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ABSTRACT
Temporal graph neural networks (T-GNNs) are state-of-the-art

methods for learning representations over dynamic graphs. Despite

the superior performance, T-GNNs still suffer from high computa-

tional complexity caused by the tedious recursive temporal message

passing scheme, which hinders their applicability to large dynamic

graphs. To address the problem, we build the theoretical connection

between the temporal message passing scheme adopted by T-GNNs

and the temporal random walk process on dynamic graphs. Our

theoretical analysis indicates that it would be possible to select a

few influential temporal neighbors to compute a target node’s repre-

sentation without compromising the predictive performance. Based

on this finding, we propose to utilize T-PPR, a parameterized metric

for estimating the influence score of nodes on evolving graphs.

We further develop an efficient single-scan algorithm to answer

the top-𝑘 T-PPR query with rigorous approximation guarantees.

Finally, we present Zebra, a scalable framework that accelerates the

computation of T-GNN by directly aggregating the features of the

most prominent temporal neighbors returned by the top-𝑘 T-PPR

query. Extensive experiments have validated that Zebra can be up

to two orders of magnitude faster than the state-of-the-art T-GNNs

while attaining better performance.
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1 INTRODUCTION
Many real-world applications rely on dynamic graphs, where nodes

and edges are constantly updated. For instance, users on social

platforms like Reddit interact with each other by posting a com-

ment; users on an e-commerce platform interact with items by
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making a purchase. The above applications require learning rep-

resentations of nodes upon new interactions to support a wide

range of downstream tasks, including temporal link prediction

and dynamic node classification. Temporal graph neural networks

(T-GNNs) [22, 36, 49, 50, 54] have achieved state-of-the-art per-

formance in learning representations on dynamic graphs. Given a

target node at a specific timestamp, T-GNNs compute its temporal

embedding through recursive temporal message passing, which con-

sists of time-dependent neighbor sampling and time-encoded neigh-

borhood aggregation. The above time-related modules help T-GNNs

to better capture the diffusion process on evolving graphs. Recent

research [36, 50] shows that T-GNNs can significantly outperform

the static GNNs [17, 18, 42] and snapshot-based GNNs [15, 16, 33]

in predictive performance.

Unfortunately, the high time complexity of T-GNNs in both

training and inference stages hinders their applicability to large

dynamic graphs. As shown in Figure 1a, the computation graph of

T-GNN grows exponentially with the model depth, which is known

as the neighbor explosion problem. This issue could cause severe

efficiency and memory concerns. For instance, CAW [50] fails to

finish one epoch of model training on the Wiki-Talk (7.8M edges

and 1.14M nodes) dataset [4] with an RTX 2080 Ti GPU in 12 hours;

TGN [36] suffers from slow inference on large dynamic graphs

due to the excessive memory consumption caused by recursive

temporal neighborhood aggregation. To the best of our knowledge,

improving the efficiency of T-GNNs still remains an open problem

to be resolved.

In this work, our ultimate goal is to reduce the computational

cost of T-GNNs without compromising model performance. To this

end, we get inspiration from the well-acknowledged fact [19] that

not all neighbors are equally important for learning node embed-

dings on static graphs. Intuitively, given a target node 𝑣 , neighbors

more densely connected to 𝑣 are supposed to make a larger impact

in learning its representation. Therefore, prior works [8, 19, 20, 43]

resort to graph diffusion like personalized PageRank (PPR), heat

kernel PageRank, and Katz index for calculating the proximity score

between nodes on static graphs. These methods then select and

aggregate the most influential neighbors to compute a target node’s

embedding. Particularly, the diffusion-based GNNs [8, 19] can be

orders of magnitude faster than the vanilla GNNs [17, 42] while

achieving higher model accuracy. This is because the diffusion-

based approaches can eliminate the noises introduced by insignif-

icant neighbors and thus resolve the over-smoothing [10, 24, 31]

issue caused by increasing model depth.

Based on the above discussion, we raise up a natural question:

do there exist influential nodes that we can utilize to accelerate the
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computation of T-GNNs without compromising model accuracy, just
as the efforts devoted to static GNNs?

To answer this question, we analyze how much each input

feature affects the final output of T-GNNs using influence func-

tions [21, 55, 59]. Specifically, T-GNN learns a weight for each

selected neighbor to compute a target node’s embedding. Our key

observation is that the weights used for temporal message passing in

T-GNNs correspond to the 1-step temporal random walk probabili-
ties on dynamic graphs. We theoretically prove that the influence

of input node 𝑥 on T-GNN’s output embedding of node 𝑦 is pro-

portional to the probability that a temporal random walk starting

from node 𝑦 terminates at node 𝑥 . Intuitively, neighbors with large

reaching probabilities tend to be more crucial in learning a node’s

embedding. Thus, not all neighbors contribute equally to T-GNN

computation. Based on the analysis, we give a positive answer to

the previous question. By distinguishing and aggregating the most

influential neighbors, we can possibly reduce the computational

cost of T-GNNs without sacrificing model accuracy.

To compute the influence score of nodes on evolving graphs, we

need to estimate the temporal random walk probabilities based on

neighbor weights learned by T-GNNs. The challenge here is that

we cannot know the neighbor weights in advance without running

T-GNN. Fortunately, we find that given a target node, the weights of

its top-10 recently interacted neighbors learned by vanilla T-GNNs

approximately follow exponential distributions (see details in Sec-

tion 4.3). This is reasonable since recent interactions capture the

latest trend, thus conveying more instructive information in the

diffusion process on dynamic graphs. Following the observation,

we propose temporal Personalized PageRank (T-PPR), a novel pa-

rameterized metric for estimating the influence score of nodes on

dynamic graphs. Specifically, T-PPR is configured by an exponential

decay factor 𝛽 (0 < 𝛽 < 1), and for a target node 𝑦, T-PPR assigns

its 𝑖-th recently interacted neighbor transition probability propor-

tional to 𝛽𝑖 . Then, T-PPR computes the influence score of a node 𝑥

on the target node 𝑦 as the temporal random walk probability from

𝑦 to 𝑥 . Therefore, we can identify the top-𝑘 influential neighbors

by solving a top-𝑘 T-PPR query.

In this work, we are the first to extend PPR to T-PPR and establish

the theoretical connection between T-GNN and T-PPR. We further

develop Zebra, a scalable framework that improves T-GNN via

T-PPR. In general, Zebra mimics the recursive temporal neighbor-

hood aggregation operation of T-GNNs through answering top-𝑘

T-PPR queries, thus eliminating expensive message aggregation.

Specifically, given a target node 𝑣 at a specific timestamp 𝑡 , Zebra

first searches the most informative temporal neighbors with respect

to (𝑣, 𝑡) by answering the top-𝑘 T-PPR query. Then, Zebra aggre-

gates the features of selected neighbors with normalized T-PPR

values. In this way, Zebra resolves the neighbor explosion issue,

thus improving the computational efficiency of T-GNNs.

The core technical challenge of Zebra is to answer T-PPR queries

efficiently. Otherwise, the cost saved from avoiding recursive tempo-

ral neighborhood aggregation could be over-consumed by the query

algorithm itself. Although many advanced techniques [26, 28, 46–

48, 52] have been developed for PPR query processing, they cannot

be adapted to efficiently answer top-𝑘 T-PPR queries due to the

highly imbalanced weight distribution. Specifically, existing PPR so-

lutions usually assume that the input static graph is unweighted and

cyclic, while T-PPR handles highly skewed and acyclic graphs. For

weighted graphs, the push-based [6, 7, 29, 46, 47, 57] and iteration-

based [26, 32, 52] PPR methods would spend significant time on

calculating a tiny probability mass, resulting in severe overhead. To

address this challenge, we leverage the acyclic property of T-PPR

to build a single-scan near-linear algorithm that can solve the top-𝑘

T-PPR query upon new interactions with approximation guarantees.

Besides, T-PPR metrics configured by different exponential decay

factors have distinct characteristics. A single T-PPR, if not well

parameterized, may fail to sufficiently capture the diffusion process

on dynamic graphs, thus degrading model accuracy. To make Zebra

more stable and performant, we propose to build robust T-GNN by

constructing an ensemble of temporal embeddings obtained with

different T-PPR metrics.

In summary, we have made the following contributions:

• We build the theoretical connection between the temporal mes-

sage passing scheme in T-GNNs and the temporal random walk

on dynamic graphs. Our theoretical finding shows that the influ-

ence of an input node 𝑥 on T-GNN’s output node𝑦 is proportional

to the temporal random walk probability from 𝑦 to 𝑥 .

• We propose to utilize T-PPR, a novel parameterized metric for

estimating the influence score of nodes on evolving graphs. Com-

puting exact T-PPR values is computationally prohibitive. Thus,

we propose an efficient single-scan algorithm to answer the top-𝑘

T-PPR query with rigorous approximation guarantees.

• We present Zebra, a scalable framework for accelerating the

training and inference of T-GNN based on T-PPR. Zebra avoids

the cumbersome message passing process required by vanilla

T-GNN through directly aggregating the most prominent neigh-

bors returned by the top-𝑘 T-PPR query.

• We have conducted extensive experiments to validate the effi-

ciency and effectiveness of Zebra. Specifically, Zebra can be up

to two orders of magnitude faster than the state-of-the-art T-

GNNs while attaining better predictive performance on various

dynamic graphs.

Overview. In the rest of the paper, we introduce our technical

background in Section 3, investigate the connection between T-

PPR and T-GNN in Section 4, and present our framework Zebra

in Section 5. Then, Section 6 introduces our solution to the top-𝑘

T-PPR query. Finally, we show experiments in Section 7, review

related work in Section 2, and conclude this paper in Section 8.

2 RELATEDWORK
Temporal Graph Neural Networks. T-GNNs are powerful mod-

els for learning representations on continuous-time dynamic graphs.

