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ABSTRACT
Online Social Network (OSN) providers usually conduct advertising

campaigns by inserting social ads into promoted posts. Whenever

a user engages in a promoted ad, she may further propagate the

promoted ad to her followers recursively and the propagation pro-

cess is known as the word-of-mouth effect. In order to spread the

promotion cascade widely and efficiently, the OSN provider often

tends to select the influencers, who normally have large audiences

over the social network, to initiate the advertising campaign. This

marketing model, also termed as influencer marketing, has been

gaining increasing traction and investment and is rapidly becoming

one of the most widely-used channels in digital marketing.

In this paper, we formulate the problem for the OSN provider to

derive the influence contributions of influencers given the campaign

result, considering the viral propagation of the ads, namely influence
contribution allocation (ICA). We make a connection between ICA

and the concept of Shapley value in cooperative game theory to re-

veal the rationale behind ICA. A naive method to obtain the solution

to ICA is to enumerate all possible cascades delivering the campaign

result, resulting in an exponential number of potential cascades,

which is computationally intractable. Moreover, generating a cas-

cade producing the exact campaign result is non-trivial. Facing

the challenges, we develop an exact solution in linear time under

the linear threshold (LT) model, and devise a fully polynomial-time
randomized approximation scheme (FPRAS) under the independent
cascade (IC) model. Specifically, under the IC model, we propose

an efficient approach to estimate the expected influence contribu-

tion in probabilistic graphs modeling OSNs by designing a scalable

sampling method with provable accuracy guarantees. We conduct

extensive experiments and show that our algorithms yield solutions

with remarkably higher quality over several baselines and improve

the sampling efficiency significantly.
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1 INTRODUCTION
Online Social Networks (OSNs), such as Facebook, Orkut and Twit-

ter, serve as important media where users gain information in the

modern world. With the vast number of active users sharing in-

formation on social media, OSN providers often turn to utilizing

the social connections between users for social advertising. The

rich connections serve as fertile soil for advertising campaigns as

information can be propagated efficiently and widely with theword-
of-mouth effects. In an advertising campaign, users actively engage

in a promoted ad through social actions such as “like”, “share” or

“comment”. The influencers, who have large audiences over the

social network, are usually selected by the OSN provider to initiate

the advertising campaign. In incentivized social advertising, the

advertiser pays to the OSN provider a cost based on the number of

engagements that the influencers bring. Furthermore, a cut of the

revenue collected by the OSN providers may in turn be allocated

to the influencers for their endorsements of the advertising cam-

paign. Consequently, given the campaign result, to fairly allocate

the advertising revenue among the influencers, a natural problem

arises that how much contribution does each influencer make?
In the existing literature, e.g., in classic influence maximiza-

tion [25], a set of 𝑘 influencers are selected to maximize their total

influence without considering the individual contributions. In the

context of incentivized social advertising [2, 3], the OSN providers

often use the expected number of engagements that an influencer

can bring or the expected number of users activated by the diffusion

process, also known as influence spread, to compute the seeding

cost that the advertiser needs to pay for initiating the campaign. In-

fluence spread, representing the influence capability of influencers,

is a possible reference to measuring their contributions in advertis-

ing campaigns. However, influence spread may not be an effective

indicator of an influencer’s contribution when given the set of users

engaged in a particular campaign.

In the following, we illustrate the difference between influence

contribution studied in this paper and other influence-based metrics

in the existing literature, e.g., influence spread. Figure 1 shows a

simple network consisting of nodes (users) and directed edges (con-

nections) between nodes. Each edge is associated with a probability

that one node successfully influences the other, e.g., 𝑢 influences𝑤

with probability 0.4. Let {𝑢, 𝑣} be the influencer set. We consider

the widely adopted independent cascade (IC) model. The influence

spreads of𝑢 and 𝑣 are 1.5 and 1.6. As the influencer set is initially set
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Figure 1: An example network.

active by the OSN provider, we focus on the influence power, mea-

sured upon the engagements of the users activated by the influencer

set without considering the influence spread of the influencers on

themselves. It is easy to see that the influence powers of 𝑢 and 𝑣 are

0.5 and 0.6 respectively. However, given that𝑤 and 𝑥 are influenced

in the advertising campaign, the influence powers of 𝑢 and 𝑣 on𝑤

should be normalized by a probability of 1−(1−0.4) · (1−0.6) = 0.76

representing that𝑤 is activated by at least one influencer in the cas-

cade. Similarly, the influence power of 𝑢 on 𝑥 should be normalized

by 0.1. Then, the contributions should be 0.4/0.76 + 0.1/0.1 = 1.53

and 0.6/0.76 = 0.79 for𝑢 and 𝑣 respectively. In a word, the influence

contribution of each influencer should be measured based on its

conditional influence power given the observed campaign result.

Moreover, the influence contributions of the influencers ex-

pressed by their conditional influence powers given the campaign

result may still be imprecise when different influencers can have

influence on the same set of users. In the example of Figure 1, 𝑢 and

𝑣 can activate𝑤 simultaneously while𝑤 ’s engagement is counted

only once in the campaign result. In this case, the contribution

of 𝑢 (resp. 𝑣) on 𝑤 is compromised when 𝑣 (resp. 𝑢) successfully

activates 𝑤 and they share the same contribution to activate 𝑤 .

Thus, we need to further split the probability of 0.4 · 0.6 equally
between 𝑢 and 𝑣 to reflect their true contributions when both 𝑢 and

𝑣 activate 𝑤 . In other words, 𝑢’s contribution on 𝑤 is calculated

as

(︁
0.4 · (1 − 0.6) + (0.4 · 0.6)/2

)︁
= 0.28 and 𝑣 ’s contribution on𝑤

is

(︁
0.6 · (1 − 0.4) + (0.4 · 0.6)/2

)︁
= 0.48. As a result, the influence

contributions are 0.28/0.76 + 1 = 1.37 and 0.48/0.76 = 0.63 for 𝑢

and 𝑣 respectively. Hence, we also need to take into account the

cases when a node is influenced by multiple influencers to further

refine their contributions given the campaign result.

As illustrated by the above analysis, the influence contributions

for 𝑢 and 𝑣 given the campaign result are measured upon the condi-

tional influence power and precisely refined to tackle the influence

overlap between influencers. The influence contributions of 1.37

and 0.63 for𝑢 and 𝑣 are significantly different from the results of 1.5

and 1.6 by the influence spread method or the results of 0.5 and 0.6

by the influence power method. In this paper, we propose a solution

to compute the contributions of the influencers given the result of

an advertising marketing campaign. The influence power is hard

to obtain as there are exponentially many potential cascades in

terms of the number of edges that can deliver the given campaign

result. It is computationally intractable to naively enumerate these

possible cascades to obtain the influence contribution. A possible

alternative is to approximate the exact solutions with acceptable

errors by sampling-based methods. Nevertheless, the cascades pro-

ducing the exact campaign result are hard to sample. The existing

sampling methods are ineffective in generating the cascades that

produce the given campaign result in our problem and may waste

significant computation time on irrelevant cascades.

To obtain the influence contribution, we make the following

major contributions in this paper.

• We formally define the contributions of the influencers in a

deterministic cascade under two most commonly used diffu-

sion models, including the independent cascade (IC) model

and the linear threshold (LT) model. We then propose a novel

influence contribution allocation (ICA) problem that aims to

minimize the average mean-squared-error of influence contri-

bution with respect to every possible cascade delivering the

observed campaign result.

• We make a connection between the influence contribution

with the concept of Shapley value in cooperative game theory.

In particular, we find that the Shapley value is the exact solu-

tion for the ICA problem, which confirms the rationality of

our definition of influence contribution.

• Under the LT model, a linear time algorithm is proposed to

find the exact solution for the ICA problem, which utilizes an

elegant bottom-up approach.

• Under the IC model, a fully polynomial-time randomized ap-

proximation scheme (FPRAS) is developed. Specifically, we

propose a cascade generation method called influencer back-
track to significantly enhance the sampling efficiency. We

further boost the sampling efficiency of the state-of-the-art

stopping rule algorithm by deriving tighter bounds for the in-

fluence contributions to estimate while ensuring the accuracy

guarantee of our estimation results.

• We perform extensive experiments on real-world datasets with

up to millions of nodes and demonstrate the efficacy and effi-

ciency of our algorithms.

Applications. As we mentioned previously, in incentivized social

advertising, when the OSN provider allocates a cut of the total

revenue to the influencers for their endorsements given the result

of an advertising campaign, the ratio measured by the influence

contributions provides a fair way for allocation.

In identifying the source of misinformation, given the spread

result of misinformation and the set of suspectors, we can use the in-

fluence contributions of the suspectors as a reference to investigate

the most suspected sources of misinformation. That is, the larger

influence contribution a suspector provides, the higher probability

the supector will be the source.

Different from the existing metrics of influence spread and influ-

ence power, we need to consider the influence contributions given

the result of the marketing campaign in the above scenarios, i.e.,

our sample space only consists of the possible cascades where the

given set of nodes are activated.

Organization. The rest of this paper is organized as follows. Sec-

tion 2 introduces the preliminaries and formally defines the problem

of influence contribution allocation (ICA). Section 3 analyzes the

properties of ICA, especially leveraging the concept of Shapley

value. Section 4 presents our proposed solution to the ICA problem

under both the IC and LTmodels. Section 5 reviews the relatedwork.

