage (left) and job failure rate with respect
to job runtime and the probability density function (PDF) of
job runtime distribution (right).

jobs finish within 20 minutes, the failure rates in larger jobs could

range as high as 5%. Network/communication failures, changes

in cluster conditions, transient system behavior, and user errors

are some of the common reasons for job failures in Cosmos. Even

though Cosmos already provides a lineage-based mechanism [60]

for coping with task failures, improving resiliency to job failures

and reducing recovery time are very important, especially as jobs

and workloads scale.

3. Large jobs end up havingworse query optimizer estimates.
Errors in cardinality propagate exponentially [36, 39], and hence

complex jobs are more likely to produce poor query plans. A recent

trend [31, 54] suggests to re-optimize plans adaptively during job

execution, but collecting statistics on-the-fly and on distributed in-

termediate results is highly not trivial and requires a major overhaul

of the runtime system.

Checkpointing and its challenges. The above problems can be

solved by “decomposing” large jobs into smaller ones that are sep-

arated by persistent (e.g., with 3-way replication) checkpoints on

durable global storage. This will allow, for instance, to (1) free up

intermediate data on hotspots even before the job completes; (2)

fast restart failed jobs from the previous state; (3) collect statistics

on the checkpoints and re-optimize large jobs into smaller ones

with better estimates; and (4) reduce intermediate data in local

storage to avoid wasting resources in newer SKUs. Prior check-

pointing approaches include gathering statistics at execution time

to dynamically select when to checkpoint [14, 46, 57], however,

they require additional dynamic components that are not easy to

implement reliably in large production systems such as Cosmos.

Alternatively, compile-time approaches use estimates to propose

optimal checkpoints during query optimization [10, 52, 58]. How-

ever, this requires accurate cost estimates, which is challenging

since query optimizer estimates are often off by several orders of

magnitudes [16, 28, 47], and even learned approaches are good

for only relative plan comparisons [34, 35, 40] while still being

significantly off in absolute values. Furthermore, all previous check-

pointing approaches considered relatively small tree-shaped plans,

whereas modern big data systems like SCOPE easily have complex

Direct Acyclic Graphs (DAGs) with thousands of operators [24].

Not to mention, we need a generalized framework that can make

checkpointing decisions on these DAGs for different scenarios with

different objectives and constraints.

Introducing Phoebe. In this paper, we present Phoebe, a learning-

based checkpointing optimizer for determining, at the compile-time,

the decomposition (or the “cuts”) of large job graphs in big data

workloads. Phoebe builds upon the state-of-the-art CLEO [47] cost

models and fine-tunes its operator-level predictions with historical

statistics from past executions. This is possible since production

big data workloads are often recurrent, e.g., > 70% in Cosmos [25].

Furthermore, checkpointing decisions only require cost predictions

at stage boundaries (i.e., a set of operators that process a partition of

data on a given node), which are precise since stages get executed

with physical boundaries, thus making the fine-tuning approach

highly effective. Phoebe applies a similar fine-tuning when pre-

dicting the time to live (TTL) for the output of each stage, which

is needed to estimate how long the data lives on temporary stor-

age. Phoebe uses a job runtime simulator and then fine-tunes its

estimates with historical TTL of stage outputs.

Apart from cost models, Phoebe also introduces a scalable heuris-

tics based checkpointing algorithm, that (1) can scale to millions of

jobs in Cosmos workload; (2) it is two orders of magnitude faster

than the optimal Integer Programming (IP) approach; and (3) yet

strikingly close to the optimal in meeting the objective value. Fi-

nally, to the best of our knowledge, Phoebe is the first checkpointing

framework that supports multiple objectives and constraints, and

hence could be used in several different scenarios.

To summarize, we make the following key contributions:

• We present Phoebe, a learning-based system that uses past

workloads formaking checkpoint decisions over future queries

in big data workloads. (Section 3)

• We describe accurate stage-wise cost predictors for stage

output size, stage runtime, and stage output TTL by fine-

tuning over historical statistics seen in the past. (Section 4)

• We introduce a scalable checkpoint optimization algorithm

for large query DAGs and global constraints over hundreds

of thousands of jobs, that can support several different check-

pointing scenarios. (Section 5)

• We evaluate Phoebe over large production Cosmos work-

loads, and show how the various components contribute

towards picking good checkpoints as well as the involved

trade-offs. Our results show that Phoebe can free more than

70% of the local storage on hotspots, and reduce the recovery

time for failed jobs by 64% on average, while increasing job

latency by less than 3%. (Section 6)

Below we first provide a background on Cosmos and SCOPE

before presenting each of our contributions.

2 BACKGROUND
Cosmos is the state-of-the-art big data analytics platform at Mi-

crosoft. It consists of hundreds of thousands of machines exe-

cuting hundreds of thousands of jobs per day [42, 45]. Cosmos

users submit their analytical jobs using SCOPE [9, 62], a SQL-like

data flow dialect. SCOPE jobs are compiled into a Direct Acyclic

Graph (DAG) of stages which in turn are executed in parallel by

a YARN-based scheduler [13]. Figure 3 shows the execution plan

for a 7-stage SCOPE job, with each rectangle representing a stage.

Within a stage, there can be multiple operators, such as Extract,
Filter, etc., chained together. Each stage is packed into a task
that runs in parallel on different data partitions on different ma-

chines. During the execution, users can monitor the progress of

each stage (green means finished, blue means waiting, and white

means not started). Based on the execution dependency, we call

the dependee an upstream stage and the dependent a downstream
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Figure 3: A job execution graph in SCOPE and one potential
checkpoint decision (horizontal line).

stage. For instance, stage SV2_Aggregate_Split in Figure 3 is

an upstream stage of SV3_Aggregate and a downstream stage of

SV1_Extract_Partition. An upstream stage usually (but not al-

ways) finishes before its downstream stage. When a stage finishes,

its output will be saved to the local SSDs of each server, which we

refer to as Temp Data Storage in the rest of the paper. Cosmos emits

telemetry data recording not only the detailed execution plan for

every single job, but also the schedule for every stage, its execution

time and output/input size, type of operators involved, etc.

Given the motivation to create persistent checkpoints, we want

to decompose a job execution graph by selecting a set of stages for

checkpointing, and redirecting their outputs to global HDD storage

with 3 replicas. We refer to these selected stages as checkpoint
stages.We want to select the checkpoint stages carefully such that the
objective (e.g., minimizing temp storage load) could be met, while
constraining the global storage costs. Finding the optimal checkpoint

stages is similar to decomposing the execution plan and finding

a cut in the graph. The dashed black line in Figure 3 illustrates

an example cut in the execution graph for checkpoint selection.

When we select Stages SV_2 and SV_5 as the checkpoint stages, we

need to save the their outputs to global persistent stores. The space

needed for the global store is proportional to the sum of the output

sizes of Stages SV_2 and SV_5.
Objectives such as minimizing the overall temp data storage of

all jobs, or minimizing the recovery/restart time for a failed job,

depend on the time a job lives 𝑡𝑢 after each stage𝑢, while the global

storage constraints depend on the output size 𝑜𝑢 of each stage.

Furthermore, 𝑡𝑢 , is a function of the runtime, 𝑟𝑢 , of all stages in the

execution graph, i.e., 𝑡𝑢 = 𝑓 (𝑟1, 𝑟2, ...𝑟𝑘 ). Accurate estimations of 𝑜𝑢 ,

𝑟𝑢 , and 𝑡𝑢 are therefore crucial for a good checkpoint optimization.

In the following sections, we first present an overview of Phoebe,

then we will describe the three ML models used for stage-wise costs

(𝑜𝑢 and 𝑟𝑢 ) and time-to-live predictions (𝑡𝑢 ), respectively.