The pioneering work [22] uses a time projection module to pre-

dict future embeddings and adopts RNNs to update state vectors

of nodes. DyRep [41] further incorporates 2-hop neighborhood

when updating node representations. TGAT [54] mimics the mes-

sage passing scheme of static GNNs and encodes time informa-

tion through random Fourier features. TGN [36] unifies previous

methods [22, 41, 54] and have achieved remarkable accuracy im-

provement. CAW [50] encodes sampled random walks using an

anonymization strategy to further improve the predictive perfor-

mance on unseen nodes. Moreover, APAN [49] accelerates model

inference through asynchronous message propagation. However,
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existing T-GNNs usually rely on recursive message passing, thus

suffering from high computational cost. In contrast, Zebra can im-

prove the efficiency of T-GNNs by identifying and aggregating the

most instructive temporal information.

Diffusion-basedGraphNeural Networks. The idea of improving

GNNs via graph diffusion is first proposed in [19], which derives a

new propagation scheme based on personalized PageRank (PPR).

It [19] aims to enlarge the receptive field of static GNNs without

incurring the over-smoothing issue [31]. The follow-up work [8]

further accelerates approximated PPR computation by parallelizing

the forward push algorithm [6]. Other graph diffusion methods like

heat kernel PageRank [20] and ordinary differential equation [9]

are also explored in GNN computation. Moreover, the randomized

algorithm AGP [43] provides a unified solution for approximately

computing various proximity queries. To build more robust and

power GNNs, SIGN [37] and GMLP [58] combines various diffusion

methods for information propagation. In contrast to prior works,

we are the first to study the diffusion process for T-GNNs. Motivated

by the observation that the importance of temporal interactions

generally follows exponential distributions, this paper proposes a

novel metric named T-PPR. By answering top-𝑘 T-PPR queries, we

can distinguish influential temporal nodes over dynamic graphs.

Personalized PageRank. PPR [32] is a critical proximity measure

for static graphs. The advanced algorithms [26, 28, 46–48, 52] for

fast PPR computation are the combination of basic techniques in-

cluding forward push [6], reverse push [5], power iteration [32], and

Monte-Carlo sampling. For instance, a line of research [26, 47, 48]

combines forward push with the Monte-Carlo method to improve

the computational efficiency with error guarantees. To approxi-

mate PPR computation on dynamic graphs, the previous meth-

ods [7, 29, 56, 57] incrementally update indexes (e.g., random walk

segments) when the graph structure changes. As for top-𝑘 PPR

query, early works [11, 12, 53] follow the branch-and-bound idea

to accelerate the exact top-𝑘 computation by dynamically updating

the lower and upper error bounds. Recently, approximation algo-

rithms [40, 51] are then developed to improve the efficiency of top-𝑘

PPR query with theoretical guarantees. Despite the success of PPR,

most of existing works focus on undirected and unweighted graphs

and thus cannot be efficiently extended to solve our T-PPR prob-

lem. For weighted graphs, the push-based [5, 6, 47] and iteration-

based [26, 52] methods would spend significant time on calculating

a tiny probability mass, resulting in severe overhead. While the

EdgePush algorithm [45] can address this issue, it is not applicable

to dynamic graphs because this approach needs to precompute and

maintain a threshold for each edge in the graph.

3 BACKGROUND
In this section, we first review continuous-time dynamic graphs

(CTDGs) and temporal random walk. Based on the above two con-

cepts, we then introduce T-GNNs, which are powerful models that

learn temporal embeddings on CTDGs via recursive temporal neigh-

borhood aggregation. Table 1 summarizes the primary notations

used throughout this paper.

Table 1: Summary of primary notations.

Notation Description
𝐺 A continuous-time dynamic graph

𝛾 (𝑡) The interaction arriving at timestamp 𝑡

𝑡−, 𝑡+ The time just before and after 𝑡

𝑣𝑖 A node in the dynamic graph

𝑠𝑖 The state vector of node 𝑣𝑖

𝑒𝑖 𝑗 (𝑡), 𝑒 (𝑡) The feature of the interaction arriving at 𝑡

(𝑣𝑖 , 𝑡), (𝑖, 𝑡) A temporal node (node 𝑣𝑖 at timestamp 𝑡 )

𝑁𝑖,𝑡 Temporal neighbors of (𝑖, 𝑡)
ℎ
(𝑙)
𝑖,𝑡

The embedding of (𝑖, 𝑡) at layer 𝑙
𝑤𝑖,𝑡 ( 𝑗, 𝜏) The weight of ( 𝑗, 𝜏) with respect to (𝑖, 𝑡)
𝑃𝑖,𝑡 ( 𝑗, 𝜏) Temporal random walk probability from (𝑖, 𝑡) to ( 𝑗, 𝜏)

𝛼 The termination probability in T-PPR

𝛽 The exponential decay factor in T-PPR

𝜋𝑖,𝑡 The T-PPR dictionary for (𝑖, 𝑡) with default value 0

�̃�𝑖,𝑡 The estimated T-PPR dictionary for (𝑖, 𝑡) with default 0

𝜋𝑖,𝑡 ( 𝑗, 𝜏) The T-PPR value of ( 𝑗, 𝜏) concerning (𝑖, 𝑡)
�̃�𝑖,𝑡 ( 𝑗, 𝜏) The estimated T-PPR value of ( 𝑗, 𝜏) concerning (𝑖, 𝑡)

3.1 Continuous-Time Dynamic Graphs
Definition 1 (Continuous-Time Dynamic Graph (CTDG)).

A CTDG G is represented as a sequence of edge interactions 𝐺 =

{𝛾 (𝑡1), 𝛾 (𝑡2), . . . } arranged in increasing order of time. Each interac-
tion is a quadruple 𝛾 (𝑡) = (𝑣𝑖 , 𝑣 𝑗 , 𝑒𝑖 𝑗 (𝑡), 𝑡) representing a (directed)
temporal edge, where 𝑣𝑖 and 𝑣 𝑗 are nodes, 𝑒𝑖 𝑗 (𝑡) is a vector of edge
feature, and 𝑡 ∈ N+ is a timestamp at which 𝛾 (𝑡) happens.

In this work, we focus on CTDGs due to their generality and

flexibility. For undirected CTDGs, both interactions (𝑣𝑖 , 𝑣 𝑗 , 𝑒𝑖 𝑗 (𝑡), 𝑡)
and (𝑣 𝑗 , 𝑣𝑖 , 𝑒𝑖 𝑗 (𝑡), 𝑡) are stored. For simplicity, we refer to CTDGs

as dynamic graphs when it is clear from the context. A CTDG can

be a multigraph since multiple interactions may occur between two

nodes at different timestamps.

3.2 Temporal RandomWalk
Temporal Node. Let (𝑣𝑖 , 𝑡), or simply (𝑖, 𝑡) denote a temporal node

(i.e., node 𝑣𝑖 at timestamp 𝑡 ). A temporal node serves as the basic
unit of temporal random walks and T-GNN computation.

Temporal Neighbor. For any temporal node (𝑖, 𝑡), we define its
temporal neighbor set in a dynamic graph 𝐺 as

𝑁𝑖,𝑡 = {( 𝑗, 𝜏) | (𝑣𝑖 , 𝑣 𝑗 , 𝑒𝑖 𝑗 (𝜏), 𝜏) ∈ 𝐺, 𝜏 < 𝑡}, (1)

where ( 𝑗, 𝜏) ∈ 𝑁𝑖,𝑡 indicates that node 𝑣 𝑗 interacted with node 𝑣𝑖
at a previous timestamp 𝜏 (𝜏 < 𝑡 ).

Temporal RandomWalk. Temporal random walks [30, 50] cap-

ture the diffusion process on dynamic graphs and proceed in inverse
chronological order. Therefore, a walk reaching (𝑖, 𝑡), at the next
step, can only move to a temporal neighbor ( 𝑗, 𝜏) ∈ 𝑁𝑖,𝑡 if 𝑁𝑖,𝑡 ≠ ∅;
otherwise, the temporal random walk has to terminate at (𝑖, 𝑡).

3.3 Temporal Graph Neural Networks
Temporal graph neural networks (T-GNNs) are powerful models for

learning representations on dynamic graphs. Existing state-of-the-

art T-GNNs [22, 36, 41, 49, 54, 60] can be abstracted into a generic
architecture, including temporal message passing and state update.
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For each node 𝑣𝑖 , T-GNNs dynamically maintain a state vector

𝑠𝑖 , which summarizes the information of all the past interactions

that involve node 𝑣𝑖 . T-GNNs then compute temporal embeddings

based on the state vectors through recursive temporal sampling

and neighborhood aggregation. Specifically, given a new interac-

tion 𝛾 (𝑡) = (𝑣𝑖 , 𝑣 𝑗 , 𝑒𝑖 𝑗 (𝑡), 𝑡), an 𝐿-layer T-GNN model works in the

following two steps.

• Temporal Message Passing. T-GNN computes the temporal

embedding ℎ
(𝐿)
𝑖,𝑡 of node 𝑣𝑖 at timestamp 𝑡 by recursively aggre-

gating its 𝐿-hop temporal neighborhood as follows:

�̃� 𝑖,𝜏 = SAMPLE(𝑁𝑖,𝜏 ), (2)

ℎ
(𝑙 )
𝑖,𝜏 = AGGREGATE({ℎ (𝑙−1)

𝑗,𝜏′ ∥ 𝑒𝑖 𝑗 (𝜏
′) ∥ 𝜙 (𝑡 − 𝜏 ′) |

( 𝑗, 𝜏 ′) ∈ �̃� 𝑖,𝜏 }),∀𝑙 = 1, . . . , 𝐿, (3)

ℎ
(0)
𝑖,𝜏 = 𝑠𝑖 . (4)

To compute ℎ
(𝑙 )
𝑖,𝜏 (𝑙 ≥ 1) of (𝑖, 𝜏) at layer 𝑙 , T-GNN first samples

a set of temporal neighbors �̃� 𝑖,𝜏 that have interacted with 𝑣𝑖
before 𝜏 (Eq.2). Then, T-GNN aggregates sampled neighborhood

features, which are represented by the concatenation of (𝑙 − 1)-
layer embedding ℎ

(𝑙−1)
𝑗,𝜏′ , edge feature 𝑒𝑖 𝑗 (𝜏

′), and time encoding

𝜙 (𝑡 − 𝜏 ′) (Eq.3). Here, the function 𝜙 (·) encodes the delta time

between the target timestamp 𝑡 and a sampled interaction 𝛾 (𝜏 ′).
Moreover, T-GNN aggregates state vectors to compute the first-

layer embeddings (Eq.4). As shown in Figure 1a, the computation

graphs of T-GNNs are time-dependent, and each target timestamp

𝑡 is associated with a unique computation graph.