Section 6 discusses the experimental evaluation. Finally, Section 7

concludes the paper.
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2 PRELIMINARIES AND PROBLEM
DEFINITION

2.1 Social Influence
2.1.1 Diffusion Model. We model an online social network as a

directed probabilistic graph 𝐺 = (𝑉 , 𝐸) where 𝑉 are the users

and 𝐸 are the connections among users. Each edge (𝑢, 𝑣) ∈ 𝐸

is associated with a probability 𝑝𝑢,𝑣 representing the probabil-

ity that 𝑢 can successfully activate 𝑣 . We denote 𝑁𝑣 as the set

of node 𝑣 ’s neighbors and 𝐼𝑣 as the set of 𝑣 ’s inverse neighbors, i.e.,

𝑁𝑣 := {𝑤 : 𝑤 ∈ 𝑉 , (𝑣,𝑤) ∈ 𝐸}, and 𝐼𝑣 := {𝑢 : 𝑢 ∈ 𝑉 , (𝑢, 𝑣) ∈ 𝐸}. A
campaign starts with a set of influencer nodes 𝑆 ⊂ 𝑉 and follows a

diffusion process. We focus on two basic and widely adopted diffu-

sion models, i.e., the independent cascade (IC) and linear threshold
(LT) models [25]. Initially, at timestamp 0, the influencer nodes in 𝑆

are activated, while all the other nodes are inactive. When a node

first becomes activated at timestamp 𝑖 , it has a single chance to

activate its inactive neighbors at timestamp 𝑖 + 1. The active nodes
remain active until the end of the diffusion process. The process

terminates when no more nodes in the graph can be activated. The

difference between the IC and LT models lies in the details of node

activation:

• ICmodel.When a node𝑢 first becomes activated at timestamp 𝑖 ,

it attempts to activate each inactive neighbor 𝑣 with probability

𝑝𝑢,𝑣 at timestamp 𝑖 + 1.
• LT model. The probabilities of the incoming edges to each node

𝑣 from its inverse neighbors 𝐼𝑣 satisfy
∑︁
𝑢∈𝐼𝑣 𝑝𝑢,𝑣 ≤ 1. Each

node 𝑣 randomly selects a threshold 𝜆𝑣 ∈ [0, 1]. If a node 𝑣
is inactive at timestamp 𝑖 , 𝑣 becomes activated at timestamp

𝑖 + 1 only if

∑︁
𝑢∈𝐴(𝐼𝑣 ) 𝑝𝑢,𝑣 ≥ 𝜆𝑣 , where 𝐴(𝐼𝑣) ⊆ 𝐼𝑣 is the set of

𝑣 ’s inverse neighbors that are activated at timestamp 𝑖 .

2.1.2 Influence Spread. Due to the stochastic nature of the dif-

fusion process, a campaign starting from an influencer set 𝑆 can

generate many different cascades. The influence spread of an influ-

encer set 𝑆 , referred to as 𝜎 (𝑆), is the expected number of nodes

activated by the diffusion process starting from 𝑆 over all possible

cascades. Furthermore, we denote by 𝜎𝜔 (𝑆) the influence spread
of 𝑆 under a given cascade 𝜔 . Usually, the influencer set is initially

set active by the OSN provider, i.e., their self-engagements are ini-

tialized by the OSN provider and should not be counted as their

contributions. Thus, we focus on the number of engagements that

𝑆 can bring, which excludes the self-influence artifact in influence

spread. We define this new influence measure as influence power,
namely 𝜎∗ (𝑆), i.e.,

𝜎∗ (𝑆) := 𝜎 (𝑆) − |𝑆 |.

2.2 Problem Definition
2.2.1 Influence Contribution. On the basis of influence power, un-

derstanding the individual contribution of each influencer in 𝑆 is

crucial. For instance, in the context of incentivized social adver-

tising [2, 3], influence contribution can be used as the indicator

for fair revenue allocation. Given a specific cascade 𝜔 , we formally

define the influence contribution as follows.

Under the IC model, we say that a node 𝑣 is influenced by an

influencer 𝑠 if there is an activation path from 𝑠 to 𝑣 . Note that an

activated node 𝑣 might be influenced by multiple influencers, as

there might be several inverse neighbors of 𝑣 activating 𝑣 simulta-

neously at timestamp 𝑖 + 1. Note also that each inverse neighbor 𝑢

of 𝑣 that first becomes activated at timestamp 𝑖 attempts to activate

𝑣 independently at timestamp 𝑖 + 1. Therefore, to measure the con-

tribution fairly with respect to the independence on activation, we

assign each influencer that influences the same node with an equal

share of contribution. The influence contribution of each influencer

under the IC model is formally defined as follows.

Definition 2.1. Under the IC model, given an influencer set 𝑆 and

a cascade 𝜔 , denote by 𝑇𝜔 (𝑠) the set of nodes influenced by 𝑠 in

the cascade 𝜔 for each 𝑠 ∈ 𝑆 , and by 𝑆𝜔 (𝑣) the set of influencers
influencing 𝑣 for each 𝑣 ∈ 𝑇𝜔 (𝑆). Then, for each influencer 𝑠 ∈ 𝑆 ,
its influence contribution, namely𝜓𝜔 (𝑠), is given by

𝜓𝜔 (𝑠) :=
∑︂

𝑣∈𝑇𝜔 (𝑠)

1

|𝑆𝜔 (𝑣) |
. (1)

Under the LT model, when a node 𝑣 first becomes activated at

timestamp 𝑖 + 1, all the active inverse neighbors of 𝑣 at timestamp 𝑖

contribute to the activation of 𝑣 . Different from the IC model, such

an activation is due to the aggregate probability weight, which

indicates that the node 𝑢 with larger probability weight 𝑝𝑢,𝑣 shall

contribute more. Therefore, to distribute the contribution in a fair

manner, we consider that 𝑢’s contribution on 𝑣 is proportional to

𝑝𝑢,𝑣 . The influence contribution under the LT model is formally

defined as follows.

Definition 2.2. Under the LT model, given an influencer set 𝑆

and a cascade 𝜔 , denote by 𝑁𝜔
𝑣 be the subset of neighbors of 𝑣

that become activated after 𝑣 , and by 𝐼𝜔𝑣 be the subset of inverse

neighbors of 𝑣 that become activated before 𝑣 . Then, the influence

contribution𝜓𝜔 (𝑢) of each activated node 𝑢 is given by

𝜓𝜔 (𝑢) :=
∑︂

𝑣∈𝑁𝜔
𝑢

(︂ 𝑝𝑢,𝑣∑︁
𝑤∈𝐼𝜔𝑣 𝑝𝑤,𝑣

·
(︁
1 +𝜓𝜔 (𝑣)

)︁ )︂
. (2)

In the above discussion, we assume that the true cascade is

known. However, in real applications, observing the true cascade,

i.e., which node activates which node or the edge status, is hard.
Instead, we can easily obtain the activation status of each node, i.e.,

the node status. In this paper, we focus on the node level feedback

model. Formally, given a set of influencers 𝑆 , let T = (𝑇 (𝑆), 𝑡) be
the node status observed from the influence propagation, where

𝑇 (𝑆) is the set of non-influencer nodes activated by 𝑆 and 𝑡 (𝑣)
indicates the activation timestamp of 𝑣 for each 𝑣 ∈ 𝑇 (𝑆). Given
a node level feedback T , there may be several cascades that can

produce the same result. For such a cascade 𝜔 , we write 𝜔 ∼ T .
Given a cascade 𝜔 , we denote T𝜔 as the node status observed in

the cascade 𝜔 . Let 𝜓T𝜔 (𝑠) be the influence contribution derived

for the influencer 𝑠 based on the observation T𝜔 . We measure the

quality based on square-error, i.e., (𝜓T𝜔 (𝑠) −𝜓𝜔 (𝑠))2. The goal of
the influence contribution allocation (ICA) problem is to find the

influence contribution of each influencer 𝑠 based on the observed

node status such that the average mean-squared-error (MSE) for all
influencers is minimized, i.e.,

argmin

∀𝑠,𝜔 :𝜓T𝜔 (𝑠)

1

|𝑆 |
∑︂
𝑠∈𝑆
E𝜔

[︂ (︁
𝜓T𝜔 (𝑠) −𝜓𝜔 (𝑠)

)︁
2

]︂
, (3)
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where the expectation is taken over the randomness of cascade 𝜔 .

The ICA problem can be decomposed into an elementary version.

Definition 2.3. Given an observed T , the ICA problem aims to

find a minimum mean-square-error (MMSE) estimator𝜓 (𝑠) of influ-
ence contribution for each influencer 𝑠 ∈ 𝑆 , i.e.,

𝜓 (𝑠) := argmin

𝜓

E𝜔∼T [(𝜓 −𝜓𝜔 (𝑠))2], (4)

where the expectation is taken over the randomness of 𝜔 with

respect to 𝜔 ∼ T .

Note that (4) is equivalent to the following problem.

argmin

∀𝑠,𝜔 :𝜓T𝜔 (𝑠)

∑︂
𝜔∼T

Pr[𝜔 ∼ T] ·
(︁
𝜓2

T𝜔 (𝑠) − 2𝜓T𝜔 (𝑠) ·𝜓𝜔 (𝑠) +𝜓
2

𝜔 (𝑠)
)︁
.

It is trivial to verify that𝜓 (𝑠) obtained from (4) for each 𝑠 ∈ 𝑆 and

each possible T is the optimal solution to the ICA optimization

problem given in (3). In the rest of the paper, we will focus on the

elementary version of the ICA problem given in Definition 2.3.

2.3 Shapley Value
The Shapley value is a solution concept known as natural interpreta-

tions of contribution in cooperative game theory. Solution concepts

are related to how much the value of a coalition is distributed to

each player in the game. In game theory, a game is defined by the

following components: a set of players, a set of possible actions

that the player can take and a utility function that relates an ac-

tion to a payoff. A cooperative or coalitional game is where the

players can coalesce to achieve higher utilities. Formally, given a

set 𝑆 of 𝑘 players {𝑠1, 𝑠2, . . . , 𝑠𝑘 }, a cooperative game is defined as

a pair (𝑆, 𝑓 ), where 𝑓 is a characteristic function expressing the

worth or value of a coalition, i.e., 𝑓 maps each subset of 𝑆 to a

(non-negative) real number, 𝑓 : 2 |𝑁 | ↦→ R+. A solution concept for

𝑆 is a vector 𝑥 = ⟨𝑥1, . . . , 𝑥𝑘 ⟩, where 𝑥𝑖 expresses the value that
should be allocated to the player 𝑠 . Among all solution concepts,

the Shapley value [34] is often used in the value-sharing literature

to prescribe the fair amount that a player should receive when it

shares a coalition with a set of players. Note that 𝑘 players can

form a coalition in 𝑘! different ways assuming all the orders that

the players participate in the coalition are equally possible. In each

permutation of the 𝑘 players, when a player joins the coalition,

it makes a marginal contribution given the existing players. The

Shapley value of a player is the average marginal contribution it

makes to all the permutations. Denote Π as the set of all 𝑘! per-

mutations, 𝜋 ∈ Π as a possible permutation, and 𝑆𝑠,𝜋 as the set of

players joining the coalition before player 𝑠 in 𝜋 . Then, the Shapley

value 𝜙 𝑓 (𝑠) of each player 𝑠 in the game (𝑆, 𝑓 ) is given by

𝜙 𝑓 (𝑠) =
1

𝑘!