3 PHOEBE OVERVIEW
In this section we give an overview of Phoebe and highlight the de-

sign choices we have made. As discussed in the previous section, to

determine the optimal cut(s) of an execution graph, it is important to

estimate the output size, the runtime, and the time-to-live for each

stage. Unfortunately, the estimates the query optimizer in big data

systems are off by orders of magnitude [24], due to (1) large query

execution DAGs where the errors propagate exponentially [36, 43];

(2) prevalent use of custom user-defined functions that are hard to

analyze [56]; (3) recent works have exploited workload patterns to

learn models for improving the cardinality estimates [16, 28, 56],

but still these learned estimates are not accurate enough in abso-

lute values; and (4) the presence of both structured and unstruc-

tured input data [51]. Problem: state-of-the-art cardinality estimation
approaches are not good enough for predicting actual output sizes.
Design choice: Phoebe augments state-of-the-art learned cardinalities
(i.e., CLEO [47]) by focusing on recurring jobs and exploiting historical
statistics to instance-optimize the cardinality predictors.

Previous work on estimating cardinalities focus on improving

the query optimizer estimates at the operator level. For checkpoint-

ing, however, we need to: (1) estimate the costs at the stage-level,

each consisting of multiple operators executing on a task in the

same container; (2) operators within a stage could be pipelined in

different ways when scheduled on distributed tasks, which makes it

non-trivial to combine individual operator costs into stage costs; (3)

stage outputs are persistent for the full duration of the job, therefore

to estimate the storage costs we need to take into account this tem-

poral dimension. Problem: cardinality estimates at the operator level
need to be aggregated at the stage level and augmented with a time
dimension in order to properly model the storage cost. Design choice:
Phoebe generates stage-level estimates starting from the operator-level
one, and adds a predictor for the time-to-live of each stage.

SCOPE-like big data engines have query plans that are DAGs of

operators, not trees. Furthermore, Scope plans are complex: in our

production workloads we have plans easily reaching thousands of

operators. Prior works (e.g., MCSN [28], DeepDB [19], NEO [34],

NeuroCard [59], TBCNN [37], and [35, 40]) suggest to use DNNs

to “learn” the encoding of relatively simple query structures and

mapped each operator to neural unit(s). Problem: Mapping Scope
complex plans into deep neural networks results in severe gradient
explosion or vanishing problems [18]. Design choice: Phoebe captures
the complex structure of big data query execution DAGs using a sched-
ule simulator. Therefore, in this work, instead of a full black-box

approach, we combine the existing work of cardinality estimation

with an explainable simulation process, which is a judicious mix-

ture of domain knowledge and principled data-science that leads

to optimal results tailored to our complex production workloads.

The checkpoint optimizer (Section 5) uses the above estimates to

make the checkpoint decisions. Problem: Production checkpointing
applications may have different objectives while the traditional check-
pointing frameworks are rigid. Design choice: Phoebe checkpointing
algorithm is based on a “graph cut” algorithm that is adaptive to
different objectives and constraints based on the specific application.

Figure 4 shows the Phoebe architecture that is integrated with

an already deployed workload optimization platform, namely Pere-

grine [22]. Phoebe consists of the following three modules:

(1) The stage cost models take as input the aggregated features

at the stage level and uses machine learning methods to predict the

duration of each stage, which is measured by the average execution
time for all the tasks of the corresponding stage. Likewise, we also

learn models to predict the output size of each stage, i.e., the size

of the output of the last operator in the stage.

(2) The time-to-live (TTL) estimator consists of two steps. First,
a job runtime simulator infers the start/end times for each stage

based on the job execution graph. We assume a stage can only start

once all its upstream stages have finished. TTL can be calculated
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Figure 4: Phoebe architecture and its integration within the
workload optimizer in SCOPE.

as the time interval between the estimated stage end time to the

estimated job end time. Similar to model stacking, we use a meta-

learning model to further improve the TTL prediction from the

simulator, i.e., we take the estimated TTL and the estimated time

from start (TFS, defined as the time interval from the job start time

to the start time of a stage) from the simulator, and use another

machine learning model to generate the final TTL prediction.

(3) The checkpoint optimizer uses as input the previous two

modules, namely the estimated TTL and the output size of each

stage, and selects the optimal set of global checkpoints given a par-

ticular objective function. To reduce the computation time for large

workload sizes and to apply the storage constraints dynamically at

runtime, we introduce a two-phase approach to find the graph cuts

and apply the storage constraint separately.

For a new job, the SCOPE compiler makes a call to the Workload

Insight Service [22], determines the checkpoint stages, modifies

the query plan for materialization (similar as in CloudViews [23]),

and sends the information to the job manager, which takes care of

checkpointing those stages to the global store. The telemetry data

from the query engine is collected into a workload repository and

later used by Phoebe to re-train the models.

4 STAGE-LEVEL PREDICTORS
In this section, we discuss the stage-level predictors, namely the

predictors for execution time and output size (Section 4.1) and the

predictor for TTL (Section 4.2).

4.1 Execution Time & Output Size Estimators
4.1.1 Input Features. Cosmos implements a state-of-the-art query

optimizer and learned cost models, CLEO [47]. CLEO generates

a collection of cost models, one for each common sub-graph in

the plans. Each sub-graph corresponds to the same root physical

operator (e.g., Filter) and all upstream operators (e.g., Scan). The
rationale is that cloud workloads are quite diverse in nature, and his-

torically the one-fits-all models have failed to improve the estimated

costs. CLEO [47] has proved to have 2 to 3 orders of magnitude

Table 1: Cost model features

Feature Group Feature Name Feature De-

scription

Query Optimizer

Features

Estimated Cost, Estimated Input
Cardinality, Estimated Exclusive
Cost, Estimated Cardinality for

the last operator of the stage

Numeric fea-

tures from the

optimizer’s

internal infor-

mation

Historic Statistics the Exclusive Time and the Out-
put Size for the job template

and operator combination

The historic

average of the

statistics

Normalized File

Path/Job Name

Norm Job Name, Norm Input
Name

Text features

more accurate than existing approaches. In this work, we leverage

CLEO and extend it in three ways.

(1) We use CLEO operator-level features as input to generate stage-

level estimates. Stage-level estimates do not correspond to any sub-

graphs, but they are estimates of all the operators combined into

a stage by the SCOPE optimizer. These input features are directly

accessible from the SCOPE optimizer.

(2) We use historical data coming from the previous occurrences

of the recurrent job to instance-optimize the predictors. In Cosmos,

even with a large number of recurrent jobs, the parameters, inputs

and execution plan can vary significantly over time. Therefore, it is

important to not only capture repetitive patterns but also leverage

the specific context of each of the stages in the workload.

(3) Finally, the input file paths and the job names often preserve

information of file type, or locations and can be used as text features.

For instance, a log file with file names including “log” usually
consists of raw text in string format, which makes it more time-

consuming to process compared to input with an ending of *.ss
(structured steam [51], a SCOPE internal file format).

In summary, we constructed three groups of features as shown

in Table 1. As we will see in Section 6.1, it is the combination of

these input feature sets that yield the best prediction accuracy.

4.1.2 Model Implementation. NimbusML [12] is an open-source

python package for ML.NET [1]. We tried different ML learners

from NimbusML (e.g., linear regression, ensemble regression, etc.)

and found that the LightGBM learner [27] is the best in terms of

prediction accuracy for our use case. We developed two groups of

models, each of them using only the non-textual features (i.e., query

optimizer features and historic statistics): (1) General model, i.e.,
one model for all stages; and (2) Stage-type specific model. In
fact, we observe that stages can be divided by their type based on the
operators involved. Similar to CLEO [47] where the model is sub-

graph specific, the stage-type corresponds to a unique set of (usually

one or two) operators forming the stage, e.g., an Extract_Split
stage has a Process operator followed by a Split operator. In

the production workload used in this paper, we observed 33 stage

types. We therefore train stage-type specific models, each with

more homogeneous data. The stage-type specific models capture

the heterogeneity of runtime variation across different combina-

tions of operators. Given that we only select recurrent jobs for

the checkpoint mechanism, it is desirable for the cost model to

“overfitted” the selected recurrent jobs.
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To leverage text features such as Norm Input Name and the Norm
Job Name where simple One Hot Encoding [6] is not possible, we

trained a customized word embedding using a language model [5]

and integrated it with another DNN model with 2 hidden layers to

predict the final targets as a benchmark. We host the end-to-end

model training process on Azure ML for better experiment tracking

and model archiving [11].