• State Update. After a new interaction 𝛾 (𝑡) = (𝑣𝑖 , 𝑣 𝑗 , 𝑒𝑖 𝑗 (𝑡), 𝑡)
arrives, T-GNN updates state vectors of nodes 𝑣𝑖 and 𝑣 𝑗 , respec-

tively. For instance, the state vector 𝑠𝑖 of node 𝑣𝑖 is updated as

𝑠𝑖 = UPDATE(𝑠𝑖 , 𝑠 𝑗 , 𝑒𝑖 𝑗 (𝑡), 𝜙 (𝑡 − 𝑡 ′)), (5)

where 𝑠𝑖 and 𝑠 𝑗 on the right-hand side are the latest state vectors

before the interaction 𝛾 (𝑡) arrives, and 𝑡 ′ (𝑡 ′ < 𝑡 ) denotes the

last update timestamp of node 𝑣𝑖 .

Time Complexity. Let 𝑘 be the limit on the number of temporal

neighbors sampled for each temporal node in Eq.2 and 𝐿 be the

number of layers. Then, there are O(𝑘𝐿−𝑙 ) (1 ≤ 𝑙 ≤ 𝐿) nodes at

the 𝑙-th layer. Moreover, T-GNN needs to aggregate neighborhood

features of at most 𝑘 temporal neighbors to compute the represen-

tation of a temporal node. Therefore, the time complexity of an

𝐿-layer T-GNN is O(∑︁𝐿
𝑙=1

𝑘 · 𝑘𝐿−𝑙 ) = O(𝑘𝐿).

4 FROM T-GNN TO T-PPR
As described in Section 3.3, vanilla T-GNNs take state vectors (Eq.4)

and edge features (Eq.3) as inputs to compute temporal embeddings.

In this section, we first analyze howmuch each input feature affects

the model output (Section 4.1 and Section 4.2). Based on the influ-

ence analysis, we then propose T-PPR and discuss the opportunities

of improving T-GNNs via T-PPR (Section 4.3).

4.1 Preliminaries
Influence Functions. Inspired by [21, 55, 59], we analyze the

influence of an input feature 𝑥 on model output 𝑦 by measuring

the magnitude of the corresponding partial derivatives 𝜕𝑦/𝜕𝑥 . More

specifically, we define the influence score of state vectors and edge

features in Def. 2 and Def. 3, respectively.

Definition 2 (Influence Score of State Vectors). Let ℎ (𝐿)𝑖,𝑡

be the temporal embedding of (𝑖, 𝑡) computed by an 𝐿-layer T-GNN
and 𝑆 be the set of state vectors involved in the computation of ℎ (𝐿)𝑖,𝑡 .
The influence score of any state vector 𝑠 𝑗 ∈ 𝑆 on ℎ (𝐿)𝑖,𝑡 is the norm of
the expected Jacobian matrix 𝐼 ((𝑖, 𝑡), 𝑠 𝑗 ) = ∥𝐸 [𝜕ℎ (𝐿)𝑖,𝑡 /𝜕𝑠 𝑗 ] ∥. Then, the
normalized influence score of 𝑠 𝑗 can be defined as

𝐼𝑖,𝑡 (𝑠 𝑗 ) =
𝐼 ( (𝑖,𝑡 ),𝑠 𝑗 )∑︁

𝑠𝑧 ∈𝑆 𝐼 ( (𝑖,𝑡 ),𝑠𝑧 ) . (6)

Definition 3 (Influence Score of Edge Features). Let ℎ (𝐿)𝑖,𝑡 be
the temporal embedding of (𝑖, 𝑡) computed by an 𝐿-layer T-GNN and
𝐸 be the set of edge features involved in the computation of ℎ (𝐿)𝑖,𝑡 . The
influence score of any edge feature 𝑒 𝑗𝑧 (𝜏) ∈ 𝐸 on ℎ (𝐿)𝑖,𝑡 is the norm of
the expected Jacobian matrix 𝐼 ((𝑖, 𝑡), 𝑒 𝑗𝑧 (𝜏)) = ∥𝐸 [𝜕ℎ (𝐿)𝑖,𝑡 /𝜕𝑒 𝑗𝑧 (𝜏)] ∥.
Then, the normalized influence score of 𝑒 𝑗𝑧 (𝜏) can be defined as

𝐼𝑖,𝑡 (𝑒 𝑗𝑧 (𝜏)) =
𝐼 ( (𝑖,𝑡 ),𝑒 𝑗𝑧 (𝜏))∑︁

𝑒𝑝𝑞 (𝜏′)∈𝐸 𝐼 ( (𝑖,𝑡 ),𝑒𝑝𝑞 (𝜏′)) . (7)

Generic Aggregator. The analysis of influence score depends on
the aggregator used in Eq.3. Without loss of generality, we study the

most fundamental and generic aggregator [36] defined as below:

ℎ
(𝑙 )
𝑖,𝜏 = ReLU(𝑊 (𝑙 ) ∑︁

( 𝑗,𝜏′) ∈𝑁𝑖,𝜏
𝑤𝑖,𝜏 ( 𝑗, 𝜏 ′) (ℎ (𝑙−1)

𝑗,𝜏′ ∥ 𝑒𝑖 𝑗 (𝜏
′) ∥ 𝜙 (𝑡 − 𝜏 ′)))

(8)

where𝑊 (𝑙 )
is a learnable weight matrix at the 𝑙-th layer,𝑤𝑖,𝜏 ( 𝑗, 𝜏 ′)

is the non-negative weight of the temporal neighbor ( 𝑗, 𝜏 ′) with
respect to (𝑖, 𝜏), and the sum of weights

∑︁
( 𝑗,𝜏′) ∈𝑁𝑖,𝜏

𝑤𝑖,𝜏 ( 𝑗, 𝜏 ′) = 1.

In practice, we can set uniform neighbor weights [36] or learn the

weights using attention modules [54].

4.2 Influence Analysis
Key Intuition.We observe that the weight𝑤𝑖,𝜏 ( 𝑗, 𝜏 ′) used in the

generic aggregator (Eq.8) implicitly defines the 1-step temporal

random walk probability 𝑃𝑖,𝜏 ( 𝑗, 𝜏 ′) from (𝑖, 𝜏) to ( 𝑗, 𝜏 ′). Then, the
multiplication of multi-hop neighbor weights corresponds to the

multi-hop temporal random walk probability. This finding moti-

vates us to build a unified view of the temporal message passing

scheme in T-GNN and temporal random walk on dynamic graphs.

Specifically, the following theorems show that the normalized in-

fluence score of an input feature 𝑥 (i.e., state vector or edge feature)

on T-GNN’s output embedding 𝑦 is proportional to the temporal

random walk probability from the temporal node associated with 𝑦

to the temporal node associated with 𝑥 . We defer the proofs of the

theorems to our technical report [3] due to the page limit.

Theorem 1. For an 𝐿-layer T-GNN with the generic aggregator
(Eq.8), the normalized influence score 𝐼𝑖,𝑡 (𝑠 𝑗 ) is proportional to the
𝐿-step temporal random walk probability from (𝑖, 𝑡) to the node 𝑣 𝑗 .

Theorem 2. For an 𝐿-layer T-GNN with the generic aggregator
(Eq.8), the normalized influence score 𝐼𝑖,𝑡 (𝑒 𝑗𝑧 (𝜏)) is proportional to a
weighted sum of 𝑙-step (1 ≤ 𝑙 ≤ 𝐿) temporal random walk probability
from (𝑖, 𝑡) to (𝑧, 𝜏).

Discussion. The above two theorems suggest that we can directly

compute the normalized influence score of an input feature as

long as there exists a method that is able to sufficiently capture
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(b) Overview of Zebra

Figure 1: (a) Example of a 2-layer vanilla T-GNN. In the dynamic graph, the dotted line with timestamp 𝑡6 indicates a newly
arrived interaction 𝛾 (𝑡6) = (𝑣1, 𝑣3, 𝑒13 (𝑡6), 𝑡6). Then, the T-GNN computes the temporal embedding ℎ

(2)
1,𝑡

6

of node 𝑣1 at times-
tamp 𝑡6 through recursive message passing. Concretely, the target temporal node (𝑣1, 𝑡6) has three 1-hop temporal neighbors
{(𝑣4, 𝑡2), (𝑣2, 𝑡4), (𝑣2, 𝑡5)}. The T-GNN aggregates the information (i.e., concatenation of temporal embeddings and edge features)
of those temporal neighbors to compute the embedding of (𝑣1, 𝑡6). Besides, the T-GNN takes state vectors and edge features
as input to compute the first layer embeddings. (b) Our Zebra framework accelerates T-GNN by avoiding recursive temporal
message passing. Given a target (𝑣1, 𝑡6), Zebra first solves the top-𝑘 T-PPR query and returns a set of temporal nodes that are
most influential to (𝑣1, 𝑡6). Then, Zebra aggregates the state vectors and edge features of the returned top-𝑘 nodes. Here, the
weight𝑤 used in neighborhood aggregation corresponds to the normalized T-PPR value of a temporal node.
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Figure 2: (a) Average precision of vanilla T-GNN varying
neighbor samplers on four datasets. (b) Weights of the top-10
recent neighbors learned by vanilla T-GNN on six datasets.

the diffusion process (i.e., temporal random walk probabilities) on

dynamic graphs. Then, it would be possible to directly select a

few prominent temporal neighbors with large influence scores to

compute a temporal node’s embedding. In this way, we can prune

insignificant neighbors and avoid the laborious process of recursive

neighborhood aggregation, thus accelerating T-GNN computation.