∑︂
𝜋 ∈Π

(︁
𝑓 (𝑆𝑠,𝜋 ∪ {𝑠}) − 𝑓 (𝑆𝑠,𝜋 )

)︁
. (5)

Computing the Shapley value for a general cooperative game re-

quires intensive calculation and it is known to be #P-hard [15].

The Shapley value provides the following properties [34]:

(1) Efficiency:
∑︁
𝑠∈𝑆 𝜙 𝑓 (𝑠) = 𝑓 (𝑆), i.e., the sum of the Shapley

values of all players is equal to the value of the grand coalition.

(2) Symmetry: For any players 𝑠𝑖 , 𝑠 𝑗 ∈ 𝑆 , if ∀𝑆 ′ ⊆ 𝑆 \ {𝑠𝑖 , 𝑠 𝑗 },
𝑓
(︁
𝑆 ′ ∪ {𝑠𝑖 }

)︁
= 𝑓

(︁
𝑆 ′ ∪ {𝑠 𝑗 }

)︁
, then 𝜙 𝑓 (𝑠𝑖 ) = 𝜙 𝑓 (𝑠 𝑗 ), i.e., if two

u w

v x

y

z

(a) Graph𝐺

u w

v x

y

(b) Cascade graph (IC)

u w

v x z

(c) Cascade graph (LT)

Figure 2: Example cascade graph.

players have the same marginal contributions on any coalition,

they have the same Shapley values.

(3) Linearity: Given two characteristic functions 𝑓1 and 𝑓2, for any
𝑥,𝑦 > 0 and 𝑆 ′ ⊆ 𝑆 , 𝜙𝑥 𝑓1+𝑦𝑓2 (𝑆 ′) = 𝑥 ·𝜙 𝑓1 (𝑆 ′) +𝑦 ·𝜙 𝑓2 (𝑆 ′), i.e.,
the Shapley values of a linear combination of two characteristic

functions are given by the linear combination of the Shapley

values of the individual characteristic functions.

(4) Null Player: For any player 𝑠 ∈ 𝑆 , if ∀𝑆 ′ ⊆ 𝑆 \ {𝑠}, 𝑓
(︁
𝑆 ′ ∪

{𝑠}
)︁
− 𝑓 (𝑆 ′) = 0, then 𝜙 𝑓 (𝑠) = 0, i.e., if a player has zero

marginal contribution on any coalition, its Shapley value is 0.

3 PROPERTY OF INFLUENCE CONTRIBUTION
In this section, we give several important properties of influence

contributions, especially leveraging the concept of Shapley value.

3.1 MMSE Estimator
We first show that the MMSE estimator𝜓 (𝑠) of influence contribu-
tion defined in (4) is the conditional expectation of𝜓𝜔 (𝑠) given the

known observed activation status T .

Proposition 3.1. Given an observed T ,𝜓 (𝑠) satisfies

𝜓 (𝑠) = E𝜔∼T [𝜓𝜔 (𝑠)] . (6)

Proof. Given a T , we have

E𝜔∼T [(𝜓 −𝜓𝜔 (𝑠))2]
= 𝜓2 − 2𝜓E𝜔∼T [𝜓𝜔 (𝑠)] + E𝜔∼T [(𝜓𝜔 (𝑠))2]

=

(︂
𝜓 − E𝜔∼T [𝜓𝜔 (𝑠)]

)︂
2

+ E𝜔∼T [(𝜓𝜔 (𝑠))2] − E2𝜔∼T [𝜓𝜔 (𝑠)],

which is minimized when𝜓 = E𝜔∼T [𝜓𝜔 (𝑠)]. □

3.2 Cascade Graph
Given an influencer set 𝑆 and an observed node activation status T ,
we extract a subgraph 𝐷 from the original graph 𝐺 , referred to as

cascade graph, that characterizes the potential cascades. Specifically,
all the nodes in 𝑆 ∪𝑇 (𝑆) form the node set of 𝐷 . The edge sets of

𝐷 under the IC model and the LT model are slightly different.

• IC Model. For every (𝑢, 𝑣) ∈ 𝐺 , (𝑢, 𝑣) ∈ 𝐷 if 𝑡 (𝑢) = 𝑡 (𝑣) − 1.
• LT Model. For every (𝑢, 𝑣) ∈ 𝐺 , (𝑢, 𝑣) ∈ 𝐷 if 𝑡 (𝑢) < 𝑡 (𝑣).

Example 3.2. As shown in Figure 2, given a social graph in Fig-

ure 2(a) with campaign result T =
(︁
{𝑤, 𝑥,𝑦}, {𝑡 (𝑥) = 𝑡 (𝑤) =

1, 𝑡 (𝑦) = 2}
)︁
under the IC model, the cascade graph 𝐷 extracted

from 𝐺 is shown in Figure 2(b). Given the campaign result T =(︁
{𝑤, 𝑥, 𝑧}, {𝑡 (𝑥) = 1, 𝑡 (𝑤) = 2, 𝑡 (𝑧) = 3}

)︁
under the LT model, the

cascade graph 𝐷 extracted from 𝐺 is shown in Figure 2(c).
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Clearly, every possible cascade 𝜔 ∼ T is based on 𝐷 . Thus,

unless specified otherwise, our discussions are on 𝐷 only and the

notations are also on 𝐷 , e.g., 𝐼𝑣 is the set of 𝑣 ’s inverse neighbors

in 𝐷 . It is trivial to see that 𝐷 is a directed acyclic graph (DAG).

Proposition 3.3. 𝐷 is a directed acyclic graph.

Proof. If there is a cycle consisting of nodes 𝑣1, 𝑣2, . . . , 𝑣𝑖 in

𝐷 , we have 𝑡 (𝑣1) < 𝑡 (𝑣2) < · · · < 𝑡 (𝑣𝑖 ) < 𝑡 (𝑣1), which shows a

contradiction. This completes the proof. □

Proposition 3.3 shows that we can avoid generating cycles when

tracing back to the influencer influencing the node in𝑇 (𝑆) and leads
to Proposition 3.4, which is the key to our design of the influencer

backtrack sampling method to efficiently generate only the relevant

cascades as shall be presented in Section 4.3.

Kempe et al. [25] showed that the diffusion process can be de-

scribed by a live/blocked edge approach. In a nutshell, for each node

𝑣 , the edges from 𝐼𝑣 being live follow the subset sampling under

the IC model and the proportional sampling under the LT model,

respectively. Specifically, under the IC model, for each edge (𝑢, 𝑣),
we can flip a biased coin to set the edge live with probability 𝑝𝑢,𝑣
and set it blocked with probability 1−𝑝𝑢,𝑣 . Under the LT model, for

each node 𝑣 , with probability 1 −∑︁𝑤∈𝐼𝑣 𝑝𝑤,𝑣 , all the edges from 𝐼𝑣
to 𝑣 are blocked, and with probability

∑︁
𝑤∈𝐼𝑣 𝑝𝑤,𝑣 , an edge from one

inverse neighbor 𝑢 ∈ 𝐼𝑣 to 𝑣 is set to live following the distribution

𝑝𝑢,𝑣/
∑︁

𝑤∈𝐼𝑣 𝑝𝑤,𝑣 while the other edges to 𝑣 are blocked. Removing

all the blocked edges from 𝐷 , we can obtain a realization 𝑔 of 𝐷

with live edges only, and write 𝑔 ∼ 𝐷 . The nodes that are reachable

from 𝑆 under the realization 𝑔 are activated, and the other nodes

are not activated. We say that 𝑔 is relevant, namely 𝑔 ∼ T , if every
node in 𝑇 (𝑆) is reachable from 𝑆 under the realization 𝑔. We have

the following proposition for the relevant realizations.

Proposition 3.4. A necessary and sufficient condition for 𝑔 ∼ T
is that under the realization 𝑔, each node in 𝑇 (𝑆) must have at least
one live incoming edge from its inverse neighbors.

Proof. (Necessary) On one hand, if a node 𝑣 ∈ 𝑇 (𝑆) does not
have any live incoming edge from its inverse neighbors in a realiza-

tion, 𝑣 would be inactive in the campaign result and this realization

would be irrelevant.

(Sufficient) On the other hand, consider that every node 𝑣 ∈ 𝑇 (𝑆)
has a live incoming edge. For each 𝑣 ∈ 𝑇 (𝑆), find the longest path

that ends at 𝑣 in the realization consisting of nodes 𝑣𝑖 , 𝑣𝑖−1, . . . , 𝑣1, 𝑣 .
If 𝑣𝑖 ∈ 𝑇 (𝑆), since 𝐷 is a DAG, there must exist a live edge (𝑣 𝑗 , 𝑣𝑖 )
such that 𝑣 𝑗 does not belong to this path, which contradicts to the

definition of the longest path. Hence, 𝑣𝑖 ∈ 𝑆 , which indicates that 𝑣

will be activated. □

For any relevant realization 𝑔, we further establish the relation

between Pr[𝑔 ∼ T] and Pr[𝑔 ∼ 𝐷].

Proposition 3.5. For each relevant realization 𝑔 ∼ T , we have

Pr[𝑔 ∼ T] = 1∏︁
𝑣∈𝑇 (𝑆) 𝛽𝑣

· Pr[𝑔 ∼ 𝐷], (7)

where 𝛽𝑣 is the probability that 𝑣 has at least one live incoming edge
from its inverse neighbors in 𝐷 sampling from the live/blocked edge
approach.