4.2 Time-to-Live Estimator
The time-to-live (TTL) estimator predicts the average lifetime of

the intermediate output of each stage, defined as the time interval

from the average end time of all tasks in the corresponding stage

to the end time of the job. This is different from the estimation at

the sub-tree/sub-query level because the TTL can be impacted by

operators not included in the sub-tree which determine the job end

time. Instead of training a DNN model to capture the complex de-

pendency structure between stages (as in [34, 35, 40]), we introduce

a simple schedule simulator to mimic the job execution process

in Cosmos. The TTL estimator consists of two steps. First, a job

runtime simulator takes as input (1) the stage execution time (i.e.,

the average task latency) estimated by the stage execution time

predictor from the previous section; and (2) the execution graph

to simulate the job execution process. Second, we develop another

machine learning model to further improve the TTL prediction

based on the simulator output. In the following sections, we discuss

each step in more detail.

4.2.1 Job Runtime Simulator. The job runtime simulator estimates

the start and end time of each stage based on the predictions of

the stage execution time and the dependency relationship in the

execution graph. To simplify the modeling, we assume strict stage

boundaries, i.e., each stage can only start after all of its upstream

stages have finished. A topological sorting [55] algorithm sorts all

stages in a linear order based on the execution graph
2
, such that an

upstream stage executes before a downstream stage. The schedule

simulator uses the linear ordering of the stages to estimate the

stages’ start and end times. For each stage, the simulator calculates

its start time based on the maximum end time of all its upstream

stages, and estimates its end time based on the estimated stage

execution time from the stage execution time predictor.

Algorithm 1 shows the detailed schedule simulator process. Based

on the linear ordering from the topological sorting algorithm, we

schedule stages sequentially from the front of the ordered stack

(from position 0). The TTL can be calculated as the time interval

between the stage end time and the job end time.

4.2.2 Fine-tuning. While the simulator assumes a strict stage bound-

ary and captures the dependency between stages, it doesn’t simulate

the pipelined operation. In Cosmos, for some stage types, tasks can

start before all the tasks of upstream stages finish. Strict stage

boundary assumption is helpful for computation efficiency; how-

ever, it potentially results in overestimating the TTL. Therefore,

we create an ML model to systematically adjust for this bias by

stage-type. We observed that some of the stage types usually have

longer or shorter TTL, such as Extract, that always starts before all
the other stages thus with longer TTL or an Aggregate stage that

2
This is very similar to how the SCOPE job manager schedules tasks in Cosmos.

Algorithm 1: ScheduleSimulator
Input :execution graph𝐺 , ordered stack 𝑅, estimated execution

time𝑇

Output : start time for stages 𝐷 [𝑠 ]
end time for stages 𝑃 [𝑠 ]

Initialize :𝐷 [𝑠 ] =Null, ∀𝑠 ∈ 𝑅
𝑃 [𝑠 ] =Null, ∀𝑠 ∈ 𝑅

foreach stage 𝑠 ∈ 𝑅 do
MaxUpstreamEndTime = 0

if 𝑠 .UpstreamStages!= Null then
foreach upstream ∈ 𝑠.UpstreamStages do

MaxUpstreamEndTime =

max

{︁
MaxUpstreamEndTime, 𝑃 [upstream]

}︁
𝐷 [𝑠 ] = MaxUpstreamEndTime

𝑃 [𝑠 ] = 𝐷 [𝑠 ] +𝑇 [𝑠 ]
return 𝐷, 𝑃

Figure 5: Graph cut in the integer programming.

tends to be placed towards the end of the job thus has shorter TTL.

Therefore, we develop machine learning models per stage-type to

have different adjustment mechanisms to achieve better accuracy.

The input feature for the stacking model includes the estimated

TTL from the simulator as well as the time from start (TFS), which

is defined as the time interval between the start time of the job to

the start time of the corresponding stage. Those two values define

the “position” of this stage throughout the execution of the job.

5 CHECKPOINT OPTIMIZER
We now describe the checkpoint optimizer. Similar to Flint [46], we

only consider a set of “frontiers" of the program’s lineage graph. The

checkpointing problem can then be naturally mapped to finding a

cut in the execution graph. We categorize stages in a job execution

graph into three groups (with respect to each cut):

(1) Group I: the checkpoint stages, i.e., stages that need to persist

their outputs to the global storage;

(2) Group II: stages that have finished executing before the

checkpoint stages; and

(3) Group III: stages that will execute after the checkpoint stages.

Phoebe’s checkpointing optimizer is extensible: it can be tuned

using different objective functions based on different checkpointing

applications, as described earlier in Section 1. In particular, we

discuss two of the applications in this section, namely freeing up

temp data storage on hotspots and quickly restarting failed jobs.

Below, we first show an IP formulation of the single-cut checkpoint

problem. Then we show how it can be extended for multiple cuts.
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Table 2: Notation

variable description

𝑢 stage index

𝑆 set of stages

𝐸 set of edges

𝑜𝑢 output size of stage 𝑢

𝑡𝑢 time-to-live of stage 𝑢

𝐺 auxiliary variable, the total global storage usage

𝑇 auxiliary variable, the total saving for temp data storage

𝛼 cost factor of using global storage

𝑧𝑢 decision variable representing if stage 𝑢 is before the cut

𝑑𝑢𝑣 decision variable representing if edge (𝑢, 𝑣) is on the cut

𝑔𝑢 auxiliary variable representing if 𝑢 is a checkpoint stage

C set of cuts

𝑐 cut index

𝑧
(𝑐 )
𝑢 decision variable representing if 𝑢 is before the cut 𝑐

𝑑
(𝑐 )
𝑢𝑣 decision variable telling if edge (𝑢, 𝑣) is on the cut 𝑐

Finally, to solve the IP efficiently, we split our formulation into

two sub-problems: (1) a heuristic approach to obtain efficiently the

optimal solution without considering the global storage cost and

with one cut; and (2) enforcing the global storage constraints.

5.1 Integer Programming
Table 2 summarizes the notation. Let us consider the case of adding

one cut in the execution graph. For stage 𝑢, assume its output size

𝑜𝑢 (≥ 0) and time-to-live (TTL) 𝑡𝑢 (≥ 0) are known (see Figure 5).

Let 𝑧𝑢 , ∀𝑢 ∈ 𝑆 be a set of binary decision variables representing

if stage 𝑢 is executed before the graph cut, i.e., on the 𝑃-side of

the cut (e.g., 𝑧𝑢 = 1 indicates that stage 𝑢 is before the cut). Let

𝑑𝑢𝑣, ∀(𝑢, 𝑣) ∈ 𝐸 be another set of decision variables representing if

edge (𝑢, 𝑣) is on the cut, where 𝐸 denotes the set of edges in this

execution plan. For instance, in Figure 5, 𝑑24, 𝑑34, 𝑑54 and 𝑑56 = 1.

The total number of decision variables is |𝑆 | + |𝐸 |, and the number

of possible combinations is 2
|𝑆 |+ |𝐸 |

as they are all binary.