4.3 Improving T-GNN via T-PPR
Inspired by the above theoretical findings, we aim to estimate the

temporal random walk probabilities based on neighbor weights

learned by T-GNNs for computing the influence score of nodes on

evolving graphs. As we cannot know the learned neighbor weights

in advance, we get key insight from the behavior of vanilla T-GNN,

which recursively aggregates sampled temporal neighborhood fea-

tures via an attention module [42]. Figure 2a shows the impact

of three neighbor samplers (i.e., recent sampling, weighted sam-

pling, uniform sampling) on the average precision of a 2-layer

vanilla T-GNN [36]. Given a target node, the weighted sampling

approach [50] assigns recently interacted neighbors higher proba-

bilities following an exponential distribution; the recent sampling

approach [36] simply selects the top-𝑘 recent temporal neighbors

for feature aggregation. Figure 2a suggests that the most recent

temporal neighbors play a more crucial role in learning high-quality

temporal embeddings since the recent sampling approach clearly

outperforms the other neighbor samplers in model performance.

Moreover, Figure 2b exhibits the weights of the top-10 recent tempo-

ral neighbors learned by T-GNN on six real-world graphs. Notably,

the weights approximately follow exponential distributions irre-

spective of the input edge features and state vectors.

4.3.1 Temporal Personalized PageRank (T-PPR). Based on the above
observations, we propose temporal personalized PageRank (T-PPR)

to estimate the temporal random walk probabilities over dynamic

graphs. Without loss of generality, we assume that there is no sink

node [44] in the graph by conceptually linking sink nodes to a

dummy node, which is not involved in T-PPR computation. T-PPR

consists of the following two components.

• 𝛼-Temporal Random Walk. Denote by 𝛼 (0 < 𝛼 < 1) the

termination probability of temporal random walks on dynamic

graphs. Then, an 𝛼-temporal random walk starting from (𝑖, 𝑡)
reaching ( 𝑗, 𝜏), at the next step, can (i) terminate at ( 𝑗, 𝜏) with
probability 𝛼 , or (ii) move to a temporal neighbor (the dummy

node) with probability 1 − 𝛼 if 𝑁 𝑗,𝜏 ≠ ∅ (𝑁 𝑗,𝜏 = ∅).
• 𝛽-Exponential Decay. For any temporal node (𝑖, 𝑡) with non-

empty neighbor set, we define the transition probability from

(𝑖, 𝑡) to one of its temporal neighbor ( 𝑗, 𝜏) ∈ 𝑁𝑖,𝑡 as

𝑃𝑖,𝑡 ( 𝑗, 𝜏) = 𝛽 |{ ( 𝑗
′,𝜏′) | ( 𝑗′,𝜏′)∈𝑁𝑖,𝑡 ,𝜏

′≥𝜏 }|∑︁|𝑁𝑖,𝑡 |
𝑧=1

𝛽𝑧
, (9)

where 𝛽 (0 < 𝛽 < 1) is an exponential decay factor assigning the

𝑘-th recent temporal neighbor transition probability proportional
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Figure 3: An illustration of T-PPR. The green notes indicate
that temporal random walks starting from (𝑣1, 𝑡6) move to a
temporal neighbor with probability 1 − 𝛼 , and the red notes
show the probabilities of taking different temporal interac-
tions at the next step.

to 𝛽𝑘 . Our intuition is that recent interactions capture the latest

trend and thus convey more information in the diffusion process

on dynamic graphs. Moreover, the exponential decay model has

been widely adopted in temporal neighbor sampling [30, 50],

stream processing [38], and social network analysis [13, 14].

Definition 4 (Temporal Personalized PageRank (T-PPR)).

Consider a dynamic graph𝐺 . Given a source (𝑖, 𝑡) and a target ( 𝑗, 𝜏),
the T-PPR value of ( 𝑗, 𝜏) with respect to (𝑖, 𝑡), denoted by 𝜋𝑖,𝑡 ( 𝑗, 𝜏),
is defined as the probability that an 𝛼-temporal random walk with
𝛽-exponential decay starting from (𝑖, 𝑡) terminates at ( 𝑗, 𝜏).

Definition 5 (Top-𝑘 T-PPR Query). Consider a dynamic graph
𝐺 . Given a temporal node (𝑖, 𝑡), the goal of top-𝑘 T-PPR query is
to return a dictionary 𝜋𝑖,𝑡 of temporal nodes (excluding (𝑖, 𝑡)) that
have the top-𝑘 largest T-PPR values with respect to (𝑖, 𝑡). For a top-𝑘
temporal node ( 𝑗, 𝜏) ∈ 𝜋𝑖,𝑡 , 𝜋𝑖,𝑡 ( 𝑗, 𝜏) denotes its T-PPR value.

Example 3. Figure 3 demonstrates how T-PPR models the dif-

fusion process on the dynamic graph shown in Figure 1a. The

source node (𝑣1, 𝑡6) has three temporal neighbors, where the most

recent temporal neighbor (𝑣2, 𝑡5) is assigned transition probability

𝑃1,𝑡6
(2, 𝑡5) ∝ 𝛽 . Hence, the T-PPR value of (𝑣2, 𝑡5) with respect to

(𝑣1, 𝑡6) can be calculated as 𝜋
1,𝑡

6

(2, 𝑡5) = 𝛽/(𝛽3 + 𝛽2 + 𝛽) (1 − 𝛼)𝛼 .
Particularly, (𝑣2, 𝑡1) is a sink node without temporal neighbors.

Hence, temporal random walks reaching (𝑣2, 𝑡1) terminate with

probability 𝛼 or move to a dummy node.

Table 2: Comparison of PPR and T-PPR.

Attribute Graph Basic unit Edge weight Topology

PPR Static Node Usually unweighted Cyclic

T-PPR Dynamic Node-time Exponential Acyclic

Comparison of PPR and T-PPR. Table 2 summarizes the key

differences between T-PPR and classical personalized PageRank

(PPR). In general, PPR [32] measures the proximity score between

nodes on static graphs. Most of existing works [26, 47, 48, 52] on

PPR assume the input graph is unweighted and cyclic. In contrast, T-

PPR is a novel proximitymeasure that captures the diffusion process

on dynamic graphs via an exponential decay model. Moreover,

temporal random walks in T-PPR produce acyclic graphs because

these walks proceed in inverse chronological order.

4.3.2 Improving T-GNN via T-PPR. The T-PPR value 𝜋𝑖,𝑡 ( 𝑗, 𝜏) de-
fined in Def. 4 measures the probability that an 𝛼-temporal random

walk with 𝛽-exponential decay starting from (𝑖, 𝑡) terminates at

( 𝑗, 𝜏). Based on Theorem 1 and Theorem 2, 𝜋𝑖,𝑡 ( 𝑗, 𝜏) corresponds to
the influence score of the features associated with ( 𝑗, 𝜏) on vanilla

T-GNN’s output embedding of (𝑖, 𝑡). Therefore, given a target (𝑖, 𝑡),
we search and aggregate the top-𝑘 most influential temporal nodes

(i.e., nodes with the top-𝑘 largest T-PPR scores), thus improving the

computational efficiency of T-GNNs.

Besides its efficiency, T-PPR could also improve the predictive

performance of T-GNNs in downstream tasks. Simply aggregating

multi-hop temporal neighborhood features as vanilla T-GNNs may

hurt model accuracy due to the over-smoothing issue [10, 24, 31].

Concretely, over-smoothing indicates that a target node’s relevant

local neighborhood information may be “washed out” by insignif-

icant neighbor nodes. Fortunately, T-PPR can help overcome the

over-smoothing issue by directly ruling out the irrelevant temporal

nodes that have small T-PPR values.

5 THE ZEBRA FRAMEWORK
5.1 Framework Overview
In this section, we present Zebra, a framework that improves T-

GNN via T-PPR. Figure 1b gives an overview of Zebra. Without

loss of generality, Zebra needs to work in the following two steps.

• Top-𝑘 T-PPRQuery. Given a newly arrived temporal node (𝑖, 𝑡),
Zebra first solves the top-𝑘 T-PPR query and returns a dictionary

𝜋𝑖,𝑡 , which records the top-𝑘 influential temporal nodes with re-

spect to (𝑖, 𝑡) and the corresponding T-PPR values. The technical

challenge here is how to efficiently answer the top-𝑘 query and

eventually achieve end-to-end speedup of T-GNN computation.

To solve this problem, we propose an efficient single-scan algo-

rithm with approximation guarantees in Section 6. Moreover,

we empirically show that a small value of 𝑘 can already lead to

remarkable model performance in Section 7.

• 1-layer Neighborhood Aggregation.After obtaining the top-𝑘
T-PPR dictionary 𝜋𝑖,𝑡 , Zebra then computes the temporal embed-

ding ℎ𝑖,𝑡 for the target temporal node (𝑖, 𝑡) as follows:

𝑤 𝑗,𝜏 =
𝜋𝑖,𝑡 ( 𝑗, 𝜏)∑︁

( 𝑗,𝜏) ∈𝜋𝑖,𝑡 𝜋𝑖,𝑡 ( 𝑗, 𝜏)
, (10)

ℎ𝑖,𝑡 =
∑︂

( 𝑗,𝜏) ∈𝜋𝑖,𝑡
𝑤 𝑗,𝜏 · Transform(𝑠 𝑗 ∥ 𝑒 (𝜏) ∥ 𝜙 (𝑡 − 𝜏)) . (11)

Zebra first calculates the normalized weight 𝑤 𝑗,𝜏 for each se-

lected temporal node ( 𝑗, 𝜏) so that the total weights sum to 1

(Eq.10). Then, Zebra aggregates the features of the top-𝑘 tempo-

ral nodes with the normalized weights and generate the temporal

embedding ℎ𝑖,𝑡 (Eq.11). Here, for each selected temporal node

( 𝑗, 𝜏), the Transform function encodes the corresponding state

vector 𝑠 𝑗 , edge feature 𝑒 (𝜏), and time feature 𝜙 (𝑡 − 𝜏) as vanilla
T-GNN. In our experiments, we find the Transform function im-

plemented as a fully connected layer yields good performance.