Proof. Following Proposition 3.4, for any relevant realization

𝑔 ∼ T , each node 𝑣 ∈ 𝑇 (𝑆) needs to have at least one live incoming

edge from its inverse neighbors in 𝐷 . As such events for each node

𝑣 ∈ 𝑇 (𝑆) are independent, the probability for all these events to

happen simultaneously is given by

∏︁
𝑣∈𝑇 (𝑆) 𝛽𝑣 , i.e.,∑︂

𝑔∼T
Pr[𝑔 ∼ 𝐷] =

(︂ ∏︂
𝑣∈𝑇 (𝑆)

𝛽𝑣

)︂
·
∑︂
𝑔∼T

Pr[𝑔 ∼ T] .

Meanwhile, for two cascades 𝑔,𝑔′ ∼ T , it holds that

Pr[𝑔 ∼ 𝐷]
Pr[𝑔′ ∼ 𝐷] =

Pr[𝑔 ∼ T]
Pr[𝑔′ ∼ T] .

Putting it together completes the proof. □

3.3 An Alternative Definition for LT Model
For any set 𝑆 ′, we denote by 𝜎∗𝑔 (𝑆 ′) the number of nodes that are

reachable from 𝑆 ′ but are not in 𝑆 ′, i.e., influence power of 𝑆 ′, under
the realization 𝑔, and by �̂�∗ (𝑆 ′) the expectation of 𝜎∗𝑔 (𝑆 ′) with
respect to 𝑔 ∼ T , i.e.,

�̂�∗ (𝑆 ′) := E𝑔∼T [𝜎∗𝑔 (𝑆 ′)] . (8)

In a more intuitive way, the influence contribution under the LT

model can also be measured in a similar way to that under the IC

model given a cascade 𝜔 (Definition 2.1), i.e.,

𝜓𝜔 (𝑠) :=
∑︂

𝑣∈𝑇𝜔 (𝑠)

1

|𝑆𝜔 (𝑣) |
,

where𝑇𝜔 (𝑠) is the set of nodes influenced by 𝑠 in the cascade 𝜔 for

each 𝑠 ∈ 𝑆 and 𝑆𝜔 (𝑣) is the set of influencers influencing 𝑣 for each
𝑣 ∈ 𝑇𝜔 (𝑠). Under the LT model, there is exactly one live incoming

edge for each 𝑣 ∈ 𝑇 (𝑆) by the live/blocked edge approach, so we

have |𝑆𝜔 (𝑣) | = 1, i.e.,

𝜓𝜔 (𝑠) = |𝑇𝜔 (𝑠) |.

Based on (6), for any possible realization 𝑔 ∼ T , we have

𝜓 (𝑠) = E𝑔∼T [𝜓𝜔 (𝑠)] = E𝑔∼T [|𝑇𝜔 (𝑠) |] = �̂�∗ (𝑠) . (9)

Then, for any 𝑢 ∈ 𝑇 (𝑆), we have

𝜓 (𝑢) =
∑︂
𝑣∈𝑁𝑢

(︁
1{(𝑢,𝑣) ∈𝑔} · (1 + �̂�∗ (𝑣))

)︁
=

∑︂
𝑣∈𝑁𝑢

(︁
1{(𝑢,𝑣) ∈𝑔} · (1 +𝜓 (𝑣))

)︁
.

Note that Pr[(𝑢, 𝑣) ∈ 𝑔] = 𝑝𝑢,𝑣
𝛽𝑣

where 𝛽𝑣 =
∑︁
𝑢∈𝐼𝑣 𝑝𝑢,𝑣 . Thus, we

have

𝜓 (𝑢) =
∑︂
𝑣∈𝑁𝑢

(︁𝑝𝑢,𝑣
𝛽𝑣
· (1 +𝜓 (𝑣))

)︁
. (10)

As a result, the above measurement of influence contribution also

yields the same result as Definition 2.2, which validates the rationale

of our influence contribution definition under the LT model.
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3.4 Connection to Shapley Value
We show that the Shapley value in the cooperative game

(︁
𝑆, �̂�∗ (·)

)︁
is exactly the MMSE estimator of influence contribution.

Theorem 3.6. For each influencer 𝑠 ∈ 𝑆 , let 𝜙 (𝑠) be the Shapley
value of 𝑠 in the cooperative game

(︁
𝑆, �̂�∗ (·)

)︁
. Then, 𝜙 (𝑠) = 𝜓 (𝑠).

Proof. By definition, the Shapley value 𝜙 (𝑠) of 𝑠 is given by

𝜙 (𝑠) = 1

|𝑆 |! ·
∑︂
𝜋 ∈Π

(︂
�̂�∗ (𝑆𝑠,𝜋 ∪ {𝑠}) − �̂�∗ (𝑆𝑠,𝜋 )

)︂
=

1

|𝑆 |! · E𝑔∼T
[︃ ∑︂
𝜋 ∈Π

(︂
�̂�𝑔 (𝑆𝑠,𝜋 ∪ {𝑠}) − �̂�𝑔 (𝑆𝑠,𝜋 )

)︂]︃
=

1

|𝑆 |! · E𝑔∼T
[︃ ∑︂
𝜋 ∈Π

(︂
|𝑇𝑔 (𝑆𝑠,𝜋 ∪ {𝑠}) | − |𝑇𝑔 (𝑆𝑠,𝜋 ) |

)︂]︃
=

1

|𝑆 |! · E𝑔∼T
[︃ ∑︂
𝜋 ∈Π

(︂
|𝑇𝑔 ({𝑠}) \𝑇𝑔 (𝑆𝑠,𝜋 ) |

)︂]︃
,

where 𝑇𝑔 (𝑆 ′) is the set of nodes reachable from 𝑆 ′ but excluding 𝑆 ′

under𝑔. For any 𝑣 ∈ 𝑇𝑔 ({𝑠}), if 𝑣 ∉ 𝑇𝑔 (𝑆𝑠,𝜋 ), then in the permutation

𝜋 , 𝑠 is placed the first among all the influencers in 𝑆𝑔 (𝑣) that can
reach 𝑣 under 𝑔. Meanwhile, for each 𝑣 ∈ 𝑇𝑔 ({𝑠}), among the set Π

of all |𝑆 |! permutations, there are a fraction
1

|𝑆𝑔 (𝑣) | of permutations

such that 𝑠 is placed before other influencers in 𝑆𝑔 (𝑣). Hence,∑︂
𝜋 ∈Π

(︂
|𝑇𝑔 ({𝑠}) \𝑇𝑔 (𝑆𝑠,𝜋 ) |

)︂
=

∑︂
𝜋 ∈Π

∑︂
𝑣∈𝑇𝑔 ( {𝑠 })

1{𝑣∉𝑇𝑔 (𝑆𝑠,𝜋 ) }

=
∑︂

𝑣∈𝑇𝑔 ( {𝑠 })

∑︂
𝜋 ∈Π

1{𝑣∉𝑇𝑔 (𝑆𝑠,𝜋 ) }

=
∑︂

𝑣∈𝑇𝑔 ( {𝑠 })

|𝑆 |!
|𝑆𝑔 (𝑣) |

,

where 1{𝑣∉𝑇𝑔 (𝑆𝑠,𝜋 ) } is an indicator function such that

1{𝑣∉𝑇𝑔 (𝑆𝑠,𝜋 ) } = 1 if 𝑣 ∉ 𝑇𝑔 (𝑆𝑠,𝜋 ) and 1{𝑣∉𝑇𝑔 (𝑆𝑠,𝜋 ) } = 0 other-

wise. As a result, we have

𝜙 (𝑠) = E𝑔∼T
[︃ ∑︂
𝑣∈𝑇𝑔 ( {𝑠 })

1

|𝑆𝑔 (𝑣) |

]︃
. (11)

Observe that (i) (𝑢, 𝑣) ∈ 𝑔 only if (𝑢, 𝑣) ∈ 𝐺 and 𝑡 (𝑢) = 𝑡 (𝑣) − 1
under the IC model or 𝑡 (𝑢) < 𝑡 (𝑣) under the LT model, and (ii)

an independent test is taken to decide whether (𝑢, 𝑣) is live (with
probability of 𝑝𝑢,𝑣 ). As can be seen, the distribution of 𝑔 ∼ T is

exactly the same as that of 𝜔 ∼ T . Hence, putting it all together

of (1), (6) and (11) yields that 𝜙 (𝑠) = 𝜓 (𝑠) under the IC model.

Meanwhile, as we have shown in Section 3.3, (11) also leads to

Definition 2.2 and thus indicates that 𝜙 (𝑠) = 𝜓 (𝑠) under the LT

model. This completes the proof. □

Theorem 3.6 states that our MMSE estimator of influence contri-

bution is the Shapley value. Recall from Section 2.3 that, the Shapley

value provides the properties of efficiency, symmetry, linearity and

null player, which also apply to our MMSE estimator of influence

contribution. These properties again confirm that the contribution

of each influencer is indeed well characterized by our solution.