We can now use the two sets of binary decision variables to

decide the grouping of a given stage 𝑢:

• Group I: 𝑧𝑢 = 1 and 𝑑𝑢𝑣 = 0, ∀(𝑢, 𝑣) ∈ 𝐸,
• Group II: 𝑧𝑢 = 1 and ∃𝑑𝑢𝑣 = 1, ∀(𝑢, 𝑣) ∈ 𝐸, and
• Group III: 𝑧𝑢 = 0.

The space needed for global storage is proportional to the sum

of the total output sizes for stages in Group II. The checkpoint

optimization problem can be formulated as an IP as follows:

max

𝑧𝑢 ,∀𝑢∈𝑆
𝑑𝑢𝑣 ,∀(𝑢,𝑣)∈𝐸

Obj(𝑧𝑢 , 𝑑𝑢𝑣) (1)

s.t.𝐺 =
∑︂
𝑢∈𝑆

𝑜𝑢𝑔𝑢 , (2)

𝑔𝑢 ≥ 𝑑𝑢𝑣, ∀(𝑢, 𝑣) ∈ 𝐸, ∀𝑢, (3)

𝑑𝑢𝑣 − 𝑧𝑢 + 𝑧𝑣 ≥ 0, ∀(𝑢, 𝑣) ∈ 𝐸, (4)

𝑑𝑢𝑣 ∈ {0, 1}, ∀(𝑢, 𝑣) ∈ 𝐸, (5)

𝑧𝑢 ∈ {0, 1}, ∀𝑢 ∈ 𝑆. (6)

Equation (1) can be replaced by different objective functions de-

pending on the application. We will discuss two possible applica-

tions in the following sections. Constraint (2) calculates the total

global storage needed from stages in Group II. It can be estimated

by examining the output size on the upstream side of the edges on

the cut. In Constraint (3), 𝑔𝑢 = 1 for stages that have any edges on

the cut (𝑑𝑢𝑣 = 1). Note that, this requires that the objective function

minimizes𝐺 and 𝑔𝑢 . Constraint (4) ensures that if stage 𝑢 is on the

side before the cut (the side of 𝑃 ) and 𝑣 is after the cut, 𝑑𝑢𝑣 = 1.

Multiple Cuts. Let 𝑧 (𝑐)𝑢 denote the binary decision variable in-

dicating whether stage 𝑢 is before the cut 𝑐 ∈ C = {0, 1, · · · , 𝐾},
𝐾 ≥ 1. Let𝑑

(𝑐)
𝑢𝑣 denote if edge (𝑢, 𝑣) is on the cut 𝑐 . The optimization

problem for multi-cuts can be formulated as follows:

max

𝑧
(𝑐 )
𝑢 ,∀𝑢∈𝑆, 𝑐∈C

𝑑
(𝑐 )
𝑢𝑣 ,∀(𝑢,𝑣)∈𝐸, 𝑐∈C

Obj

(︂
𝑧
(𝑐 )
𝑢 , 𝑑

(𝑐 )
𝑢𝑣

)︂
(7)

s.t.𝐺 =
∑︂
𝑢∈𝑆

𝑜𝑢𝑔𝑢 , (8)

𝑔𝑢 ≥ 𝑑 (𝑐 )
𝑢𝑣 , ∀(𝑢, 𝑣) ∈ 𝐸, ∀𝑐 ∈ {1, · · · , 𝐾 }, ∀𝑢, (9)

𝑧
(𝑐−1)
𝑢 ≤ 𝑧

(𝑐 )
𝑢 , ∀𝑐 ∈ {1, · · · , 𝐾 } (10)

𝑑
(𝑐 )
𝑢𝑣 − 𝑧 (𝑐 )𝑢 + 𝑧 (𝑐 )𝑣 ≥ 0, ∀(𝑢, 𝑣) ∈ 𝐸, ∀𝑐 ∈ C, (11)∑︂
𝑐∈C

𝑑
(𝑐 )
𝑢𝑣 ≤ 1 ∀(𝑢, 𝑣) ∈ 𝐸 (12)

𝑑
(𝑐 )
𝑢𝑣 ∈ {0, 1}, ∀(𝑢, 𝑣) ∈ 𝐸, ∀𝑐 ∈ C, (13)

𝑧
(𝑐 )
𝑢 ∈ {0, 1}, ∀𝑢 ∈ 𝑆, ∀𝑐 ∈ C. (14)

The total number of decision variables is (𝐾 +1) · ( |𝑆 | + |𝐸 |), and the
number of possible combinations is 2

(𝐾+1) ·( |𝑆 |+ |𝐸 |)
. Constraint (9)

is similar to (3) and requires that the objective function aims to

minimize𝐺 . Constraint (10) ensures that the cut 𝑐−1 comes “before”

the cut 𝑐 , i.e., all the stages before the cut 𝑐 − 1 will also be before

the cut 𝑐 . Constraint (11) is similar to the single-cut formulation,

and Constraint (12) ensures that the cuts do not overlap.

5.2 Freeing Temp Data Storage in Hotspots
With checkpointing, temp data for stages before the cut can be

cleared when all the checkpoint stages finish as opposed to the

end of the job. And this time difference is equal to the shortest

TTL among those stages (the last one to finish). For saving temp

data storage on hotspots, we maximize the saving calculated as the

product of the shortest TTL and the sum of the total output sizes

for stages in Group I and II,

∑︁
𝑣∈𝑆 :𝑧𝑣=1

𝑜𝑣 min𝑢:𝑧𝑢=1 𝑡𝑢 . Considering

the cost factor of using global storage to be 𝛼 , the IP formulation is

as follows:

max

𝑧𝑢 ,∀𝑢∈𝑆
𝑑𝑢𝑣 ,∀(𝑢,𝑣)∈𝐸

𝑇 − 𝛼𝐺 (15)

s.t.𝑇 =
∑︂
𝑢∈𝑆

𝑜𝑢𝑤𝑢 , (16)

𝑤𝑢 ≤ 𝑡 +𝑀 (1 − 𝑧𝑢 ), ∀𝑢 ∈ 𝑆, (17)

𝑤𝑢 ≤ 𝑀𝑧𝑢 , ∀𝑢 ∈ 𝑆, (18)

𝑡 ≤ 𝑡𝑢 +𝑀 (1 − 𝑧𝑢 ), ∀𝑢 ∈ 𝑆, (19)

(2) − (6),

where,𝑇 calculates the total saving for temp data storage and𝑀 is

a sufficiently large number. Given Constraints (17) and (18),𝑤𝑢 = 𝑡

if 𝑧𝑢 = 1 else 0 in the maximization problem. Therefore,𝑤𝑢 = 0 for

stages after the cut with 𝑧𝑢 = 0. Similarly, Constraint (19) calculates

the minimum TTL for stages before the cut in this maximization
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problem. 𝑡 ≤ 𝑡𝑢 when 𝑧𝑢 = 1 and 𝑡 ≤ 𝑀 when 𝑧𝑢 = 0, which can

be ignored. This set of constraints ensure that in the maximization

problem, 𝑡 is equal to the minimum of 𝑡𝑢 ∀𝑢 where 𝑧𝑢 = 1.