TimeComplexity. The complexity of Zebra for computing the em-

bedding of a single node isO(𝐶 (𝑘)+𝑘), where𝐶 (𝑘) denotes the cost
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Figure 4: An illustration of the ensemble idea. The shades of
red and green indicate the top-𝑘 influential temporal neigh-
bors of (𝑣, 𝑡) selected by two different T-PPRmetrics. In the-
ory, an ensemble of diversified T-PPR metrics can widen and
deepen the receptive field of Zebra at the same time, thus
boosting and stabilizing model performance.

of top-𝑘 T-PPR query, and O(𝑘) corresponds to the cost of neigh-
borhood aggregation (Eq.10, Eq.11). We later develop an efficient

approximation algorithm (Algorithm 1) with 𝐶 (𝑘) = O(𝑘 log𝑘) in
Section 6. In contrast, as discussed in Section 3.3, the complexity of

vanilla T-GNN is O(𝑘𝐿). Hence, Zebra equipped with Algorithm 1

can be almost exponentially faster than vanilla T-GNNs.

5.2 Ensemble of T-PPR
The configuration of the T-PPR used in Zebra is important since

the quality of generated temporal embeddings highly depends on

the choice of T-PPR parameters 𝛼 and 𝛽 . A single T-PPR, if not well

parameterized, may fail to sufficiently capture the diffusion process

on evolving graphs, thus degrading model performance.

To address the above limitation and free practitioners from la-

borious parameter tuning, we propose to build robust T-GNNs

through uniting the expressive power of diversified T-PPR metrics.

As shown in Figure 4, T-PPR metrics, parameterized by different 𝛼

and 𝛽 values, are endowed with distinct receptive fields. In general,

T-PPR configured by large 𝛼 and 𝛽 can widen the receptive field of

Zebra, while small 𝛼 and 𝛽 deepen the receptive field. According

to the ensemble theory [39, 61], it would be beneficial to enhance

Zebra by integrating the advantages of diversified T-PPR metrics.

Based on the above discussion, Zebra constructs an ensemble of

temporal embeddings obtained with 𝑛 T-PPR metrics as follows:

ℎ𝑖,𝑡 = Combine(ℎ𝑖,𝑡 (𝛼1, 𝛽1) ∥ . . . ∥ ℎ𝑖,𝑡 (𝛼𝑛, 𝛽𝑛)), (12)

where ℎ𝑖,𝑡 (𝛼 𝑗 , 𝛽 𝑗 ) ( 𝑗 = 1, . . . , 𝑛) corresponds to the temporal em-

bedding obtained with a single T-PPR (parameterized by 𝛼 𝑗 and

𝛽 𝑗 ) as shown in Eq.11, and ℎ𝑖,𝑡 is the final generated temporal em-

bedding of (𝑖, 𝑡). Moreover, the Combine function in Eq.12 can be

simply implemented as a fully connected layer. In practice, we can

parallelize the computation of multiple T-PPRmetrics to reduce the

extra runtime overhead. We empirically investigate the sensitivity

of T-PPR parameters and the impact of ensemble in Section 7.

6 TOP-𝑘 T-PPR QUERY
While a long line of research studies efficient PPR query process-

ing, it falls short of answering T-PPR queries due to the constantly

Algorithm 1: Single-scan top-𝑘 T-PPR algorithm (SANTA)

input : {(�̃�𝑖,𝑡− ,𝑚𝑖,𝑡− ) |𝑣𝑖 ∈ 𝑉 }, new interaction

(𝑣𝑖 , 𝑣 𝑗 , 𝑒𝑖 𝑗 (𝑡), 𝑡), threshold 𝑘
ouput :Approximated top-𝑘 T-PPR dictionary

1 �̄�𝑖,𝑡+ ←
𝑚𝑖,𝑡−𝛽

𝑚𝑖,𝑡−𝛽+𝛽 �̃�𝑖,𝑡
− + 𝛽 (1−𝛼)

𝑚𝑖,𝑡−𝛽+𝛽 (�̃� 𝑗,𝑡− + 𝛼𝐼 𝑗,𝑡 )
2 �̃�𝑖,𝑡+ ← temporal nodes in �̄�𝑖,𝑡+ with the top-𝑘 largest

estimated T-PPR values

3 if 𝑣𝑖 ≠ 𝑣 𝑗 then
4 �̄� 𝑗,𝑡+ ←

𝑚 𝑗,𝑡−𝛽
𝑚 𝑗,𝑡−𝛽+𝛽 �̃� 𝑗,𝑡− + 𝛽 (1−𝛼)

𝑚 𝑗,𝑡−𝛽+𝛽 (�̃�𝑖,𝑡− + 𝛼𝐼𝑖,𝑡 )
5 �̃� 𝑗,𝑡+ ← temporal nodes in �̄� 𝑗,𝑡+ with the top-𝑘 largest

estimated T-PPR values

6 𝑚 𝑗,𝑡+ ←𝑚 𝑗,𝑡−𝛽 + 𝛽
7 𝑚𝑖,𝑡+ ←𝑚𝑖,𝑡−𝛽 + 𝛽
8 return �̃�𝑖,𝑡+ , �̃� 𝑗,𝑡+

changing graph structure and the highly imbalanced weight distri-
bution. To compute PPR values on dynamic graphs, the previous

methods [7, 29, 57] incrementally update indexes (e.g., randomwalk

segments) when the graph structure changes. However, most of

the existing works on PPR focus on undirected and unweighted

graphs. For weighted graphs, the push-based [6, 7, 29, 46, 47, 57]

and iteration-based [26, 32, 52] methods would spend significant

time on calculating a tiny probability mass, resulting in severe over-

head. Please refer to Section 2 for more detailed discussions on the

difference between PPR and T-PPR.

Fortunately, we can leverage the acyclic property of T-PPR to

develop efficient solutions. In this section, we first derive a decom-

position theorem for updating T-PPR values over dynamic graphs

(Section 6.1). We then propose a single-scan algorithm (Section 6.2)

to answer the up-to-date top-𝑘 T-PPR query with rigorous approxi-

mation guarantees (Section 6.3).

6.1 Decomposition Theorem
A straightforward solution to the top-𝑘 T-PPR query is power itera-

tion [32], which recursively traverses the graph and then selects the

top-𝑘 temporal nodes. However, this approach is computationally

prohibitive (see detailed empirical results in Table ??). Therefore,
we develop the following decomposition theorem for T-PPR, which

serves as the foundation of the single-scan algorithm that we will

later discuss in Section 6.2.

Theorem 4 (Decomposition Theorem). Given a dynamic graph
𝐺 = {𝛾 (𝑡1), 𝛾 (𝑡2), . . . } and a new interaction 𝛾 (𝑡) = (𝑣𝑖 , 𝑣 𝑗 , 𝑒𝑖 𝑗 (𝑡), 𝑡).
Denote by 𝜋𝑖,𝑡− the T-PPR dictionary for (𝑖, 𝑡−) with temporal nodes as
keys and T-PPR scores as values. We have the following decomposition
rule for answering the T-PPR query with respect to (𝑖, 𝑡+):

𝜋𝑖,𝑡+ =
𝑚𝑖,𝑡−𝛽

𝑚𝑖,𝑡−𝛽+𝛽 𝜋𝑖,𝑡
− + 𝛽 (1−𝛼)

𝑚𝑖,𝑡−𝛽+𝛽 (𝜋 𝑗,𝑡− + 𝛼𝐼 𝑗,𝑡 ), (13)

where 𝑡− (𝑡+) denotes the time just before (after) 𝑡 ,𝑚𝑖,𝑡− =
∑︁ |𝑁𝑖,𝑡− |
𝑧=1

𝛽𝑧

corresponds to the denominator used in the exponential decay model,
𝐼 𝑗,𝑡 is a dictionary that has only one key ( 𝑗, 𝑡) with value 1, and the
symbol “+” indicates summing dictionary values with the same key.
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Discussion. Theorem 4 suggests that we can efficiently answer

T-PPR queries upon new interactions in a streaming fashion. Specif-

ically, we initialize an empty T-PPR dictionary for each newly ap-

peared node. Given a new interaction 𝛾 (𝑡) = (𝑣𝑖 , 𝑣 𝑗 , 𝑒𝑖 𝑗 (𝑡), 𝑡), we
can answer the T-PPR query with respect to (𝑣𝑖 , 𝑡) by returning

the dictionary 𝜋𝑖,𝑡− . We obtain the updated dictionary 𝜋𝑖,𝑡+ for

node 𝑣𝑖 by merging 𝜋𝑖,𝑡− and 𝜋 𝑗,𝑡− . However, it is costly to dynam-

ically maintain for each node a full T-PPR dictionary, whose size

potentially grows with the number of temporal interactions in the

evolving graph. It is also unnecessary to materialize the full T-PPR

dictionaries since we focus on top-𝑘 T-PPR query in this work.

6.2 Single-scan Top-𝑘 T-PPR Algorithm (SANTA)
Based on the above discussion, we develop an efficient single-scan
top-𝑘 T-PPR algorithm (SANTA) that greedily prunes insignificant

temporal nodes, as shown in Algorithm 1. We elaborate the data

structure maintained by SANTA and how it works as follows.

• Data Structure. Let 𝑉 be a set of nodes in the dynamic graph

𝐺 . For each node 𝑣𝑖 ∈ 𝑉 , SANTA maintains a tuple (�̃�𝑖,𝑡− ,𝑚𝑖,𝑡− ),
where �̃�𝑖,𝑡− is the latest approximated top-𝑘 T-PPR dictionary

for node 𝑣𝑖 before 𝑡 , and𝑚𝑖,𝑡− corresponds to the denominator

used in the exponential decay model (Eq.9).

• Singe-edge Update. Given a new interaction (𝑣𝑖 , 𝑣 𝑗 , 𝑒𝑖 𝑗 (𝑡), 𝑡),
SANTA first computes the temporary dictionary �̄�𝑖,𝑡+ for node

𝑣𝑖 by merging �̃�𝑖,𝑡− , �̃� 𝑗,𝑡− , and 𝐼 𝑗,𝑡 (line 1). This step follows

the decomposition property of T-PPR described in Theorem 4.

SANTA next selects from �̄�𝑖 the top-𝑘 temporal nodes, and ob-

tains the latest approximated top-𝑘 T-PPR dictionary �̃�𝑖,𝑡+ (line

2). Finally, SANTA updates the value of the denominator used in

Eq.9 (line 7). If the newly arrived interaction is not a self-loop (i.e.,

𝑣𝑖 ≠ 𝑣 𝑗 ), SANTA updates the data structure for node 𝑣 𝑗 similarly

(lines 3-6). Following prior works [22, 36, 54], we assume that

each interaction has a unique timestamp. Thus, given a batch of

interactions, SANTA processes them one-by-one.