Algorithm 1: Influence Contribution under LT

Input: influencer set 𝑆 , cascade graph 𝐷 , and observation T
Output:𝜓 (𝑠) for each influencer 𝑠 ∈ 𝑆

1 foreach node 𝑣 ∈ 𝑇 (𝑆) do
2 𝛽𝑣 ←

∑︁
𝑢∈𝐼𝑣 𝑝𝑢,𝑣 ;

3 for 𝑗 ← stopping timestamp to 0 do
4 foreach node 𝑢 with 𝑡 (𝑢) = 𝑗 do
5 𝜓 (𝑢) ← ∑︁

𝑣∈𝑁𝑢

(︂
𝑝𝑢,𝑣
𝛽𝑣
·
(︁
1 +𝜓 (𝑣)

)︁ )︂
;

6 return {𝜓 (𝑠) : 𝑠 ∈ 𝑆};

3.5 Discussion on Continuous Activation Time
In practice, the activation time 𝑡 (𝑣) of each node 𝑣 is a real number,

rather than the discrete timestamp. Then, under the IC model, a

node is unlikely activated by two or more nodes simultaneously,

since different nodes should activate the same node at different

times when the time is a real number. Hence, for each influenced

node 𝑣 ∈ 𝑇 (𝑆), there is a unique influencer 𝑠 ∈ 𝑆 that influences

𝑣 . Note that upon observing the activation time of each node, we

still do not know the actual cascade. For each 𝑣 ∈ 𝑇 (𝑆), it can be

activated by any inverse neighbor𝑢 in𝐺 that has an activation time

earlier than 𝑣 , i.e., 𝑢 ∈ 𝐼𝑣 and 𝑡 (𝑢) < 𝑡 (𝑣). Then, the cascade graph
construction needs a slight modification. That is, we keep (𝑢, 𝑣) ∈ 𝐷 ,

if (𝑢, 𝑣) ∈ 𝐺 and 𝑡 (𝑢) < 𝑡 (𝑣). We demonstrate in the experiments

that our proposed solution still performs rather well in terms of

minimizing the square-error. Interestingly, under the LT model,

there is no difference no matter whether the activation time is a real

number or discrete value. The reason is when a node is activated,

all the nodes with activation times earlier than its activation time

will share the contribution proportional to the probability weight.

4 EFFICIENT COMPUTATION
In this section, we present a linear time algorithm for computing the

exact influence contribution under the LTmodel, while under the IC

model, we devise a fully polynomial-time randomized approximation
scheme (FPRAS) that can efficiently and accurately estimate the true

influence contribution leveraging the notion of Shapley value.

4.1 Exact Solution for LT Model
Based on Definition 2.2, we can calculate the influence contribu-

tions under the LT model using a bottom-up approach. Specifically,

given an observed activation status T , if a node 𝑢 does not acti-

vate any node, i.e., 𝑢 has no neighbor in the cascade graph 𝐷 , by

definition, we have 𝜓 (𝑢) = 0. Suppose that the diffusion process

stops after timestamp 𝑖 . Then, we can sequentially compute the in-

fluence contributions for the nodes with the activation timestamps

of 𝑖 − 1, 𝑖 − 2, . . . , 1, 0.
Algorithm 1 shows the pseudo code of the calculation of𝜓 (𝑠) for

each 𝑠 ∈ 𝑆 . We first compute 𝛽𝑣 for each 𝑣 ∈ 𝑇 (𝑆) (Lines 1–2). Then,
we calculate 𝜓 (𝑢) using a bottom-up approach (Lines 3–5). Note

that if 𝑁𝑢 = ∅ in the cascade graph 𝐷 , we set𝜓 (𝑢) = 0 (Line 5).

Example 4.1. We use a simple example to illustrate the procedure

of Algorithm 1. Figure 3 shows a cascade graph𝐷 where 𝑆 = {𝑠1, 𝑠2}
and𝑇 (𝑆) = {𝑢, 𝑣,𝑤, 𝑥,𝑦}. Edges (𝑠1, 𝑢) and (𝑠2,𝑤) have normalized

propagation probabilities of 1. Suppose that other edges (𝑢 ′, 𝑣 ′)
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Figure 3: A cascade graph 𝐷 .

have normalized propagation probabilities of

𝑝𝑢′,𝑣′
𝛽𝑣′

= 0.5. First, we

compute 𝜓 (𝑥) = 𝜓 (𝑦) = 0. Then, we compute 𝜓 (𝑢) = 𝜓 (𝑤) =
0.5× (1 + 0) = 0.5 and𝜓 (𝑣) = 0.5 + 0.5 = 1. Hence,𝜓 (𝑠1) = 𝜓 (𝑠2) =
1 × (1 + 0.5) + 0.5 × (1 + 1) = 2.5.

Time Complexity. It takes 𝑂 (∑︁𝑣∈𝑇 (𝑆) |𝐼𝑣 |) = 𝑂 (𝑚𝐷 ) time for

computing 𝛽𝑣 for all the nodes 𝑇 (𝑆), where𝑚𝐷 is the number of

edges in 𝐷 . Then, it takes 𝑂 (∑︁𝑢∈𝑆∪𝑇 (𝑆) |𝑁𝑢 |) = 𝑂 (𝑚𝐷 ) time for

computing 𝜓 (𝑢) for all the nodes 𝑆 ∪ 𝑇 (𝑆). Therefore, the total

complexity of Algorithm 1 is 𝑂 (𝑚𝐷 ).

4.2 An FPRAS for IC Model
A naive way to compute𝜓 (𝑠) of each influencer 𝑠 is to enumerate ev-

ery possible cascade 𝜔 to calculate𝜓𝜔 (𝑠). Then, by Proposition 3.1,

taking the expectation of𝜓𝜔 (𝑠) gives rise to𝜓 (𝑠). However, in the

cascade graph 𝐷 , there are𝑚𝐷 edges, resulting in an exponential

number𝑂 (2𝑚𝐷 ) of potential cascades which is computationally in-

tractable. More importantly, it is unclear how to generate a cascade

that can exactly produce the activation status T . A naive method

is to perform an adequate number of Monte Carlo simulations

starting from the influencer set 𝑆 to generate the cascades exactly

producing T . Meanwhile, the existing reverse influence sampling

technique [5] may also be adopted to generate the cascades. How-

ever, the cascades exactly producing T may not be easily obtained

using these methods and a large number of irrelevant cascades

would be generated in the sampling process.

Example 4.2. Figure 4 shows an example probabilistic graph con-

sisting of three nodes. Suppose that𝑢 is the only influencer selected

to start the campaign. Given the campaign result that both 𝑣 and

𝑤 are influenced by 𝑢, if we perform the Monte Carlo simulations

from 𝑢, we can have one out of ten simulations in expectation (i.e.,

1

0.5·0.2 ) to produce exactly the same result. Similarly, if we adopt

the reverse influence sampling technique starting from 𝑣 and 𝑤

to produce the cascades, we also expect to see 𝑢 not activating

both 𝑣 and 𝑤 in 90% of the cascades. From this simple example,

we can infer that, given a campaign result T , most of the cascades

generated by the existing Monte Carlo simulation or reverse in-

fluence sampling techniques would be irrelevant cascades that do

not match the observed result T , wasting a significant amount of

computation time.

Facing the challenges, we propose a fully polynomial-time ran-

domized approximation schme (FPRAS), which finds an (𝜀, 𝛿)-
approximation𝜓˜ (𝑠) of𝜓 (𝑠) for each influencer 𝑠 ∈ 𝑆 in polynomial

time for any parameters 𝜀 and 𝛿 , i.e.,

Pr

[︁
(1 − 𝜀)𝜓 (𝑠) ≤ 𝜓˜ (𝑠) ≤ (1 + 𝜀)𝜓 (𝑠)

]︁
≥ 1 − 𝛿.

Our solution consists of two components: (i) we propose influencer
backtrack sampling to generate a relevant cascade unbiasedly and

0.20.5 uv w

Figure 4: An example graph.

calculate the influence contribution in the generated cascade effi-

ciently, and (ii) we adopt a stopping rule algorithm to decide the

number of relevant cascades that need to be generated to provide

the accuracy guarantee. The sampling-based method, generating

the relevant cascades efficiently, provides unbiased estimators to

well approximate the influence contributions that minimize the

average mean-squared-error.

4.3 Influencer Backtrack Sampling for IC Model
Proposition 3.5 shows that if a realization 𝑔 is directly generated

from 𝐷 , this realization is irrelevant with a high probability of

1 − 1∏︁
𝑣∈𝑇 (𝑆 ) 𝛽𝑣

, which is highly inefficient. In what follows, we

present an algorithm that ensures to generate a relevant realization

in an unbiased manner.

For each node 𝑣 ∈ 𝑇 (𝑆), assume a fixed order on the inverse

neighbors of 𝑣 in𝐷 as 𝑣1, 𝑣2, . . . , 𝑣ℓ𝑣 where ℓ𝑣 = |𝐼𝑣 |. Let𝐴𝑣
represent

the event that 𝑣 has at least one live incoming edge from its inverse

neighbors. Let 𝐴𝑣
𝑖
be the event that (𝑣𝑖 , 𝑣) is the first live incoming

edge to 𝑣 . By the definition of the IC model, we have

Pr[𝐴𝑣
𝑖 ] = 𝑝𝑣𝑖 ,𝑣 ·

𝑖−1∏︂
𝑗=1

(1 − 𝑝𝑣𝑗 ,𝑣). (12)

Since all the events 𝐴𝑣
𝑖
are disjoint, we have

𝛽𝑣 = Pr[𝐴𝑣] =
ℓ𝑣∑︂
𝑖=1

Pr[𝐴𝑣
𝑖 ] = 1 −

ℓ𝑣∏︂
𝑖=1

(1 − 𝑝𝑣𝑖 ,𝑣) . (13)

Hence, the first live incoming edge can be selected according to

the probability distribution of

Pr[𝐴𝑣
𝑖
]

𝛽𝑣
. According to Proposition 3.4,

we can select at least one live incoming edge for each node in 𝑇 (𝑆)
to generate a relevant cascade 𝜔 ∼ T . After obtaining the first

live incoming edge (𝑣𝑖 , 𝑣), the conventional sampling procedure is

applied to examine the remaining edges, i.e., each edge (𝑣𝑘 , 𝑣) is
live with a probability of 𝑝𝑣𝑘 ,𝑣 for 𝑘 > 𝑖 . As a result, the probability

of (𝑣𝑘 , 𝑣) being live is

Pr[(𝑣𝑘 , 𝑣) is live]

=
Pr[𝐴𝑣

𝑘
]

𝛽𝑣
+ 𝑝𝑣𝑘 ,𝑣

𝑘−1∑︂
𝑖=1

Pr[𝐴𝑣
𝑖
]

𝛽𝑣

=
𝑝𝑣𝑘 ,𝑣

𝛽𝑣
·
(︂ 𝑘−1∏︂
𝑗=1

(1 − 𝑝𝑣𝑗 ,𝑣) + 1 −
𝑘−1∏︂
𝑖=1

(1 − 𝑝𝑣𝑖 ,𝑣)
)︂
=
𝑝𝑣𝑘 ,𝑣

𝛽𝑣
.