For the cases with multiple cuts, the formulation is as follows:

max

𝑧
(𝑐 )
𝑢 ,∀𝑢∈𝑆, 𝑐∈C

𝑇 − 𝛼𝐺 (20)

s.t.𝑇 =
∑︂
𝑢∈𝑆

𝑜𝑢

∑︂
𝑐∈C

𝑤
(𝑐 )
𝑢 , (21)

Δ𝑧 (0)𝑢 = 𝑧
(0)
𝑢 , (22)

Δ𝑧 (𝑐 )𝑢 = 𝑧
(𝑐 )
𝑢 − 𝑧 (𝑐−1)

𝑢 , ∀𝑐 ∈ {1, · · · , 𝐾 }, (23)

𝑤
(𝑐 )
𝑢 ≤ 𝑡 (𝑐 ) +𝑀 (1 − Δ𝑧 (𝑐 )𝑢 ), ∀𝑢 ∈ 𝑆, ∀𝑐 ∈ C, (24)

𝑤
(𝑐 )
𝑢 ≤ 𝑀Δ𝑧 (𝑐 )𝑢 , ∀𝑢 ∈ 𝑆, ∀𝑐 ∈ C, (25)

𝑡 (𝑐 ) ≤ 𝑡𝑢 +𝑀 (1 − 𝑧 (𝑐 )𝑢 ), ∀𝑢 ∈ 𝑆, ∀𝑐 ∈ C, (26)

(8) − (14).

Constraints (22) and (23) introduce Δ𝑧
(0)
𝑢 , indicating if stage 𝑢 is

before the cut 0, and Δ𝑧
(𝑐)
𝑢 ∀𝑐 ∈ {1, · · · , 𝐾} indicating if stage 𝑢

is between the cuts 𝑐 − 1 and 𝑐 . Given Constraints (24) and (25),

𝑤
(𝑐)
𝑢 = 𝑡 (𝑐) for stages with Δ𝑧

(𝑐)
𝑢 = 1, else 0 in this maximization

problem. 𝑡 (𝑐) in Constraint (26) calculates the minimum TTL for

stages before the cut 𝑐 . 𝑡 (𝑐) ≤ 𝑡𝑢 when 𝑧
(𝑐)
𝑢 = 1, and 𝑡 (𝑐) ≤ 𝑀

when 𝑧
(𝑐)
𝑢 = 0. In the maximization problem, 𝑡 (𝑐) is equal to the

minimum of 𝑡𝑢 ∀𝑢 where 𝑧
(𝑐)
𝑢 = 1. Combining Constraints (24), (25)

and (26), for each stage, we calculate the corresponding temp data

saving based on the minimum TTL for stages in the same group

who are between the same pair of cuts. Since all constraints in the

formulation are linear, the IP can be solved by existing solvers.

Solving the above IP over large execution graphs can take long,

and given that we need to solve the IP for every job, it can quickly

become operationally expensive. Therefore, we propose a heuristic-

based solution to solve the IP formulation from the previous section

at interactive speed, i.e., it can be run during job execution. The

key idea is to maximize the objective and apply the global storage

constraint separately, i.e., ignore the cost of using global storage

when determining the cuts and consider adding only one cut. As a

result, the IP formulation reduces to have only one set of decision

variables, 𝑧𝑢 ∀𝑢 ∈ 𝑆 .

(OptCheck1) max

𝑧𝑢 ,∀𝑢∈𝑆
𝑇 (27)

s.t. (6), (16) − (19).

The above reduction has the following interesting property.

Proposition 5.1. For any model primitives 𝑡𝑢 and 𝑜𝑢 , there exists
optimal solutions 𝑧∗ of problem OptCheck1 such that there exists
𝑣 ∈ 𝑆 such that 𝑧∗𝑢 = 1,∀𝑢 ∈ 𝑆 : 𝑡𝑢 ≥ 𝑡𝑣 and 𝑧∗𝑢 = 0,∀𝑢 ∈ 𝑆 : 𝑡𝑢 < 𝑡𝑣 .

Proof. We prove by contradiction, suppose there exists an op-

timal solution 𝑧′ such that there exists 𝑢,𝑢 ′ ∈ 𝑆 , such that 𝑧′𝑢 =

0, 𝑧′
𝑢′ = 1 and 𝑡𝑢 > 𝑡𝑢′ . Constructing a new solution 𝑧∗ as follows:

𝑧∗𝑢 = 1, (28)

𝑧∗𝑣 = 𝑧′𝑣, ∀𝑣 ≠ 𝑢. (29)∑︂
𝑣∈𝑆 :𝑧∗𝑣=1

𝑜𝑣 min

𝑢:𝑧∗𝑢=1

𝑡𝑢 =
∑︂

𝑣∈𝑆 :𝑧∗𝑣=1

𝑜𝑣 min

𝑢:𝑧′𝑢=1

𝑡𝑢 ≥
∑︂

𝑣∈𝑆 :𝑧′𝑣=1

𝑜𝑣 min

𝑢:𝑧′𝑢=1

𝑡𝑢 . (30)

Figure 6: Potential temp data saving as a function of time.

This indicates that for any optimal solutions 𝑧′ that does not satisfy
the conditions stated in the proposition, we can always find another

one 𝑧∗ with at least the same objective value. □

Therefore, we can enumerate the different combinations
for 𝑧𝑢 for all the stages in an efficient way. Specifically, we
start from the first stage (ordered by TTL) and set its 𝑧𝑢 to 1 and

the others to 0. Then, we incrementally add more stages to the side

before the cut, set their 𝑧𝑢 to 1, and evaluate the corresponding

objective value for each new solution. This is equivalent to finding

the optimal timestamp before which all stages have 𝑧𝑢 = 1 and the

total number of combinations is |𝑆 |. We consider the global storage

cost separately and discuss that in Section 5.4.

This enumeration process is illustrated in Figure 6. Consider-

ing the execution process of a query job, after each stage finishes,

the corresponding output will be saved to the temp data storage.

Therefore, the total size of the temp data storage being used is

increasing monotonically in time with more stages finishing. On

the other hand, assuming that at the end time of stage 𝑠 , we decide

to clear the temp data storage for all the previous stages, the result-

ing saving for the temp data storage is equal to the TTL for this

stage multiplied by the current temp storage usage size. The global

storage space needed for Group III stages can be inferred based on

the current execution status for each stage.

5.3 Restarting Failed Jobs
Some approaches [14, 43, 46] assume a distribution of the inter-

arrival time for failures/interrupts given the mean time between

failures/interrupts (MTBF/MTBI) as parameters. Others [10, 52, 58]

assume a fixed probability of failure for an operator running on a

worker node. In Cosmos, the execution time of tasks (30-40 seconds

on average) has much less variation compared to the total job

runtime (ranging from seconds to days). Therefore we find both

the two assumptions above to hold.

Let 𝛿 denote the average failure rate for a task, it can be ap-

proximated by the average task runtime and MTBF, given that the

average runtime is much shorter than MTBF:

𝛿 ≈ E(Task Runtime)/𝑀𝑇𝐵𝐹 . (31)

For Cosmos, 𝛿 ≪ 0.05, meaning that MTBF is in the order of hours.

The probability of failure for stage 𝑢 with 𝑣𝑢 tasks is equal to the

probability of having no tasks to fail, which follows a binomial
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distribution:

1 − (1 − 𝛿)𝑣𝑢 ≈ 𝛿𝑣𝑢 . (32)

Let 𝑡𝑢¯ denote the time from start (TFS) for stage 𝑢, indicating the

time interval from the job start time to the stage start time. The IP

formulation for maximizing the recovery time saving with a single

cut and not consider the global storage is as follows:

(OptCheck2) max

𝑧𝑢 ,∀𝑢∈𝑆
𝑃𝐹𝑇 (33)

s.t.𝑇 ≤ 𝑡𝑢¯ (1 − 𝑧𝑢 ) +𝑀𝑧𝑢 , (34)

𝑃𝐹 =
∏︂
𝑢∈𝑆

(1 − 𝛿𝑣𝑢 )𝑧𝑢
(︄
1 −

∏︂
𝑢′∈𝑆

(1 − 𝛿𝑣𝑢′ )1−𝑧𝑢′
)︄
, (35)

𝑧𝑢 ∈ {0, 1}, ∀𝑢 ∈ 𝑆, (36)

where Constraint (34) calculates the minimum TFS for all stages in

Group III, i.e., 𝑧𝑢 = 1. Constraint (35) calculates the probability of

failure in one of the stages on the side after the cut but not before.

