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ABSTRACT

Can we quickly explore large multidimensional data in main mem-
ory? Adaptive indexing responds to this need by building an index
incrementally, in response to queries; in its default form, it indexes
a single attribute or, in the presence of several attributes, one at-
tribute per index level. Unfortunately, this approach falters when
indexing spatial data objects, encountered in data exploration tasks
involving multidimensional range queries. In this paper, we intro-
duce the Adaptive Incremental R-tree (AIR-tree): the first method
for the adaptive indexing of non-point spatial objects; the AIR-tree
incrementally and progressively constructs an in-memory spatial
index over a static array, in response to incoming queries, using a
suite of heuristics for creating and splitting nodes. Our thorough
experimental study on synthetic and real data and workloads shows
that the AIR-tree consistently outperforms prior adaptive indexing
methods focusing on multidimensional points and a pre-built static
R-tree in cumulative time over at least the first thousand queries.
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1 INTRODUCTION

Applications in geographic information systems [31] and 3D scien-
tific data analysis [26] call for exploring data sets of spatial objects
at different levels of granularity [22]. The user needs to explore
such large amounts of data, yet cannot invest time to build a com-
plete index in advance. For example, consider an application that
identifies spatial data objects in satellite images and makes those
spatial data available to scientists interested in searching for objects
in specific regions; building an index for all objects upfront may not
be worthwhile, as queries are few and target a limited space. Once
the user has finished exploring one spatial area, they may move to
a new one, requiring only one part of a disk-resident data set to
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be indexed in memory at a time. In these circumstances, the need
arises to build and refine an in-memory index in response to queries
indicating user interests [12]; that is, adaptive indexing [16, 18, 35] Ð
and, in its most widespread form, database cracking [14]. Adaptive
indexing allows for straightforward access to the data without the
overhead of a priori indexing. By the time a full indexing approach
is still preparing the index, an adaptive indexing technique will
have already answered thousands of queries [12]. We emphasize
that the term ładaptivež signifies not only that an index tunes itself
in response to queries, as in [2], but also, most crucially, that an
index assembles itself in response to queries.

Existing adaptive indexing methods organize each index around
a single dimension or attribute [15], or otherwise dedicate each
level of a multilevel index to a single dimension [13, 17, 27]; thus,
they accommodate non-point multidimensional objects with spa-
tial extent, as those that occur in scientific applications [26], only
extrinsically, via query transformation and post-processing.

In this paper, we introduce the Adaptive Incremental R-tree (AIR-
tree): an inherently multidimensional adaptive hierarchical in-mem-
ory index structure that reorganizes and expands itself in response
to range queries. Unlike previous art, the AIR-tree keeps track of
all spatial dimensions and object extents in each index level, rather
than indexing one dimension per level; it progressively constructs a
hierarchy of 𝑑-dimensional minimum bounding boxes (MBBs), split-
ting such MBBs in response to incoming queries and expanding the
index accordingly; it uses a suite of heuristics to maintain the struc-
ture compact, minimize indexed empty space, and avoid overlap
among nodes. When the number of objects in an MBB falls below
a threshold, that MBB is not cracked further. The index eventually
becomes comparable to a static in-memory R-tree [26].

We evaluate the AIR-tree with synthetic and real, two- and three-
dimensional spatial data objects and workloads. Our results show
that the AIR-tree outperforms previous art on multidimensional
adaptive indexing [13, 27] in per-query and cumulative response
time to a workload by at least one order of magnitude. Moreover,
the ensuing in-memory index may even match the steady-state
per-query performance of a conventional static in-memory R-tree.

We summarize our main contributions as follows:

• We repurpose criteria designed for spatial index updates to
adaptive indexing of objects with spatial extent.

• We transcend prior art [25, 27] by overseeing all object
extents in each index level, picking the order by which to
crack on query boundaries by a margin-based criterion, and
tightly adjusting those boundaries on the crack dimension.

• We show that the AIR-tree also manages point data better
than existing methods, as it builds a more compact tree.
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• We show that the AIR-tree fares well as an index-building
method too, as it effectively disentangles larger objects from
smaller ones thanks to its query-driven character.

2 RELATED WORK

We overview fundamentals on spatial indexes, adaptive indexing,
and previous attempts for multidimensional adaptive indexing.