Therefore, such a cascade is an unbiased sample.

A naive method to estimate𝜓 (𝑠) is to (i) generate an unbiased

sample of cascade 𝜔 , and (ii) construct 𝑆𝜔 (𝑣), i.e., the set of influ-
encers reversely reachable from 𝑣 , via a reverse breadth first search

(BFS) on 𝜔 for each 𝑣 ∈ 𝑇 (𝑆). Note that generating 𝜔 takes 𝑂 (𝑚𝐷 )
time and performing a BFS for every 𝑣 ∈ 𝑇 (𝑆) takes𝑂 ( |𝑇 (𝑆) | ·𝑚𝐷 ).
To facilitate the calculation, we directly construct the backtracked

influencer sets 𝑆𝜔 (𝑣) for each node 𝑣 ∈ 𝑇 (𝑆) in the sampling pro-

cedure, which only performs one pass of traversal.
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Algorithm 2: Influencer Backtrack Sampling

Input: influencer set 𝑆 , cascade graph 𝐷 , and observation T
Output: generate a cascade 𝜔 ∼ T and calculate𝜓𝜔 (𝑠) for

each 𝑠 ∈ 𝑆
1 initialize 𝑆𝜔 (𝑣) ← ∅ for each node 𝑣 ∈ 𝑇 (𝑆), 𝑆𝜔 (𝑠) ← {𝑠},

𝜓𝜔 (𝑠) ← 0 for each influencer 𝑠 ∈ 𝑆 ;
2 for 𝑗 ← 1 to stopping timestamp do
3 foreach node 𝑣 with 𝑡 (𝑣) = 𝑗 do
4 select the first live edge (𝑣𝑖 , 𝑣) according to the

probabilty distribution of

Pr[𝐴𝑣
𝑖
]

𝛽𝑣
;

5 𝑆𝜔 (𝑣) ← 𝑆𝜔 (𝑣) ∪ 𝑆𝜔 (𝑣𝑖 );
6 foreach 𝑖 < 𝑘 ≤ ℓ𝑣 do
7 with probabilty 𝑝𝑣𝑘 ,𝑣 : 𝑆𝜔 (𝑣) ← 𝑆𝜔 (𝑣) ∪ 𝑆𝜔 (𝑣𝑘 );

8 foreach influencer 𝑠 ∈ 𝑆𝜔 (𝑣) do
9 𝜓𝜔 (𝑠) ← 𝜓𝜔 (𝑠) + 1

|𝑆𝜔 (𝑣) | ;

10 return {𝜓𝜔 (𝑠) : 𝑠 ∈ 𝑆};

Algorithm 2 illustrates the detailed procedure to generate a cas-

cade 𝜔 ∼ T and build the backtracked influencer set 𝑆𝜔 (𝑣) for
each node 𝑣 ∈ 𝑇 (𝑆) (i.e., the set of influencers that can reach 𝑣

in the cascade 𝜔). Initially, the backtracked influencer set 𝑆𝜔 (𝑠)
for each influencer 𝑠 ∈ 𝑆 includes the influencer itself, while the

backtracked influencer sets of the non-influencer nodes 𝑇 (𝑆) are
empty (Line 1). The nodes in𝑇 (𝑆) are examined by their activation

timestamps in ascending order (Lines 2–3). For each node 𝑣 ∈ 𝑇 (𝑆),
we start by selecting the first live incoming edge (𝑣𝑖 , 𝑣) (Line 4)

and update the backtracked influencer set 𝑆𝜔 (𝑣) by 𝑆𝜔 (𝑣) ∪ 𝑆𝜔 (𝑣𝑖 )
(Line 5). Each remaining incoming edge (𝑣𝑘 , 𝑣) where 𝑘 > 𝑖 is set

to live independently with probability 𝑝𝑣𝑘 ,𝑣 and we update 𝑆𝜔 (𝑣)
by 𝑆𝜔 (𝑣) ∪ 𝑆𝜔 (𝑣𝑘 ) if (𝑣𝑘 , 𝑣) is live (Lines 6–7). Finally, we iterate
through the backtracked influencer set 𝑆𝜔 (𝑣) and assign an additive
factor of 1/|𝑆𝜔 (𝑣) | to each influencer 𝑠 ∈ 𝑆𝜔 (𝑣) (Line 9). The influ-
ence contributions of the influencers in cascade𝜔 are then returned

(Line 10), which are unbiased estimators of𝜓 (·)’s (alternatively the

Shapley values), i.e., for each influencer 𝑠 ∈ 𝑆 ,

𝜓 (𝑠) = E[𝜓𝜔 (𝑠)],

where the expectation is taken over the randomness of𝜔 generated.

Time Complexity. The time complexity of the sampling phase

to get the live edges is 𝑂 (𝑚𝐷 ). The total number of live edges is

TE =
∑︁

𝑣∈𝑇 (𝑆)
∑︁

𝑢∈𝐼𝑣 𝑝𝑢,𝑣
𝛽𝑣

in expectation and is 𝑂 (𝑚𝐷 ) in the worst

case. When an edge is live, a union operation is performed (Lines 5

and 7), which takes𝑂 ( |𝑆 |) time. Thus, constructing the backtracked

influencer sets takes𝑂 ( |𝑆 | ·TE) time in expectation and𝑂 ( |𝑆 | ·𝑚𝐷 )
time in the worst case. Therefore, the total time complexity of

Algorithm 2 is 𝑂 ( |𝑆 | · TE+𝑚𝐷 ) in expectation and 𝑂 ( |𝑆 | ·𝑚𝐷 ) in
the worst case.

Discussion. In the literature of machine learning, the concept of

backtracking is adopted to predict the preceding states that termi-

nate at a given state [18]. In addition, it is also applied to trace the

features that determine the classification results after the network

Algorithm 3: Bounds on Influence Contribution

Input: influencer set 𝑆 , cascade graph 𝐷 , and observation T
Output: lower and upper bounds 𝑎𝑠 and 𝑏𝑠 on each influencer

𝑠’s influence contribution in all possible cascades

1 initialize 𝑆 (𝑠) ← {𝑠}, 𝑎𝑠 ← 0, 𝑏𝑠 ← 0 for each 𝑠 ∈ 𝑆 ;
2 for 𝑗 ← 1 to stopping timestamp do
3 foreach node 𝑣 with 𝑡 (𝑣) = 𝑗 do
4 𝑆 (𝑣) ← ⋃︁

𝑢∈𝐼𝑣 𝑆 (𝑢);

5 foreach node 𝑣 ∈ 𝑇 (𝑆) do
6 foreach influencer 𝑠 ∈ 𝑆 (𝑣) do
7 𝑏𝑠 ← 𝑏𝑠 + 1;
8 if |𝑆 (𝑣) | = 1 then
9 𝑠 ← influencer in 𝑆 (𝑣);

10 𝑎𝑠 ← 𝑎𝑠 + 1;

11 return {(𝑎𝑠 , 𝑏𝑠 ) : 𝑠 ∈ 𝑆};

is trained [13]. In general, the similar idea is adopted in our influ-

encer backtracking to trace the influencers that produce the given

campaign result in the network. Interestingly, based on Proposi-

tion 3.4, our influencer backtracking generates only the relevant

samples to produce the given campaign result, which largely boosts

the sampling efficiency. This idea of sampling at least 1 incoming

neighbor may also be applied to improve the sampling efficiency

in machine learning algorithms.

4.4 Accurate Estimate for IC Model
To obtain the accuracy guarantee under the IC model, we adopt

the state-of-the-art stopping rule algorithm [47] to estimate the

expected influence contributions of all the influencers simultane-

ously. The stopping rule algorithm first calculates the range that

each influencer 𝑠’s influence contribution falls in among all possi-

ble cascades producing T by calling Algorithm 3. Specifically, the

ranges of the Shapley values are derived as follows. Let 𝑎𝑠 , 𝑏𝑠 be

the lower bound and upper bound of each influencer 𝑠’s influence

contribution respectively. We record the influencers that can reach

each node 𝑣 ∈ 𝑇 (𝑆) in 𝑆 (𝑣) (Lines 2–4). For each influencer 𝑠 ∈ 𝑆 ,
in any possible cascade, its influence contribution is upper bounded

by the number of non-influencer nodes it can reach in𝐷 (Lines 6–7).

Meanwhile, for each node 𝑣 ∈ 𝑇 (𝑆), if 𝑣 is only reachable from one

influencer 𝑠 in 𝑆 , we increase the lower bound of 𝑠 by 1, since 𝑠 will

always contribute to influencing 𝑣 to produce the given campaign

result (Lines 8–10). Finally, we return the lower bound 𝑎𝑠 and upper

bound 𝑏𝑠 for each influencer 𝑠 ∈ 𝑆 (Line 11).

Using the stopping rule algorithm, to estimate a single random

variable 𝑋 in the range of [𝑎, 𝑏] with E[𝑋 ] = 𝜇, we repeatedly

generate samples until the sum of the observed values reaches

the threshold Υ, where Υ = 2(𝑏 − 𝑎) (1 + 𝜀) ( 𝑏−𝑎
𝑏
+ 1

3
𝜀) ln( 2

𝛿
) 1
𝜀2
.