Complexity. We next analyze the time and space complexity of

SANTA. Given a new interaction, the cost of merging materialized

top-𝑘 T-PPR dictionaries (line 1) is 𝑂 (𝑘), and the cost of top-𝑘

selection (line 2) is𝑂 (𝑘 log𝑘). Then, the time complexity of SANTA

for answering a top-𝑘 T-PPR query is 𝑂 (𝑘 log𝑘). For each node

𝑣𝑖 ∈ 𝑉 , SANTA maintains an approximated top-𝑘 T-PPR dictionary

�̃�𝑖 and a denominator𝑚𝑖 . Hence, the space complexity is𝑂 ( |𝑉 | ·𝑘).
Justification for SANTA. Note that SANTA works in a streaming

fashion and only answers the up-to-date T-PPR query. That is to say,

for each node 𝑣𝑖 , SANTA dynamically maintains the approximated

top-𝑘 T-PPR dictionary �̃�𝑖,𝑡 with respect to the latest timestamp 𝑡

instead of supporting the query of any past state (𝑖, 𝑡 ′) (𝑡 ′ < 𝑡 ). We

clarify that the single-scan approach can well satisfy the require-

ments of T-GNNs’ offline training and online inference paradigms.

Specifically, for offline T-GNN training, one chronologically splits

the dynamic graph into multiple training batches, each containing

a set of edge interactions. Then, T-GNNs sequentially run on these

batches and compute the temporal embedding for each temporal

node appeared in the interactions. Hence, T-GNNs proceed in a

streaming fashion and only query the top-𝑘 T-PPR values with

respect to the current timestamp. Moreover, the online inference of

T-GNNs acts in the same way. Based on the above discussions, it is

evident that SANTA can seamlessly support T-GNN computation.

6.3 Theoretical Guarantees
In this section, we develop theoretical analysis of SANTA. For any

top-𝑘 temporal node returned by SANTA, Theorem 6 gives a lower

bound of its approximated T-PPR value. Moreover, Theorem 7 and

Theorem 8 bound the estimation error introduced by SANTA and

investigate how the error changes with input parameters 𝛼, 𝛽, 𝑘 .

Please refer to our technical report [3] for the detailed proof.

Lemma 5. Given a new interaction 𝛾 (𝑡) = (𝑣𝑖 , 𝑣 𝑗 , 𝑒𝑖 𝑗 (𝑡), 𝑡), let
�̃�𝑖,𝑡+ be the top-𝑘 T-PPR dictionary returned by SANTA. Then,

𝜃˜
(𝑘)
𝑖,𝑡+ ≥ max( 𝑚𝑖,𝑡−𝛽

𝑚𝑖,𝑡−𝛽+𝛽 𝜃
˜
(𝑘)
𝑖,𝑡− ,

𝛽 (1−𝛼)
𝑚𝑖,𝑡−𝛽+𝛽 𝜃

˜
(𝑘)
𝑗,𝑡− ), (14)

where 𝜃˜
(𝑘)
𝑖,𝑡+ is the top-𝑘 T-PPR value threshold of �̃�𝑖,𝑡+ .

Theorem 6 (Lower Bound). Given a new interaction 𝛾 (𝑡) =
(𝑣𝑖 , 𝑣 𝑗 , 𝑒𝑖 𝑗 (𝑡), 𝑡), let �̃�𝑖,𝑡+ be the top-𝑘 T-PPR dictionary returned by
SANTA. For any (𝑧, 𝜏) ∈ �̃�𝑖,𝑡+ , let 𝑅 be a set of temporal random walk
paths that start from (𝑖, 𝑡+) and terminate at (𝑧, 𝜏). Then,

�̃�𝑖,𝑡+ (𝑧, 𝜏) ≥ max𝑟 ∈𝑅 𝑃 (𝑟 ), (15)

where 𝑃 (𝑟 ) denotes the probability of taking the path 𝑟 .

Implication of Theorem 6. For any ( 𝑗, 𝜏) selected in �̃�𝑖,𝑡+ , there

could be multiple temporal random walk paths from (𝑖, 𝑡+) to ( 𝑗, 𝜏).
SANTA may omit some paths with small probabilities, thus in-

troducing estimation errors. However, Theorem 6 shows that the

approximated T-PPR value �̃�𝑖,𝑡 (𝑧, 𝜏) can be lower bounded by the

probability of the most probable path of temporal random walk that

starts from (𝑖, 𝑡) and stops at (𝑧, 𝜏). Hence, SANTA can preserve the

most important temporal information over dynamic graphs.

Theorem 7 (Additive Error Bound). Given a new interaction
𝛾 (𝑡) = (𝑣𝑖 , 𝑣 𝑗 , 𝑒𝑖 𝑗 (𝑡), 𝑡), let �̃�𝑖,𝑡+ be the top-𝑘 T-PPR dictionary re-
turned by SANTA. For any temporal node (𝑧, 𝜏), we have

�̃�𝑖,𝑡+ (𝑧, 𝜏) ≤ 𝜋𝑖,𝑡+ (𝑧, 𝜏) ≤ �̃�𝑖,𝑡+ (𝑧, 𝜏) + 𝜃
(𝑘 )
𝑚𝑎𝑥

𝛼 (1−𝛽) , (16)

where 𝜃 (𝑘)𝑚𝑎𝑥 is the maximum possible top-𝑘 threshold for the T-PPR
metric parameterized by 𝛼 and 𝛽 .

Implication of Theorem 7. The above analysis indicates that the
additive errors of SANTA are negligible when the temporal random

walk probabilities are highly skewed (i.e., T-PPR is parameterized

by large 𝛼 or small 𝛽) or a large 𝑘 is adopted.

Theorem 8 (Relative Error Bound). Given a new interaction
𝛾 (𝑡) = (𝑣𝑖 , 𝑣 𝑗 , 𝑒𝑖 𝑗 (𝑡), 𝑡), let �̃�𝑖,𝑡+ be the top-𝑘 T-PPR dictionary re-
turned by SANTA. For any temporal node (𝑧, 𝜏) ∈ �̃�𝑖,𝑡+ , we have

𝜋𝑖,𝑡+ (𝑧, 𝜏) ≤ max( 𝛼 (1−𝛼) (1+𝛽−𝛼)
(1+𝛽)𝜃˜ (𝑘 )𝑖,𝑡+

, 1)�̃�𝑖,𝑡+ (𝑧, 𝜏) (17)

where 𝜃˜
(𝑘)
𝑖,𝑡+ (𝜃˜

(𝑘)
𝑖,𝑡+ > 0) is the top-𝑘 T-PPR value threshold of �̃�𝑖,𝑡+ .

Implication of Theorem 8. Note that the top-𝑘 threshold 𝜃˜
(𝑘)
𝑖,𝑡+

generally increases as we decrease the value of 𝑘 . Therefore, the

above theorem shows that the errors of estimated T-PPR values can

be marginal for the most influential temporal nodes.
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7 EXPERIMENTS
7.1 Experimental Settings
Datasets. Table 3 summarizes the six real-world dynamic graphs

used in our experiments. Particularly, the diversity 𝑑 [25, 27] is a

critical metric that can help practitioners to find the suitable pa-

rameter setting. In general, high diversity indicates that a user may

interact with many different items over time, while low diversity

suggests that there may be frequent interactions between a certain

user-item pair. MOOC, Wikipedia, and Reddit are common bench-

marks for evaluating T-GNNs [22, 36, 50, 54]. Specifically, MOOC

records student-course interactions on an online course platform;

Wikipedia contains one month of changes made by editors; Reddit

consists of one month of subreddit posts made by users. More-

over, AskUbuntu, Superuser, and Wiki-Talk are three large dynamic

graphs consisting of timestamped user-user interactions collected

from the corresponding platforms. For each dynamic graph shown

in Table 3, we chronologically split it into training set (70%), valida-

tion set (15%), and test set (15%) as in [36, 54]. Besides, we randomly

select 10% of nodes and remove the corresponding temporal inter-

actions from training sets in order to test model performance in

the inductive setting.

Compared Models and Implementation Details. We compare

our proposed Zebra with five competitive T-GNNs.

• Zebra identifies essential neighbors via SANTA (Algorithm 1)

and computes node embeddings through 1-layer neighborhood

aggregation (Eq.11). In addition, Zebra updates the state vectors

of nodes upon new interactions as vanilla T-GNN [36].

• JODIE [22] uses RNNs to propagate the information of temporal

interactions to update node representations.

• TGAT [54] mimics the message passing scheme of static GNNs

and encodes time information through random Fourier features.

• TGN [36] dynamically maintains a state vector for each node

and includes previous methods [22, 41, 54] as special cases.

• CAW [50] encodes temporal neighborhood information using

anonymized random walk and attention modules.

• APAN [49] accelerates model inference by decoupling graph

computation and message propagation.

We implement the Zebra framework based on PyTorch [34] and the

top-𝑘 T-PPR query algorithm SANTA using Numba [23], an LLVM-

based Python JIT compiler. To evaluate Zebra, we set 𝑘 = 20 for

answering the top-𝑘 T-PPR query by default. We tune the values of

parameters𝛼 and 𝛽 used in T-PPR over the range [0, 0.7] and [0.2, 1],
respectively. Besides, we adapt the official implementation of each

compared baseline to our evaluation settings. For APAN, TGAT, and

TGN, we set model depth 𝐿 = 2 and sample size limit 𝑘 = 10 (Eq.2)

since this is a common and effective parameter setting. Besides, we

sample 64 length-2 anonymized random walks for CAW as it is the

default setting in the official implementation. We note that there

are bugs in the officially released code of APAN. Consequently,

it will leverage future information to make predictions, which is

known as information leakage [36]. We have fixed the bugs in our

empirical evaluation for a fair comparison.

Evaluation Metrics. Following prior works [36, 49, 50], we eval-
uate model performance in average precision (AP) on the test set.