2.1 Spatial indexes

The KD-tree [6] is a binary search tree that organizes points in
space partitions. Each internal node bisects space along one dimen-
sion and each level corresponds to one dimension in round-robin
fashion. A node at level ℓ represents a data point 𝑝 , with its left
(right) child indexing points preceding (succeeding) 𝑝 along the
dimension associated with ℓ . Other space partitioning methods, the
quadtree [19], octree [23], and loose octree [33], create quadrants
or octants using predefined boundaries, oblivious to the data.

An R-tree [11] organizes spatial data in a hierarchy of multi-
dimensional minimum bounding boxes (MBBs), each level adding
further detail. In effect, an R-tree resembles a multidimensional ver-
sion of a B-trees. Unlike a KD-tree, an R-tree holds data on leaves
only. While worst-case optimal [3] and I/O-optimized variants [5]
exist, practical heuristics craft MBB boundaries that reduce indexed
empty space, margins (targeting square-like MBBs), and overlap
among MBBs [4, 10, 26, 30]. Unlike KD-trees and other structures
designed for point data, the R-tree is tailored for non-point spa-
tial objects, while also capable to manage points. We develop an
adaptive R-tree for real-world spatial data with spatial extent.

2.2 Adaptive indexing

Database cracking. Adaptive indexing builds an index as a side-
effect of query processing [18]; it incurs a small overhead in query
response times while progressing to a full index. A prominent adap-
tive indexing method for column-oriented databases is database
cracking [14]; cracking uses range query bounds as pivots to incre-
mentally quicksort numerical values and gradually build an index
organized on query bounds. Each query traverses the tree con-
structed by preceding ones to reach the data values in its range,
cracks those index parts further, up to the resolution of a crack-
ing threshold [14], and expands the index accordingly. To achieve
robustness, stochastic cracking uses carefully selected pivots in ad-
dition to those dictated by query ranges [12, 35].

Universe
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Query

1. reorganize x

slice x

2. reorganize y 3. reorganize z
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Query Query

(a) Incremental indexing strategy

X level

Y level

Z level

(b) Index structure after queries

Figure 1: QUASII indexing strategy and data structure [27].

QUASII. The first attempt to apply adaptive indexing to spatial
data was the QUery-Aware Spatial Incremental Index (QUASII) [27],
which applies cracking to one dimension per tree level. Like a KD-
tree, QUASII splits the space on a different dimension per level, yet,
unlike a KD-tree, uses each dimension only once. For each query,
QUASII first cracks along the 𝑥-dimension to organize data on the
first tree level; it then cracks and indexes the piece corresponding to

the query’s 𝑥-range, [𝑥ℓ , 𝑥ℎ] along the next dimension,𝑦, on bounds
[𝑦ℓ , 𝑦ℎ] on the second tree level; and so on. The ensuing index is
a wide tree of 𝑑 levels, each associated with one of 𝑑 dimensions.
Figure 1 illustrates the operation. Nevertheless, QUASII partitions
space into rectangles that are not MBBs of the data they hold,
hence are suboptimal for processing spatial query workloads [4]; it
accommodates data objects with spatial extent only by means of
query window extension [31]: representing all data objects as points,
it extends each query window by the size of the largest object in
the data, and removes false positives from query results.
Cracking KD-trees. Another attempt to extend adaptive indexing
to spatial data sets, concurrent to QUASII, is the adaptive KD-tree
(AKD) [13, 25]; it also applies cracking to one dimension per tree
level. However, it lets the tree height grow while building a KD-tree
in response to queries, cyclically returning to the same dimension
modulo 𝑑 . Thus, a range query adds up to 2𝑑 new tree levels, one
for each bound along each dimension. For a uniformly-distributed
two-dimensional data set, the ensuing partitioning resembles a grid.
Figure 2 shows how the tree evolves in response to a query.

Figure 2: KD-tree indexing strategy and data structure [25].

The AKDwas extended to a progressive variant [25] which builds
an index while responding to queries, yet the queries have no
bearing on the process. Each query lets a portion of the data set be
indexed, whose size depends on a parameter 𝛿 ; the index converges
to a full index after a sufficient amount of queries. However, a
fixed 𝛿 results to large query response time variance; to ensure
uniform performance, a greedy progressive variant adjusts 𝛿 by a
cost model, hence being more robust than the standard adaptive KD-
tree, albeit more costly in overall query response time. All variants
are designed for points rather than objects with spatial extent.