The estimated value �̃� = Υ/𝜃 (where 𝜃 is the number of samples

generated) is an (𝜀, 𝛿)-approximation of 𝜇, i.e., it satisfies Pr[(1 −
𝜀)𝜇 ≤ �̃� ≤ (1 + 𝜀)𝜇] ≥ 1 − 𝛿 [47]. As we need to estimate |𝑆 |
expected influence contributions simultaneously in our problem,

we calculate a threshold Υ𝑠 for each expected influence contribution
𝜓 (𝑠) for 𝑠 ∈ 𝑆 . As shown in Algorithm 4, Υ𝑠 is calculated based on

the accuracy guarantee (𝜀, 𝛿) and the range of [𝑎𝑠 , 𝑏𝑠 ] returned by
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Algorithm 4: Stopping Rule Algorithm

Input: influencer set 𝑆 , cascade graph 𝐷 , observation T ,
and accuracy parameters (𝜀, 𝛿)

Output: an (𝜀, 𝛿)-approximation𝜓˜ (𝑠) of the expected
influence contribution for each influencer 𝑠 ∈ 𝑆

1 obtain {(𝑎𝑠 , 𝑏𝑠 ) : 𝑠 ∈ 𝑆} via Algorithm 3;

2 foreach 𝑠 ∈ 𝑆 do
3 Υ𝑠 ← 2(𝑏𝑠 − 𝑎𝑠 ) (1 + 𝜀) ( 𝑏𝑠−𝑎𝑠𝑏𝑠

+ 1

3
𝜀) ln( 2

𝛿
) 1
𝜀2
;

4 initialize Σ𝑠 ← 0 for each 𝑠 ∈ 𝑆 and 𝜃 ← 0;

5 while ∃Σ𝑠 < Υ𝑠 do
6 𝜃 ← 𝜃 + 1;
7 obtain {𝜓𝜔𝜃

(𝑠) : 𝑠 ∈ 𝑆} via Algorithm 2;

8 foreach influencer 𝑠 ∈ 𝑆 do
9 if Σ𝑠 < Υ𝑠 then
10 Σ𝑠 ← Σ𝑠 +𝜓𝜔𝜃

(𝑠);
11 𝜃𝑠 ← 𝜃 ;

12 return {𝜓˜ (𝑠) = Υ𝑠
𝜃𝑠

: 𝑠 ∈ 𝑆};

Algorithm 3 for each influencer 𝑠 ∈ 𝑆 (Line 3). Then, the cascade

samples are iteratively generated by Algorithm 2 until the sum Σ𝑠
exceeds Υ𝑠 (Lines 5–11). We record the number of cascade samples

𝜃𝑠 when Σ𝑠 exceeds Υ𝑠 for each influencer 𝑠 ∈ 𝑆 (Line 11). Finally,

the estimation 𝜓˜ (𝑠) = Υ𝑠/𝜃𝑠 is returned for each influencer 𝑠 ∈ 𝑆
(Line 12). The following lemma presents the accuracy guarantee of

the estimations returned by Algorithm 4.

Lemma 4.3 ( [47]). Algorithm 4 returns an (𝜀, 𝛿)-approximation
𝜓˜ (𝑠) for each influencer 𝑠 ∈ 𝑆 , i.e.,

Pr

[︁
(1 − 𝜀)𝜓 (𝑠) ≤ 𝜓˜ (𝑠) ≤ (1 + 𝜀)𝜓 (𝑠)

]︁
≥ 1 − 𝛿.

To ensure all the values 𝜓 (𝑠)’s are estimated accurately, by a

union bound, we have

Pr

[︂⋀︂
𝑠∈𝑆
(1 − 𝜀)𝜓 (𝑠) ≤ 𝜓˜ (𝑠) ≤ (1 + 𝜀)𝜓 (𝑠)

]︂
≥ 1 − |𝑆 |𝛿.

Thus, to ensure the estimation accuracy with a high probability

of 1 − 𝛿 , we can simply scale 𝛿 by a factor of 1/|𝑆 | as an input to

Algorithm 4.

Time Complexity. Algorithm 3 takes𝑂 ( |𝑆 | ·𝑚𝐷 ) time to perform

a union operation for each edge. It can be inferred from Lemma 4.3

that 𝜃 ≤ max𝑠∈𝑆
Υ𝑠

(1−𝜀)𝜓 (𝑠) with a high probability of 1 − |𝑆 |𝛿 . This
indicates that Algorithm 2 is invoked at most max𝑠∈𝑆

Υ𝑠
(1−𝜀)𝜓 (𝑠)

times with a high probability, which requires𝑂 ( |𝑆 | · TE+𝑚𝐷 ) time

for each call in expectation. Meanwhile, updating Σ𝑠 for all 𝑆 takes

𝑂 ( |𝑆 |) time. Therefore, with a high probability, Algorithm 4 takes

𝑂
(︁
( |𝑆 | · TE+𝑚𝐷 ) · max𝑠∈𝑆

Υ𝑠
𝜓 (𝑠)

)︁
time in expectation. We assume

that 𝜓 (𝑠) > 0 for each influencer 𝑠 ∈ 𝑆 , i.e., 𝑠 would have at least

one neighbor 𝑢 (otherwise we can exclude 𝑠 from 𝑆 and analyze the

influencer contributions among the remaining influencers). Then,

𝜓 (𝑠) is at least 𝑝𝑠,𝑢/|𝑆 | in the worst case when 𝑝𝑠′,𝑢 = 1 for each

influencer 𝑠 ′ ∈ 𝐼𝑢 , i.e., 𝑂
(︁
𝜓 (𝑠)

)︁
is at least 𝑂

(︁
poly( 1

|𝑉 | )
)︁
when 𝑝𝑠,𝑢

is a constant or 𝑂
(︁
poly( 1

|𝑉 | )
)︁
where |𝑉 | is the number of nodes in

graph 𝐺 . As a result, Algorithm 4 is an FPRAS.

5 RELATEDWORK
Influence estimation and its applications have been extensively

studied in the literature [1–5, 7–12, 14, 17, 19, 20, 22–26, 28–33, 35–

43, 48]. In viral marketing, influence maximization is a key algo-

rithmic problem first studied by Domingos and Richardson [12, 33].

Then, Kempe et al. [25] formulated several diffusion models and a

greedy algorithm was proposed to tackle the problem based on sub-

modularity. After that, many follow-upworks have been done on im-

proving the efficiency and scalability of influence maximization on

large-scale social networks [1, 5, 9–11, 19, 24, 30–32, 36, 37, 40, 41].

The reverse influence sampling approach [5] is widely used for

estimating the influence spread in the domain of influence maxi-

mization. Some studies extended the vanilla influence maximization

problem by taking the cost of activating the seed influencer into

account [4, 29, 43], in which every influencer is associated with a

fixed threshold value that indicates the amount of cost to activate

the influencer to initiate the campaign. These costs are given a pri-

ori and are not necessarily relevant to the influence contributions.

There is also a line of algorithmic viral marketing research focus-

ing on allocating the discounts to the seed influencers assuming

that whether an influencer can be activated as a seed influencer

is uncertain [21, 44–46]. Under this setting, the probability that

the influencer takes the bid of discount to initiate the campaign

follows the purchase probability curve—the larger the discount,

the higher the probability to purchase. The allocated discounts can

hardly be adopted to capture the influence contributions in our

problem in that the influencers who initiated the campaign are

deterministic given the campaign result while the discounts are

also assigned to the influencers who did not participate in the cam-

paign. In incentivized social advertising, the incentives to initiate

the campaigns are often derived according to the influence spreads

of the influencers [2, 3]. These studies aimed to minimize the regret

and maximize the revenue from the OSN provider’s perspective by

controlling the assignment of advertising campaigns. However, as

discussed earlier, influence spread cannot precisely capture the con-

tributions given the set of nodes activated in a particular campaign.

The Shapley value [34] in cooperative game theory is the so-

lution concept that provides a fair way of dividing the value of

the grand coalition. When 𝑘 players participate in the game, the

naive way to calculate the Shapley value for each player is to enu-

merate all 𝑘! permutations of the players, which requires intensive

computation and is generally intractable. There are some studies

on developing bounded approximate solutions. Castro et al. [6]

proposed a sampling-based algorithm for the case where the vari-

ance or the range of marginal contributions of a player is known.

Liben-Nowell et al. [27] proposed a sampling-based algorithm for

supermodular games that runs in polynomial time of the number

of players. Chen et al. [8] proposed several influence-based central-

ity measures for stochastic graphs, including an influence-based

Shapley centrality from the group perspective.

In this paper, we measure the Shapley values of the influencers

characterizing their contributions in a given campaign result, which

is fundamentally different from the existing literature focusing on

the vanilla influence spreads of nodes. As our sample space consists

of only the cascades in which a given set of nodes are activated, the

existing sampling methods are no longer efficient or practical to

generate relevant cascades and achieve accuracy guarantees.
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Table 1: Datasets.

Dataset #nodes #edges Avg. degree Type

Facebook 4.0K 88.2K 43.7 Undirected

Google+ 107.6K 13.7M 254.1 Directed

LiveJournal 4.8M 69.0M 28.5 Directed

Orkut 3.1M 117.2M 76.3 Undirected

6 EXPERIMENTS
This section experimentally evaluates the quality and efficiency of

our proposed algorithms. We implement our algorithms using C++.

All experiments are run on a machine with Intel Xeon 2.4GHz CPU

and 384GB memory.

6.1 Experimental Setup

Datasets. Several real datasets including Facebook, Google+, Live-

Journal and Orkut are used to evaluate our proposed algorithms. All

the datasets are available at http://snap.stanford.edu/data. Table 1

gives the details of these datasets.

Compared Algorithms. We compare the influence contributions

delivered by Algorithm 1 and Algorithm 4 with an accuracy of

(0.5, 0.1)-approximation against the following baselines.

- Uniform: The contributions are allocated uniformly among

the influencers in 𝑆 .

- Degree: The contributions are allocated according to the de-

gree distribution of influencers with DEG-1 being the degree

distribution in the original social network graph𝐺 and DEG-2

being the degree distribution in the extracted subgraph 𝐷 .

- Influence Spreads: The contributions are allocated according

to the influence spread distribution of influencers with INF-

1 being the influence spread in the original social network

graph𝐺 and INF-2 being the influence spread in the extracted

subgraph 𝐷 . We adopt the stopping rule algorithm to obtain a

(0.1, 0.05)-approximation of the influence spreads.

The total contributions of the above methods are all normalized to

|𝑇 (𝑆) |, since a total number |𝑇 (𝑆) | of nodes are influenced.