Table 3: Statistics of the dynamic graphs used in our experi-
ments. |𝑉 | and |𝐸 | indicate the number of nodes and temporal
interactions. In addition, 𝑑𝑣 and 𝑑𝑒 denote the dimensionality
of node and edge features, respectively. 𝑑 is a metric that mea-
sures the diversity of interaction patterns in a dynamic graph.
Specifically, given a temporal node (𝑣, 𝑡) with non-empty tem-
poral neighbor set 𝑁𝑣,𝑡 and let 𝑀𝑣,𝑡 = {𝑢 | (𝑢, 𝜏) ∈ 𝑁𝑣,𝑡 } be the
set of unique nodes in 𝑁𝑣,𝑡 , then the diversity [25, 27] of (𝑣, 𝑡)
is defined as 𝑑𝑣,𝑡 = |𝑁𝑣,𝑡 |/|𝑀𝑣,𝑡 |. The diversity of a dynamic
graph is 𝑑 =

∑︁
𝑢∈𝑈 𝑑𝑢,∞/|𝑈 |, where𝑈 is the set of user nodes.

Dataset |𝑉 | |𝐸 | 𝑑𝑣 𝑑𝑒 Timespan 𝑑

MOOC [22] 7,144 411,749 172 4 30 days 1.86

Wikipedia [22] 9,227 157,474 172 172 30 days 1.66

Reddit [22] 10,984 672,447 172 172 30 days 6.49

AskUbuntu [1] 159,316 964,437 172 0 2613 days 1.46

SuperUser [2] 194,085 1,443,339 172 0 2773 days 1.41

Wiki-Talk [4] 1,140,149 7,833,140 172 0 2320 days 2.02

Specifically, we consider two kinds of learning tasks, i.e., transduc-

tive learning and inductive learning. The transductive task tests

model performance on nodes that have been observed during train-

ing, while the inductive task examines the learning ability of models

on unseen nodes. As for efficiency, we evaluate the per-epoch train-

ing time (epoch time) and the total training time till convergence.

Moreover, given a temporal node (𝑖, 𝑡), we evaluate the relative

error of estimated top-𝑘 T-PPR values �̃�𝑖,𝑡 as:

sum(𝜋𝑖,𝑡 ) − sum(�̃�𝑖,𝑡 )
sum(𝜋𝑖,𝑡 )

, (18)

where sum(𝜋𝑖,𝑡 ) (|𝜋𝑖,𝑡 | ≠ 0) and sum(�̃�𝑖,𝑡 ) denote the sum of exact

and approximated top-𝑘 T-PPR values, respectively.

Training Configurations. We train all the models following the

common configurations [36, 50, 54]. Since the dynamic graphs in

Table 3 mainly contain temporal interactions among nodes, we use

link prediction as the downstream task and randomly generate fake

links as negative training samples. T-GNNs are typically trained

and evaluated with batches of interactions. We set the batch size

to be 200 for model training, validation, and testing. Moreover, we

set the maximum number of training epochs to be 50 with early

stopping if a model’s validation performance does not increase

for five consecutive epochs. We tune the learning rate for all the

compared models over the parameter space {1, 0.1, 0.01, 0.001} ×
10
−4
. The experiments run on a server with 8 GeForce RTX 2080 Ti

GPUs, 72 Intel(R) Xeon(R) 2.60 GHz CPUs, and 256 GB of memory.

The reported results are averaged over five runs.

7.2 Key Results
Table 4 and Table 5 examine model performance in link prediction

on six real-world dynamic graphs. In the following, we compare

Zebra, implemented as an ensemble of two top-20 T-PPR metrics,

with the baselines in efficiency and effectiveness.

Time Efficiency of Zebra. As shown in Table 4 and Table 5, Zebra

is one or two orders of magnitude faster than the compared baselines

in total and per-epoch training time. Zebra is computationally sim-

ple as it avoids the tedious process of recursive temporal message
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Table 4: Comparison of T-GNNs on small dynamic graphs. Zebra is implemented as an ensemble of two top-20 T-PPRmetrics.
We report model performance in transductive average precision (%), inductive average precision (%), and total training time (s).
In addition, we report the number of epochs required for model convergence in parentheses. The best and second-best results
in each metric are marked in bold and underlined, respectively. “∗” indicates that the performance improvement of Zebra over
the best-performing baseline is statistically significant with the significance level set to be 0.05.

Model Wikipedia Reddit MOOC

Trans AP Induct AP Training (#) Trans AP Induct AP Training (#) Trans AP Induct AP Training (#)

JODIE 95.16 ± 0.4 93.13 ± 0.5 2356.4 (18) 95.83 ± 0.3 93.20 ± 0.4 9243.64 (14) 83.26 ± 0.5 81.77 ± 0.4 5160.30 (15)

TGAT 94.26 ± 0.1 92.88 ± 0.3 2881.4 (29) 97.80 ± 0.2 96.08 ± 0.3 11933.8 (21) 70.22 ± 0.4 70.83 ± 0.5 7838.5 (25)

TGN 98.58 ± 0.1 98.05 ± 0.1 2182.7 (26) 98.66 ± 0.1 97.55 ± 0.1 11528.9 (26) 88.88 ± 1.7 88.17 ± 2.1 5086.83 (21)

APAN 96.41 ± 0.5 96.06 ± 0.4 1605.0 (21) 98.50 ± 0.2 97.62 ± 0.7 16431.8 (18) 87.02 ± 0.3 86.74 ± 0.5 3374.1 (14)

CAW 98.18 ± 0.1 98.24 ± 0.1 10175.5 (13) 98.54 ± 0.1 97.97 ± 0.1 75585.1 (16) 80.60 ± 0.4 80.18 ± 0.4 34063.9 (14)

Zebra 98.67 ± 0.1 98.59 ± 0.1∗ 302.6 (34) 98.76 ± 0.1∗ 98.28 ± 0.1∗ 1342.0 (31) 92.45 ± 0.2∗ 89.56 ± 0.3 619.5 (25)

Table 5: Comparison of T-GNNs on large dynamic graphs. Zebra is implemented as an ensemble of two top-20 T-PPRmetrics.
The evaluation metrics are the same as those in Table 4. Particularly, “OOM” denotes out-of-memory error, and “TLE” denotes
time limit exceed such that we cannot finish one epoch of model training in 12 hours. “∗” indicates that the performance
improvement of Zebra over the best-performing baseline is statistically significant with the significance level set to be 0.05.

Model AskUbuntu SuperUser Wiki-Talk

Trans AP Induct AP Training (#) Trans AP Induct AP Training (#) Trans AP Induct AP Training (#)

JODIE OOM OOM OOM OOM OOM OOM OOM OOM OOM

TGAT 87.57 ± 0.3 84.21 ± 0.4 11728.5 (21) 86.40 ± 0.5 83.12 ± 0.5 17129.3 (19) 91.72 ± 0.2 85.38 ± 0.3 189420 (34)

TGN 94.51 ± 0.2 92.73 ± 0.2 36202.6 (20) 93.18 ± 0.3 91.76 ± 0.2 81747.6 (24) OOM OOM OOM

APAN 89.17 ± 0.1 88.43 ± 0.1 21606.1 (14) 87.07 ± 0.3 85.50 ± 0.5 48724.2 (19) TLE TLE TLE

CAW 90.87 ± 0.2 90.63 ± 0.2 61903.7 (14) 88.92 ± 0.2 88.32 ± 0.1 111744.8 (15) TLE TLE TLE

Zebra 94.47 ± 0.1 97.91 ± 0.1∗ 1362.2 (24) 93.21 ± 0.3 97.93 ± 0.1∗ 2095.1 (23) 95.45 ± 0.1∗ 97.96 ± 0.1∗ 9909.6 (16)

passing by efficiently solving the top-𝑘 T-PPR query. In contrast,

the simplest baseline JODIE, which does not require neighborhood

aggregation, is not scalable. This is because JODIE has to be trained

in small batches to ensure statistical performance [22]. TGAT and

TGN follow the generic T-GNN architecture described in Section 3.3,

thus suffering from high computational cost. Particularly, TGN is

especially slow in updating the state vectors of nodes (Eq.5) on large

dynamic graphs due to poor locality of GPU memory access. Zebra

resolves this problem via a lazy update strategy, i.e., only updating

the state vectors of nodes that will participate in neighborhood

aggregation, thus eliminating redundant computation and reducing

GPU memory access. To accelerate model inference, APAN im-

proves upon TGN by decoupling neighborhood aggregation from

temporal message passing. However, APAN is extremely sensitive

to the amount of available CPU and memory resources, thus suffer-

ing from inefficiency in our evaluation setting. Moreover, CAW is

the slowest baseline because it adopts eight cumbersome attention

modules to compute node representations. As shown in Table 5,

CAW cannot even finish one epoch of model training in 12 hours

on Wiki-Talk. In summary, the above experiments suggest that

selecting influential temporal nodes via T-PPR can indeed improve

the efficiency of T-GNNs.

Memory Efficiency of Zebra. Table 5 shows that Zebra signifi-
cantly reduces the memory consumption of T-GNNs. Specifically,

JODIE and TGN suffer from excessive memory consumption on

large dynamic graphs, while Zebra can efficiently compute tem-

poral embeddings without incurring out-of-memory error. On the

one hand, although SANTA requires extra memory for dynamically

maintaining the top-𝑘 influential neighbors for each node over

evolving graphs, we argue that the extra memory overhead can be

negligible. This is because state vectors, edge features, model pa-

rameters, and gradients consume most of the memory. In practice,

the dimensionality of state vectors and edge features (e.g., 172) is

much larger than the value of 𝑘 (e.g., 20) used for T-PPR compu-

tation. On the other hand, Zebra reduces the computational cost

of T-GNNs and thus save the GPU memory required to perform the
corresponding computations. For instance, the peak GPU memory

consumption of TGN is 3GB more than that of Zebra on Wiki-Talk.

Overall, the experimental results suggest that Zebra is memory

efficient and scalable to large dynamic graphs (e.g., Wiki-Talk).

Effectiveness of Zebra. Though Zebra aims to make a trade-off

between effectiveness and efficiency, Table 4 and Table 5 show that

Zebra outperforms the state-of-the-art baselines in both transduc-

tive and inductive average precision. The same conclusion can be

drawn for other evaluation metrics, including accuracy and AUC.