2.3 Learned indexes

Some works [7, 24] use grid-based learned multidimensional in-
dexes. A learned model determines the size of each grid cell and
models the data distribution therein, based on a sample query work-
load. These methods learn a data model using a sample workload,
yet aim to reduce index space rather than to build an index in real
time; besides, they are designed for point data. Thus, they constitute
a research direction with a different aim from ours.

2.4 Other forms of workload-awareness

Other works build a workload-aware index offline [1, 8, 21, 34]
or first create an index and then refine it online in response to
queries [2], yet do not assemble the index in response to queries.

2249



3 THE ADAPTIVE R-TREE

This section presents the AIR-tree and its construction. First, we
describe its desirable properties and initialization. Next, we outline
the cracking operations in response to queries and the memory
allocation scheme. Delving deeper, we explain how we craft a data-
oriented partitioning out of the ensuing space partitioning and
introduce a lazy boundary maintenance strategy. Lastly, we outline
extensions to stochastic actions and to higher dimensions.

3.1 Core properties

When building an AIR-tree in response to queries, we aim to pre-
serve the following core properties of a well-designed R-tree [4, 11]:

• Root. If not a leaf, the root has at least two children.
• Internal node bounds. A non-root internal node holds a

number of children bounded in an interval [𝑚𝑓 , 𝑀𝑓 ].
• Leaf bounds. A leaf holds a bounded number of objects.
• Balance. All leaves are at the same level.
• Overlap. Overlap among MBBs is kept small.
• Margins.MBBs are square-like [11]; when allocating ob-

jects we prefer to create MBBs with small sum of margins.
• Dead space. The indexed space devoid of data is kept small.

Past research has used heuristics [4, 11] to achieve the last three
properties, which are quantitative. We preserve the goals of such
heuristics as we describe in Section 3.3. Next, we outline how we
partially relax the upper bound𝑀ℓ on data objects per leaf.

3.2 Leaf types

Index construction begins with a single root node that is also a
leaf node comprising all data objects brought in main memory
from external storage. The tree grows by processing queries. As
we cannot always adhere to the bound𝑀ℓ on the number of data
objects a leaf holds, we introduce two types of leaves:

• irregular, which hew to no restriction on held data objects;
• regular, which adhere to the bound𝑀ℓ on held data objects.

The initial root node is an irregular leaf holding all data objects.
Any newly created leaf node may also start out in an irregular state;
however, as a leaf gets cracked, it spawns leaves of fewer contents;
eventually, a leaf’s count falls below 𝑀ℓ , whereupon it becomes
regular. We aim for the AIR-tree to progress towards a state similar
to that of a regular R-tree, rendering all leaves regular; once an
irregular leaf turns regular, it never returns to an irregular state.
Ideally,𝑀ℓ must be set to a value large enough to let the AIR-tree
quickly converge to a regular state and avoid accessing multiple
small leaves for query answering, yet small enough to facilitate
quick result retrieval; we find a proper value experimentally in
Section 4.4, along with a value for the internal node fanout 𝑀𝑓 .
We emphasize that regularity only applies to leaves; internal nodes
never exceed the threshold𝑀𝑓 on the number of their entries.

3.3 Spatial partitioning

The AIR-tree responds to a spatial range query as a regular R-tree,
yet also performs indexing as a side-effect of query processing.
With each query, we traverse the tree built so far along one or
more branches, until we reach one or more leaves that match the
query range. In case a leaf 𝜆 is fully contained within the query

range, we append its contents to query results. On the other hand,
in case a leaf 𝜆 partially intersects the query range, its treatment
depends on its regular or irregular status; regular leaves are already
well-refined, while irregular ones need further cracking. Therefore,
we treat each leaf 𝜆 partially intersecting a query as follows:

• if 𝜆 is regular, we scan it and collect query results;
• if 𝜆 is irregular, we crack it and collect query results.

To crack an irregular leaf, we crack on one query bound at a
time and create an MBB for the contents of the resulting piece on
the non-query side. Figure 3 presents a query range overlapping a
leaf in two dimensions. The solid-lined outer rectangle is the MBB
of an irregular leaf and the solid-lined inner one indicates the query
bounds. We create a piece that includes the query results and new
pieces for the data fully outside the query bounds. A naïve option is
to create 8 new pieces, a to h in the figure, in addition to the middle
piece. However, this method incurs a significant overhead, which
does not necessarily benefit subsequent queries; for instance, based
on the given query, dividing the space on the left side of the query
into 3 pieces, a, d, and f, may not be useful for consequent queries.
Another option is to create pieces b and g, along with one piece
consisting of the union of a, d, and f, and another piece being the
union of c, e, and h. Still, this solution creates elongated MBBs on
the two sides of the query, whereas we prefer square-like MBBs.

query

min_x max_x

max_y

min_y

a b c

ed

f g h

Figure 3: General 2D cracking.