Ground Truth. The propagation probability 𝑝𝑢,𝑣 of each edge

(𝑢, 𝑣) is set to the reciprocal of 𝑣 ’s in-degree which is a commonly

used setting by other studies [36, 41]. The influencer sets of different

sizes are experimented. Given an influencer set size 𝑘 , we select

the influencer set consisting of the top 𝑘 nodes with the highest

out-degrees. We perform Monte Carlo simulations to generate the

ground truth. We generate both discrete and continuous activation

times for the IC model and only continuous activation times for

the LT model (since the result is the same for discrete times under

the LT model as discussed in Section 3.5). For the discrete setting,

we perform the standard Monte Carlo simulations according to the

IC diffusion model to record the true cascades. Then, we calculate

the exact influence contribution for each influencer according to

Definition 2.1. For the continuous setting under the IC model, for

each outgoing edge (𝑢, 𝑣) starting from the influencer set 𝑆 , we

initialize a random activation trial time referring to the activation

trial time of 𝑣 and maintain a minimum heap ℎ𝑡 of the trial times.

The trial time is randomly chosen from an exponential distribution

with a probability density function of 𝑓 (𝑥) = e
−𝑥

[16]. The edge

(𝑢, 𝑣) with the minimum activation time is popped out from ℎ𝑡 . If 𝑣

is not activated, (𝑢, 𝑣) is live with a probability of 𝑝𝑢,𝑣 . Otherwise,

we do not consider the edge and continue the simulation process. If

(𝑢, 𝑣) is live, we further generate random trial times for 𝑣 ’s inactive

neighbors (i.e., 𝑣 ’s activation time adding a random number from

the exponential distribution) and push their trial times into ℎ𝑡 . The

above process is repeated until no further nodes can be activated, i.e.,

ℎ𝑡 is empty.We get the number of nodes in𝑇 (𝑆) that each influencer
activates (directly or indirectly) in the advertising campaign as

the ground truth. Under the LT model, we slightly modify the

simulation process as follows. At the beginning, we randomly select

a threshold 𝜆𝑣 ∈ [0, 1] for each node 𝑣 ∈ 𝑉 . When (𝑢, 𝑣) is popped
out from ℎ𝑡 , we check whether the total weight of 𝑣 ’s activated

inverse neighbors reach 𝜆𝑣 (i.e., whether 𝑣 is activated) and other

procedures remain the same. Finally, the influence contribution

returned by Algorithm 1 is the ground truth.

Performance Metric. For each ground truth of cascade, we mea-

sure the mean-squared-error (MSE) of influence contributions, i.e.,

1

|𝑆 |
∑︂
𝑠∈𝑆

(︂
𝜓˜ (𝑠) −𝜓𝜔 (𝑠)

)︂
2

, (14)

where𝜓˜ (𝑠) is the influence contribution of 𝑠 obtained by any algo-

rithm, and 𝜓𝜔 (𝑠) is the ground truth. We repeat the experiments

for 10,000 times for Facebook and Google+ and 100 times for Live-

Journal and Orkut, and report the average results.

6.2 Experimental Result
6.2.1 Influence Contribution. Figure 5 shows the result under the
IC model when the conventional discrete timestamp is considered,

where our method is denoted by InfCon. The average MSE of our

method is significantly smaller than all the baselines for all the

datasets tested. In particular, for the Facebook dataset, our method

produces 2 orders of magnitudes smaller average MSE than the

Uniform method. Such a result demonstrates the superiority of our

proposed solution.

Figure 6 gives the result under the IC model when continuous

activation time is considered. The result is almost the same as that

under the discrete setting. This verifies that our solution is also a

great estimator that can characterize the influence contributions

rather well compared to other baselines in practical scenarios.

Figure 7 shows the result under the LT model. Note that we

can compute the exact influence contributions under the LT model,

i.e., the ground truth, so our method has an average MSE of 0. We

observe that the INF-2 method tends to have a small average MSE

under the LT model for various datasets while it produces a large

average MSE under the IC model. This is because the INF-2 method

can hardly tackle influence overlaps under the IC model and it

can characterize the influence contributions well without influence

overlaps under the LT model.

6.2.2 Sampling Efficiency. We run Algorithm 4 with a more accu-

rate approximation guarantee of (0.1, 0.05) to show the sampling
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Figure 5: Average mean-squared-error under the IC model (discrete timestamp).
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Figure 6: Average mean-squared-error under the IC model (continuous time).
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Figure 7: Average mean-squared-error under the LT model (continuous time).

Table 2: Scaling factor 1∏︁
𝑣∈𝑇 (𝑆 ) 𝛽𝑣

on top-degree influencers.

#influencers Facebook Google+ LiveJournal Orkut

10 10
602.2

10
3828.7

10
37405.9

10
100439.5

20 10
630.0

10
5198.0

10
48094.4

10
126132.0

30 10
635.9

10
6106.5

10
53908.3

10
145614.0

40 10
666.4

10
6675.1

10
65343.6

10
171359.2

50 10
678.8

10
7007.1

10
71381.0

10
188532.0

efficiency under the IC model when continuous activation time is

considered. Tables 2–3 and Figures 8–9 show the average result of

10 repeated experiment runs with a more accurate approximation

setting of (0.1, 0.05) for different datasets.

Scaling Factor. Table 2 shows the scaling factor 1∏︁
𝑣∈𝑇 (𝑆 ) 𝛽𝑣

of sam-

ple space given in Proposition 3.5. As can be seen, the scaling factor

is very high, indicating that our sample space is many orders of

magnitude smaller than the original sample space in the cascade

graph 𝐷 . The naive reverse influence sampling method or Monte

Carlo method cannot finish to produce the results with the same

accuracy guarantee even when the campaign result is relatively

small consisting of hundreds of nodes only.

Ratio of Υ0
Υ . We calculate the threshold Υ𝑠 for each influencer 𝑠

in Algorithm 4 based on the bounds of [𝑎𝑠 , 𝑏𝑠 ] and compare the

Table 3: Ratio of Υ0
Υ on top-degree influencers.

#influencers Facebook Google+ LiveJournal Orkut

10 7.38 1.43 1.95 1.20

20 5.48 1.43 1.95 1.24

30 4.13 1.45 2.16 1.25

40 4.98 1.46 2.18 1.26

50 5.07 1.46 2.27 1.27

threshold Υ = max𝑠∈𝑆 Υ𝑠 with the vanilla threshold Υ0 with lower

bound 𝑎 = 0 and upper bound 𝑏 = |𝑇 (𝑆) |. We show the ratio of
Υ0
Υ

in Table 3. It can be seen that Υ0 is a few times larger than Υ. As the
number of cascade samples required to yield an estimation with the

given accuracy guarantee is linear to the threshold value, it indicates

that our derived bounds of [𝑎𝑠 , 𝑏𝑠 ] for each influencer 𝑠 ∈ 𝑆 can

effectively boost the sampling efficiency with less cascade samples

needed. Note that the trend of Υ0/Υ under Facebook is different from

other datasets. This is because the size of the Facebook dataset is

relatively small comparedwith other datasets and a few high-degree

nodes can activate a large portion of all nodes, i.e.,𝑏 does not change

much and hence Υ0 do not increase notably with increasing number

of influencers. Meanwhile, 𝑎𝑠 decreases when more influencers are

selected to start the campaign due to more overlapping reachable

nodes and thus Υ becomes larger. The combination of these effects

result in a different trend of
Υ0
Υ for the Facebook dataset.
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Figure 8: Cascade graph 𝐷 on top-degree influencers.
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Figure 9: Sampling time (seconds) on top-degree influencers.

Cascade Graph. We can see from Figure 8 that the number of

edges in the cascade graph 𝐷 extracted is much larger than that

of nodes and each node has a considerable number of neighbors

on average, which indicates that the sample space, consisting of all

possible cascades producing the observed result T , is huge.

Running Time. As shown in Table 2, if we directly generate sam-

ples by the naive reverse influence sampling method or Monte

Carlo method, it is (almost) impossible to reproduce the observed

campaign result, i.e., less than a probability of 1/10600 on Facebook,

1/103000 on Google+, 1/1030000 on LiveJournal, and 1/10100000 on
Orkut. This indicates that the naive reverse influence sampling

method or Monte Carlo method cannot finish to produce the es-

timation results with the same accuracy guarantee. To evaluate

the efficiency of our InfCon algorithm, Figure 9 shows the running

time of InfCon against two heuristic algorithms including INF-1

and INF-2. (Note that we do not show the running time of DEG-1,

DEG-2 and Uniform, as these heuristics take near zero time.) We ob-

serve that the INF-1 and INF-2 generally run faster than our InfCon

algorithm, since INF-1 and INF-2 use the influence spread of each

node to roughly represent the influence contribution and do not

consider the actual campaign result. However, as demonstrated in

Figures 5–7, both INF-1 and INF-2 perform poorly in characterizing

the influence contributions. In fact, by sampling cascades consistent

with T following the probability distribution of Pr[𝜔 ∼ T], our
algorithm efficiently estimates the influence contributions in a rea-

sonable amount of time for all the cases tested. Meanwhile, as can be

also seen from Figure 9, the running time of our algorithm generally

increases with the influencer set size. This is because the campaign

result, i.e., the set of nodes activated, becomes larger when there

are more influencers and thus the cascade graph extracted includes

more nodes and edges (Figure 8).

7 CONCLUSION
In this paper, we propose a new metric, i.e., influence contribution,

to measure the influencers’ contributions given the result of an

advertising campaign, based on which we formulate a problem of

influence contribution allocation (ICA). We show that the Shapley

value provides the exact solution for the ICA problem. Moreover,

to address ICA effectively and efficiently, a linear time algorithm

is developed to find the exact solution under the LT model and an

FPRAS is devised to construct an approximate solution under the

IC model. Our solution under the IC model consists of a scalable

sampling method that significantly boosts the sampling efficiency

and a stopping rule algorithm that delivers an approximate solution

with accuracy guarantees. Through extensive experiments, we show

significant efficiency and efficacy improvements of our approach

against other baselines.
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