We omit the results due to the page limit. As have discussed in Sec-

tion 4.3, Zebra is more effective for two reasons. First, our proposed

T-PPR is capable of capturing the relative influence of multi-hop
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Figure 5: Transductive performance of a single top-20 T-PPR
varying parameters 𝛼 and 𝛽 .

temporal neighbors over dynamic graphs. Second, simply aggre-

gating the top-𝑘 influential neighbor nodes found by T-PPR can

eliminate the noises introduced by insignificant nodes, thus resolv-

ing the over-smoothing issue. In contrast, vanilla T-GNNs have to

recursively aggregate multi-hop neighborhood and then distinguish

informative features in a data-driven manner.

Moreover, note that the advantage of Zebra is more evident and

tends to be statistically significant in the inductive setting, which

tests model performance on nodes that are not observed during

model training. Specifically, Zebra outperforms the best baseline

TGN by a large margin (i.e., 5%-6%) on AskUbuntu and SuperUser.

This is because newly appeared nodes in the dynamic graph are

sparsely connected. The baselines, restricted by the limited recep-

tive field (i.e., 2-hop neighborhood), lack enough information to

learn a cold node’s embedding. In contrast, T-PPR enlarges the

receptive field of Zebra regardless of the number of hops. We ob-

served that a top-20 T-PPR query could find influential nodes that

are 4-hops away on AskUbuntu. Hence, Zebra can capture more

instructive information for cold nodes and thus generate better

node representations.

7.3 Analysis of Zebra Parameters
In this section, we conduct experiments on Wikipedia, Reddit,

MOOC, and AskUbuntu to investigate the impact of Zebra pa-

rameters and provide guidance on the choice of each parameter.

Due to the page limit, we report some representative results that are

useful for discussions. Please see our technical report [3] for com-

plete empirical verification and detailed discussions. In short, the

guiding settings for parameter 𝛽 and neighborhood size 𝑘 depend

on the connectivity and interaction pattern of a dynamic graph,

and the choice of parameter 𝛼 and ensemble size 𝑛 is less sensitive

to the characteristics of a specific dynamic graph.

Impact of Parameter 𝛽 .A smaller 𝛽 value makes T-PPR perceive a

smaller neighborhood, while a larger 𝛽 value makes T-PPR perceive

a larger neighborhood. Figure 5 investigates the effect of parameter

𝛽 on Zebra’s transductive average precision. It requires a small 𝛽

to achieve the best transductive performance on AskUbuntu. As

shown in Table 3, AskUbuntu has low-diversity and easy-to-predict

interaction patterns. In other words, a target node in this graph may

repeatedly interact with very few neighbor nodes over a period of

time. Hence, a small 𝛽 value, which prioritizes the most recently

interacted temporal neighbors only, can already lead to remarkable

transductive performance. Increasing the 𝛽 value may incorporate
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Figure 6: Inductive performance of a single top-20 T-PPR
varying parameters 𝛼 and 𝛽 .

insignificant and noisy neighbors, thus deteriorating transductive

performance for AskUbuntu. In contrast, a large 𝛽 value is required

to achieve the best transductive performance on Reddit, which has

diverse interaction patterns. Given a node in Reddit, its recently

interacted neighbors tend to be diverse, and there are few repeated

interaction patterns. Thus, a large 𝛽 value, which captures a larger

neighborhood and long-term interactions, is more beneficial to

learning temporal embeddings on such diverse graphs. Figure 6

further investigates the effect of parameter 𝛽 on Zebra’s inductive

average precision. Both Reddit and AskUbuntu require a large 𝛽

value in order to obtain the best inductive performance. This is

because it generally takes a sufficiently large neighborhood to learn

a newly appeared node’s temporal representation, and a large 𝛽

value enables Zebra to focus on a large neighborhood. Based on

the above discussions, we suggest parameterizing a single T-PPR

with a small 𝛽 value (e.g., 0.5) to learn embeddings for transductive

nodes with low-diversity interaction patterns. Otherwise, a large 𝛽

value (e.g., 0.9) is preferred.

Impact of Parameter 𝛼 . A large 𝛼 value favors 1-hop temporal

neighbors, while a small 𝛼 value can perceive neighbors from multi-

ple hops away. Compared with parameter 𝛽 , Zebra is less sensitive

to the choice of parameter 𝛼 . Figure 5 and Figure 6 show that the

best setting for parameter 𝛼 generally lies in the range of [0.3, 0.5].
On the one hand, a small value of 𝛼 = 0 cannot achieve competitive

performance on AskUbuntu. As suggested by Table 3, this graph

has low-diversity and repeated interaction patterns. Hence, 1-hop

temporal neighbors play a more crucial role in learning high-quality

temporal embeddings, and a relatively large 𝛼 value (e.g., 0.5) is

required. On the other hand, an extremely large 𝛼 value (e.g., 0.7)

fails to capture the long-term temporal information from multiple

hops away and could slightly hurt model performance. Based on

the above discussions, we suggest setting the parameter 𝛼 in the

range of [0.3, 0.5] in practice.

Impact of Neighborhood Size 𝑘 . Figure 7 demonstrates the aver-

age precision of Zebra varying the neighborhood size 𝑘 . For Reddit,

there is a slight performance drop in the inductive setting when

increasing 𝑘 from 60 to 100. This observation indicates that simply

aggregating more neighbors for computing temporal embeddings

may hurt model accuracy because some insignificant and irrelevant

neighbors could introduce harmful noises. In general, Zebra can

achieve superior performance in the transductive setting with a

small 𝑘 (e.g., 20), while it may require a larger 𝑘 (e.g., 60) to achieve

the best inductive learning ability. This is because inductive tasks
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Figure 7: Performance of a single T-PPR, parameterized by
𝛼 = 0.3 and 𝛽 = 0.5, varying neighborhood size 𝑘 .

test model performance on nodes that are not observed during

model training. Given a newly appeared node, it generally takes a

sufficiently large neighborhood to learn its temporal representation.

On the other hand, the state vector of a transductive node may have

already captured enough information about past temporal interac-

tions. Hence, a small 𝑘 can work well in practice. In summary, we

suggest setting a small 𝑘 (e.g., 20) for transductive nodes while a

large 𝑘 (e.g., 40) for inductive nodes. To achieve robust performance,

we recommend implementing Zebra with 𝑘 = 20 over an ensemble

of two diversified T-PPR metrics.

Table 6: Performance of Zebra with 𝑘 = 20 varying the en-
semble size 𝑛. We report transductive AP (%), inductive AP
(%), and per-epoch training time (s) of models.

Ensemble Wikipedia AskUbuntu

size Trans Induct Epoch Trans Induct Epoch

1 98.59 98.41 5.72 94.37 97.75 35.34

2 98.67 98.59 8.91 94.47 98.00 56.76

3 98.64 98.61 11.93 94.21 97.76 81.71

4 98.65 98.58 15.82 94.22 97.65 102.59

Impact of Ensemble Size 𝑛. Table 6 investigates the impact of

ensemble size (i.e., the number of T-PPR metrics used in Eq.12) on

Zebra’s performance. Clearly, an ensemble of two T-PPR metrics

outperforms a single T-PPR in average precision. This observation

is in line with our expectations since an ensemble of two diversi-

fied T-PPR metrics can enlarge the receptive field of Zebra, thus

improving models’ generalization ability. Besides, increasing the

ensemble size may not improve Zebra’s performance [61] for two

reasons. First, increasing the ensemble size could introduce harm-

ful noises and irrelevant temporal nodes. The noises lead to the

over-smoothing issue [10] and prevent the model from focusing on

the most informative temporal information. Second, we train an

MLP [35] model to combine temporal embeddings obtained with

various T-PPR metrics. A larger ensemble size requires a larger

MLP model that has more trainable parameters. It could be difficult

to effectively train an MLP model to extract useful representations

from high-dimensional combined features. As for time efficiency,

although increasing the ensemble size 𝑛 increases the per-epoch

training time, Zebra is still significantly faster than the baselines

shown in Table 4 and Table 5. In summary, Zebra powered by

two suitable T-PPR metrics is efficient and effective. Therefore, we

recommend setting the ensemble size 𝑛 = 2 in practice.

Discussion. Another major advantage of the ensemble scheme

is that it enhances the robustness of Zebra and frees practition-

ers from tedious parameter tuning. As shown in Figure 2b, the

weights of the top-10 recent temporal neighbors, learned by vanilla

T-GNN, approximately follow various exponential distributions.

In other words, the best fitting diffusion process for different dy-

namic graphs is different. Therefore, the key problem is how to

configure the T-PPR used in Zebra to ensure model effectiveness.

Fortunately, Table 4, Table 5, and Table 6 show that an ensemble

of two diversified T-PPR metrics (e.g., parameterized by 𝛽 = 0.5

and 𝛽 = 0.95) demonstrates robust and remarkable performance on

all the evaluated six real-world dynamic graphs. This is because,

as illustrated in Figure 4, an ensemble of a large-𝛽 T-PPR and a

small-𝛽 T-PPR can widen and deepen the receptive field of Zebra

at the same time, thus improving models’ robustness.

8 CONCLUSION
In this paper, we present a scalable framework Zebra that improves

T-GNNs through solving the top-𝑘 T-PPR query. We theoretically

prove that the influence of input node 𝑥 on T-GNN’s output em-

bedding of node 𝑦 is proportional to the probability that a temporal

random walk starting from node 𝑦 terminates at node 𝑥 . Therefore,

we have formally defined T-PPR, a novel metric that can effectively

estimate the influence of temporal neighborhood features via an ex-

ponential decay model. We further propose an efficient single-scan

algorithm to answer the top-𝑘 T-PPR query with theoretical guaran-

tees. Zebra aggregates the most influential neighbors returned by

the top-𝑘 T-PPR query, thus greatly improving the computational

efficiency. Substantial experiments validate that Zebra can be up to

two orders of magnitude faster than the state-of-the-art baselines

while attaining better performance on various dynamic graphs.

This work advances two data management research directions. We

expand the scope of query processing research by proposing a novel

proximity metric T-PPR, which can capture the diffusion process

on dynamic graphs. Besides, the data management community is

interested in developing metric-based embedding learning methods.

Our work follows this routine and advances the current research

to scale temporal embedding learning on evolving graphs.
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