One can prove the optimal solution of the problem OptCheck2 has

the similar property as in OptCheck1. Therefore, the same heuristic

solution can be applied to incrementally add stages to the side before

the cut and search for the optimal checkpoint time. To maximize the

expected time saving for the checkpoint mechanism considering

the probabilities of stage failures, the trade-off is between a higher

failure probability and a larger saving for the restarting time. A

figure similar to Figure 6 can be generated to show the changes

of the probability of failing after a stage and the corresponding

recovery time saving estimated based on the time from start (TFS)

for the corresponding checkpoint stages, as a function of time.

5.4 Capacity Constraints on Global Storage
The global storage is a separate storage system where the data is

3x replicated and, for operational reasons, it is cleaned regularly

(e.g., every 7 days). At SCOPE scale, this translates in a capacity

in the order of a few PBs per day. In the previous sections we did

not consider the cost of using the global storage. However, we can

incorporate global storage constraints when selecting the jobs for
checkpointing. Given the hundreds of thousands of jobs running

every day, we can only checkpoint a fraction of them due to the

checkpoint costs and overheads involved. Therefore, based on the

objective value and the space needed for global storage for each

job, we can be more selective about which job to checkpoint and

achieve a high cost-benefit ratio. For instance, as shown in Figure 2,

long-running jobs are more likely to fail due to the large number

of tasks. Thus checkpointing can be enabled only for long-running

jobs.

Consider a time period𝑇 (e.g., 1 day) and let the checkpoint bud-

get for global storage be𝑊 . Let𝑤𝑖 denote the global storage space

needed and 𝜋𝑖 denote the ratio between the objective value and

the global storage needed for job 𝑖 . The problem of applying global

storage constraint can be seen as an online stochastic knapsack

problem [33]. The problem is challenging and it has been proved

that there is no online algorithm that achieves any non-trivial com-

petitive ratio [33]. In Phoebe, we propose a simpler threshold-based

algorithm that takes into account the arrival rate of jobs and the

distributions for the weights and value-to-weight ratio based on

the model estimation. The intuition behind this approach is that we

want to select the items that are most “cost-effective” and, ideally,

an optimal policy will select the items with high values of 𝜋 . With

higher job arrival rates, the probability of selecting each job is fur-

ther reduced. Thus, if an itemwith estimated weight𝑤𝑖 arrives with

estimated value-to-weight ratio of 𝜋𝑖 at time 𝑡 , when the remaining

resource capacity 𝑛(𝑡) is larger or equal to its weight 𝑤𝑖 and its

value-to-weight ratio is larger than the predefined threshold, 𝜋∗,
the item is accepted, otherwise the item is rejected. That is,

𝐷
(︁
𝑤𝑖 , 𝜋𝑖 , 𝑛 (𝑡 )

)︁
=

{︄
1 if 𝜋𝑖 ≥ 𝜋∗

and 𝑛 (𝑡 ) ≥ 𝑤𝑖 ,

0 otherwise,

(37)

where,𝐷
(︁
𝑤𝑖 , 𝜋𝑖 , 𝑛(𝑡)

)︁
is the binary decision variable to accept/reject

an item 𝑖 . This policy ensures that in the set of accepted items, their

average estimated value-to-weight ratios are larger than 𝜋∗. Assum-

ing that the two distributions of weight and value are independent,

we can define:

𝜋∗ = Φ𝜋 (1 − 𝑝), and (38)

𝑝 =
𝑊

𝜆𝑇E𝑤 (𝑤) , (39)

where Φ𝜋 (𝜋) is the cumulative distribution function for 𝜋 , and 𝑝

denotes the ratio between the total resource capacity, i.e., the total

global available storage space, and the expected total weights for all

the arriving items. The denominator calculates the expected total

weights by taking the product of the arrival rate 𝜆, 𝑇 , according

to Little’s Law [32], and the expected weight for the items, E𝑤 (𝑤),
assuming that theweight distributions for all items are i.i.d.Without

capacity constraints, one can show that this threshold of 𝜋∗ results
in the expected total weights for the selected items to be equal to

the total capacity.

5.5 Discussion
We now discuss the trade-offs with our checkpoint optimizer. The

heuristic method for selecting the checkpoint stages is simple and

fast. It does not require solvers for the optimization formulation,

however it involves sorting stages as a pre-processing step and uses

brute-force search for identifying the optimal set of checkpoints.

Since we enumerate over all feasible solutions, considering the

global storage constraint at the same time would be expensive as

for each possible cut, the global data size needs to be computed by

examining the full execution graph. Therefore, we incorporate the

global storage constraint in a separate step, which dramatically re-

duces the computation complexity. The heuristic method, however,

is not as flexible as the holistic integer programming solution in

terms of adding additional constraints or considering multiple cuts.

However, practically, it is more desirable to create single check-

points in more jobs than multiple checkpoints in a given job.

The same formulation as in OptCheck and OptCheck2 can be gen-
eralized to optimize the checkpoint decisions jointly across multiple

jobs, e.g. jobs in the queue. However, the computation complexity

increases significantly. In Phoebe, we consider a two-step approach

to (1) choose the most profitable jobs for the checkpoint using an

online stochastic knapsack framework as shown in Section 5.4; and

(2) pick the optimal checkpoints for the selected jobs.

Finally, Phoebe’s architecture is flexible: modules can be replaced

or removed depending on the performance requirement. For in-

stance, the ML predictor for TTL can be removed as the optimizer

can use the estimated TTL from the job runtime simulator directly.

In the extreme case, the optimizer can use some basic “prediction”

for the stage costs, e.g., assuming a constant output size and run-

time for each stage and simply make decisions based on the query
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Figure 7: Accuracy for LightGBM models for predicting
stage execution time (left), stage output size (middle), and
time-to-live (right).

execution graph and the outputs of the job runtime simulator (re-

sults can be seen in Section 6). In this sense, the cuts are mostly

selected based on the count of stages.

6 EXPERIMENTS
In this section, we evaluate Phoebe (1) using back-testing over

production Cosmos workloads; and (2) executing a smaller set of

jobs for impact on performance. We first evaluate the accuracy of

stage-wise cost models (output size and execution time), and then

evaluate the effectiveness of checkpoint optimization for two appli-

cations, namely, freeing up local storage on hotspots and quickly

restarting failed jobs. We also provide anecdotal evidence of how

Phoebe can help other checkpoint applications. For all experiments,

we used the production workload for SCOPE jobs over different

days (with hundreds of thousands of jobs per day).

6.1 Stage-Level Predictors
We evaluated the prediction accuracy for both the LightGBM and

DNN models as discussed in Section 4.

LightGBM Models. We developed the general and stage-type spe-

cific LightGBM models with 5-days data (with 13.0 million samples)

and testing on 1-day data (with 2.9 million samples). Figure 7 shows

the prediction accuracy for the stage-type specific models color-

coded by the stage types. Since there are 33 stage-types, we have

33 models each for predicting the execution time and the output

size. The 𝑅2
values for the LightGBM models are 0.85 and 0.91 for

the execution time and output size predictions respectively.

The 𝑅2
for predicting the time-to-live (TTL) is 0.35 (see right

of Figure 7), which is not as good due to slightly over-estimation.

Future work can focus on improving the accuracy by incorporating

more specific rules in the simulator or applying more fine-grained

stacking models, such as dependency-type specific models. How-

ever, the correlation between the prediction and the true value is

relatively high (0.77). Note that, in the optimization module, the

absolute values for TTL are not as important as the relative scale.

A model that can capture the correct order of the TTL is anyways

helpful in improving the checkpoint objective (see Section 6.2).

Based on Permutation Feature Importance (PFI) [7], the top 5

important features for one of the trained cost models are: Esti-
mated Exclusive Cost (0.75), Estimated Cardinality (0.13), Historic

MergeJoin Latency (0.10), Estimated Input Cardinality (0.06), and

Historic Reduce Latency (0.06), measured by the reduction of 𝑅2
if

shuffling the corresponding entry of the features. We can see that
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Figure 8: Performance accuracy with testing days further
away from the training period.

Figure 9: Accuracy for end-to-end job run-time prediction.

it is the mixture of estimated cardinality from the query op-
timizer and the historic information that jointly improves
the prediction accuracy.

To better understand the implication of the models, we ran addi-

tional experiments to use the perfect cardinality estimation as inputs.
The 𝑅2

metric is improved only by 0.04-0.05, which indicates the

effectiveness of our approach that automatically adjusts for the

biases in the inputs (i.e., cardinality estimates). If we use stage-type

as features, the accuracy is not as good: for the prediction of the

output sizes, the 𝑅2
is reduced from 0.91 to 0.84; for the execution

time instead the 𝑅2
is reduced from 0.85 to 0.72.

Another important measurement of performance is the gener-

alization of the trained model to future days, which determines

the frequency needed to retrain the ML models. In production, we

need to determine the frequency for retraining and deploying new

models to keep up with the changes in data distribution. In Figure 8,

we measure the performance of the trained model on testing data

that is further away from the time frame where the training data is

extracted from (e.g., 1 day after, 2 days after, etc.). We can see that

the accuracy reduces gradually as the testing dates move over time.

DNN Models. We developed the general DNN models for both the

execution time and output size using the same data. The 𝑅2
values

for the DNN models are 0.84 and 0.89 for the execution time, and

output size prediction, respectively.

Benchmark of Existing Models. Figure 9 shows the distribution of

prediction accuracy for the end-to-end job execution time from

Phoebe (top) compared with CLEO [47] (bottom), measured by QEr-

ror [36] in origin scale (e.g., in seconds). The QError is a commonly
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Figure 10: Runtime comparison of the heuristic solution
with IP solution having different numbers of cuts.

usedmetric for measuring the accuracy of cardinality estimates [38].

It is defined by: QError(𝑦, �̂�) = max{𝑦/�̂�, �̂�/𝑦} where 𝑦 and �̂� de-

note the actual and predicted values respectively. The QError of

CLEO has a long tail (see right of Figure 9), meaning that for a small

portion of jobs, the estimation is not good, and those are usually

long-running jobs (>66% longer on average than all the jobs). This

is consistent with our observation that the cost models have lower

accuracy for large complex query plans.

Discussion. The training time for DNNmodels ismuch longer
than the LightGBM models. Each (general) DNN model takes

over 40 hours with a standard virtual machine with 6 Cores, 56

GB RAM, and an NVIDIA Tesla K80 GPU. This is partially due

to the large size of the training data as well as the introduction

of the LSTM layer for the featurization of the text columns. One

potential improvement is to replace it with attention layers such as

transformers to allow better parallelization with GPU. Compared

with the general DNN models, the stage-type specific model based

on LightGBM is slightly more accurate. And the training time is

much shorter, in the order of minutes. Therefore, in the following

sections, we use the prediction results from LightGBM as the input

to the optimizer.

6.2 Freeing Temp Data Storage in Hotspots
We now evaluate the checkpoint algorithm for freeing up temp

data storage on local SSDs in hotspots using back-testing, i.e., to

see how well the algorithm would have done ex-post.

Integer Programming. We implemented the integer programming

(formulation for freeing up temp data storage subject to different

numbers of cuts as well as the cost for global data storage). We used

Google OR-Tools [41] with CBC solver [17] on Azure ML [11]. In-

deed, the IP solution is more general since it considers multiple cuts

and different costs for the global storage. However, as illustrated in

Figure 10, the processing time of using solvers is two orders of mag-

nitude longer than the heuristic solution that looks for the optimal

checkpoint time. The IP solutions provide interesting insights:

• Adding more cuts is not cost-effective. Figure 11 shows
the Pareto frontier for freeing up temp data storage. The

x-axis shows the median usage for the global storage nor-

malized by the total original temp data usage across all jobs.

The y-axis shows the median temp data saving also normal-

ized by the original temp data usage. As we can see, adding

more cuts is only helpful for large jobs (with >14 GB*Hour

temp data usage), and not for all jobs. Therefore, we can have

different checkpoint strategies for different types of jobs.

Figure 11: Pareto frontier for multiple cuts.
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Figure 12: Percentage of temp data storage saving for differ-
ent checkpointing approaches.

• There are jobs with “free” cuts. Based on the IP formula-

tion that inserts a high cost for global storage, we found jobs

with sub-graphs that are independent of each other, resulting

in free checkpoints, i.e., not requiring any global storage.

Optimal Checkpoint Time. Figure 12 shows the daily average per-

centage of temp data storage saving for the different approaches

based on 6-day’s observations with approximately 405,000 jobs

in one of the Cosmos clusters. The error bar shows the standard

deviation. We consider the following approaches:

(1) Random: using a random checkpoint selector that randomly

selects stages as the global checkpoints;

(2) Mid-Point (MP): using the estimated stage scheduling from

the job runtime simulator, cut the execution graph into two

based on the mid-point of the total job execution time;

(3) Optimizer + Estimated Cost (OP): using the estimated cost

from the query optimizer for the output size/execution time

for each stage as the inputs to the job runtime simulator and

the proposed optimizer;

(4) Optimizer + Constant Cost (OCC): similar to Optimizer + Es-
timated Cost, assuming a simple constant for the output size

and execution time for each stage;

(5) Optimizer + ML Cost Models (OML): the proposed optimizer

that uses ML predictions as inputs and uses the estimated

TTL from the job runtime simulator;

(6) Optimizer + ML Cost Models + Stacking Model (OMLS): the
proposed optimizer using the TTL from the stacking model;

(7) Optimal: the optimal off-line checkpoint optimizer based on

the knowledge of the true output size and TTL for all stages.

We can see that the random optimizer can only free up 36% of

temp data storage on average, measured by the portion of temp data
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Figure 13: Cumulative temp data storage saving as a func-
tion of global storage used.

storage that can be cleared in the unit of Petabytes*Hour (PB*Hour).

By further improving on the estimation of the output size, our pro-

posed optimizer without the stacking model can free up to 67%

of temp data storage on average, while with the stacking model

the percentage further increases to 74%. This is not very far from

the optimal off-line optimizer, which frees up to 76%. While we

thought that using the cost from the optimizer (Estimated Costs)

can improve the performance compared to using the constant cost,

the corresponding temp data saving is actually worse, which is due

to the large errors in cost estimation from the optimizer. Thus, us-
ing the job runtime simulator and learned stage-wise costs
significantly increases the saving in temp data storage on
hotspots.

Figure 13 shows the temp data saving with respect to the cu-

mulative usage of the global data storage under different capacity

constraints for the global storage. The 5
th
and 95

th
confidence level

on the saving is also shown. We can see that with a larger capacity,

the total temp data saving increases. However, because we are less

selective about the jobs, the average value-to-weight ratio for the

selected pool of jobs and the slope for the curve decreases. There-

fore, to determine the best size of the capacity limit for the global

storage, we should take into account the corresponding costs for

the two types of storage and determine the optimal value.

6.3 Restarting Failed Jobs
We now present the experiment results for the heuristic method

for maximizing the recovery time when restarting failed jobs. We

used 1-day’s data with approximately 62,000 jobs, and we evaluate

4 algorithms to select the optimal checkpoints:

(1) Random: using a random checkpoint selector that randomly

selects stages as the global checkpoints;

(2) Mid-Point3: cut the execution graph based on the mid-point

of the total job execution time based on estimated scheduling;

(3) Phoebe: the proposed method that uses the model prediction

for the stage scheduling as well as the estimated probability

of failures for each stage.

3
Note that the cost-based approach proposed by [43] for minimizing the potential

maximal total cost (execution cost and materialization cost for the dominant execution

path) through enumeration is infeasible in Cosmos because of the size of the DAGs

and the presence of spool operators [30]. Mid-point is a simple heuristic that extracts

the “longest” execution path according to the stage execution schedule, and picks the

mid-point timestamp and the corresponding last finished stages as the checkpoints.

This strategy maximizes the total cost reduction on the dominant path.

(4) Optimal: the optimal off-line checkpoint optimizer based on

the knowledge of the actual stage scheduling and failure

probabilities for all stages.

Figure 14 shows the distribution of the percentage of recovery

time saving for the 4 algorithms at the job level. The average per-

centage saving for the expected recovery time is 36% for the Random

algorithm, 41% for the Mid-Point algorithm, 64% for Phoebe, and

73% for the Optimal algorithm. We can see that by introducing the

predictions on stage scheduling and the estimated failure probabili-

ties, the recovery time saving improves. However, more work can

be done to further improve the estimation accuracy for the TFS.

6.4 Overheads and Production Test
Phoebe adds the following overheads on top of the SCOPE compiler:

(1) metadata and model lookup: 15ms on average; (2) scoring and

optimization: 1.09s; and (3) query optimization, which is negligible.

As we materialize checkpoints by adding an additional stage that

executes in parallel, the overhead for data writing is usually hidden

by other parts of the job execution plan. In sum, we are expecting

approximately 1s overhead in total compared to several minutes of

end-to-end job compilation, which is acceptable.

We deployed Phoebe in the production environment and applied

the checkpoint mechanism to over 1000 random analytic jobs (514

hours of total job execution time). The median increase in latency

was just 1.8%. If a more constrained overhead is required, we can

select simpler predictors as for example suggested in Figure 12. We

tested on another 256 large jobs (with >1h job runtime). Figure 15

shows the distributions of percentage impact on latency and IO

time.While the IO time for some jobs increased by >20%, themedian

increase for latency is only 2.6%. Among those long-running jobs,

the average percentages of data checkpointed and temp data storage

saved are 12.3% and 48.6% respectively.

6.5 Other Checkpoint Applications
We present a couple of anecdotal evidence on how Phoebe can

also help other checkpoint applications. For instance, in one of our

new SKUs in Cosmos, the local SSDs are not scaled in the same

ratio as CPU cores. As a result, accommodating similar volumes of

temporary storage would preclude from leverage the full compute

capacity. Using Phoebe, we could reduce the temp storage load, and

help increase the number of containers per machine by up to 28%.

In another application, extremely large SCOPE jobs could run for

several hours, making the query plan highly sub-optimal. Splitting

one such large production job into smaller ones that have more

accurate cost estimation thus better-optimized query plans resulted

in its runtime to decrease from 30+ to 20+ hours.

7 RELATEDWORK
In this section, we describe the different checkpointing mechanisms

and systems. We also discuss the recent machine learning based

approaches that predict characteristics like cardinality, operator

cost, and resource allocation for query plans.

Runtime Checkpointing. This set of techniques make check-

pointing decisions while the job is running. They are dynamic and

more suitable for black-box workloads. By optimizing the check-

pointing intervals [14], runtime checkpointing is easier to optimize
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Figure 14: Distribution of expected recovery time saving (at the job level) for failed jobs.

Figure 15: Checkpointing impact on latency and IO time.

and more applicable for transient resource environments. For exam-

ple, Flint [46] and TR-Spark [57] focused on optimizing the check-

point intervals and the selection of servers/tasks for replication to

minimize the application runtime.

Compile-time Checkpointing. This set of techniques leverage
query characteristics and propose optimal checkpoints at the task

or operator-level. For example, FTOpt [52] developed a cost-based

fault-tolerance optimizer to determine the (1) fault-tolerance strat-

egy and (2) the frequency of checkpoints for each operator in a

query plan. FTOpt works with non-blocking query plans only. Os-

prey [58] proposed the intra-query checkpoint mechanism for a

distributed database system, and preserved the intermediate outputs

for all sub-queries. But Osprey does not support general workloads

with self-joins and nested queries. Similarly, [10] proposed a divide-

and-conquer algorithm to solve a similar optimization problem.

However, they do not consider temporary data saving costs or en-

force any global storage constraints. The authors in [43] describe a

cost-based checkpoint approach by enumerating all possible query

plans and materialization configurations. Their algorithm relies on

the cardinality estimates provided by the optimizer to find the query

plans with the shortest dominant path under mid-query failures.

However, prior work [56] has shown that big data query optimizers

often under / over estimate cardinalities. They are also not appli-

cable for distributed systems as they do not consider estimating

costs for stages instead of operators. Production systems frequently

encounter large jobs with hundreds or even thousands of stages,

where the above algorithms prove to be inefficient.

Checkpointing in streaming systems. The checkpointing prob-
lem has also been studied in the context of stream processing sys-

tems. In streaming systems, fault-tolerant operator implementa-

tions employ logging [4], replication [29], and scaling out tech-

niques [8] to reduce the cost of failure recovery. In contrast, we

employ a restart-after-failure mechanism that minimizes the wasted

computation in large-scale analytical programs.

We now review prior work that uses machine learning for cost

prediction and query optimization.

Cost Models and Query Optimization [35] proposed a plan-
structured deep neural networks to incorporate information from

individual operator level to the full query plan and predict the job

performance. Neo [34] used a similar DAG representation, the tree

convolution [37], to predict the total execution latency for a given

query plan. By searching over the space of the plans, the model

discovered the optimal plan with the minimum expected execution

time. [40] introduced the subquery representation for each state. The
concept is similar to the internal neural unit [35], i.e., to concate-

nate the featurization of a sub-query with a new operation for the

representation of a larger sub-query. Unfortunately, DNN solutions

are not suitable for larger complex query graphs, that are found

in big data systems such as Cosmos, due to the fact that many

CNN layers will be stacked, which results in gradient vanishing or

explosion. This is the same problem faced by DNN models before

residual/highway connections were introduced [18, 20]. Whether

a similar approach applied in our case is future work. [26] pro-

posed to featurize query plans using topological features which

doesn’t capture the detailed dependency between operator and

stages, therefore is too general to capture the heterogeneity among

complex query plans. Similar to CLEO [47], [2] used prediction of

child operators as input to ML models to predict the parent oper-

ators’ cost. This model also leads to error prorogation that is not

suitable for large query plans. ML has also been used to improve the

estimation for cardinality [16, 28, 56]. Other works have considered

persisting intermediate results that overlap across queries [21, 48]

for computation reuse. In contrast, we focus on stage-wise cost

models. To the best of our knowledge, Phoebe is the first system to

propose cost models at the stage-level in a large distributed system

with large, complex production workloads.

8 CONCLUSION
This paper revisits the checkpointing problem in the context of big

data workloads, with complex query DAGs. We introduce Phoebe,

a learning-based checkpoint optimizer to select the optimal set of

stages to checkpoint, subject to different objective functions and

storage constraints. Phoebe leverages multiple machine learning

models built upon state-of-the-art cost models at the operator level,

to accurately predict the cost of each stage, including the execution

time, the output size, and the time-to-live. Based on the estimated

costs, Phoebe’s checkpoint optimizer selects the optimal set of

stages that maximize the checkpointing objectives, such as freeing

up temp data on local SSDs, or recovery time for failed jobs. We

validated Phoebe using production workloads, with results showing

that Phoebe is able to free up >70% of temp data storage on hotspots,

improve the recovery time of failed jobs by >60% on average, and

yet having acceptably low performance impact (less than 3%).
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