In a case as in Figure 3, we create at most five pieces by means
of four consecutive cracks, each partitioning an existing MBB on a
query bound. For each crack, we choose the query bound to crack
on by amargin-oriented heuristic on the piece containing the query:
we find the axis 𝛼 on which that piece has largest extent and crack
it on the one of two query bounds along 𝛼 closest to the middle of
that extent on 𝛼 . Thereby, unlike other works [13, 27], we create
square-like pieces, bringing the index to a desirable form [11]. A
piece thus created may be too sparse; still, as long as it is not empty,
we create such a piece as a regular leaf, never to be cracked again.

ALGORITHM 1: AIR-tree Query

Result: Data objects in range of query 𝑞
1 query(q: query bounds)

2 Search(𝑞, root); // R-tree range search traversal

3 Regular = set of regular leaves visited;

4 Irregular = set of irregular leaves visited;

5 if (Irregular not empty)
6 ND-Crack all leaves in Irregular;

7 return results found in Regular, Irregular;
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Figure 4: 2D-Cracking: spatial partitioning.

id minp maxp

1 (-28, 10) (-26, -6)

2 (-2, -19) (1, -17)

3 (-11, 13) (-6, 20)

4 (-5, -8) (-3, -6)

5 (-19, -4) (-17, -2)

6 (15, -4) (17, -2)

7 (0, 9) (3, 11)

8 (7, 8) (10, 12)

9 (2, 18) (6, 20)

10 (15, 20) (17, 22)

11 (24, 5) (30, 8)

12 (26, -17) (28, -15)

root

(a)

id minp maxp

1 (-28, 10) (-26, -6)

3 (-11, 13) (-6, 20)

5 (-19, -4) (-17, -2)
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2 (-2, -19) (1, -17)

6 (15, -4) (17, -2)

7 (0, 9) (3, 11)

8 (7, 8) (10, 12)

9 (2, 18) (6, 20)

10 (15, 20) (17, 22)

11 (24, 5) (30, 8)

12 (26, -17) (28, -15)

root
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root
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3 (-11, 13) (-6, 20)
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2 (-2, -19) (1, -17)

12 (26, -17) (28, -15)

7 (0, 9) (3, 11)

8 (7, 8) (10, 12)

9 (2, 18) (6, 20)

10 (15, 20) (17, 22)

11 (24, 5) (30, 8)

6 (15, -4) (17, -2)
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8 (7, 8) (10, 12)
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11 (24, 5) (30, 8)
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Figure 5: 2D-Cracking: in-place array partitioning.

query

(a)

query

(b)

query

r1

(c)

query

r1

r2

(d)

r1

r2

rq

r4

r3

(e)

Figure 6: 2D-Cracking: data partitioning.

ALGORITHM 2: ND-Crack

Result: Crack leaf ℓ based on query 𝑞 and return results in ℓ

1 ND-Crack(ℓ : leaf, 𝑞: query rectangle)

2 𝑡𝑝 = ℓ ; // this piece

3 𝑡𝑐𝑝 = ℓ ; // this choice piece

4 𝑙𝑡𝑎 = {}; // leaves to add

5 for (each query bound)
6 𝛼 = longest side of 𝑡𝑐𝑝 ;

7 𝑝 = bound of 𝑞 on 𝛼 closest to middle of 𝑡𝑐𝑝 ;

8 𝑞𝑝 , 𝑜𝑝 = 𝑡𝑝 .partition(𝛼 , 𝑝); // query/other piece

9 𝑡𝑝 = 𝑞𝑝 ; // this piece is the query piece

10 if (𝑜𝑝 not empty)
11 𝑙𝑡𝑎.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑜𝑝 ) ;

12 𝑡𝑐𝑝 = 𝑡𝑝 ;

13 else

14 set corresponding bound of 𝑡𝑐𝑝 to 𝑝 on 𝛼 ;

15 if (𝑡𝑝.𝑠𝑖𝑧𝑒 ( ) ≤ 𝑀ℓ )
16 break;

17 scan 𝑡𝑝 for results;

18 𝑙𝑡𝑎.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡𝑝 ) ;

19 remove ℓ ;

20 recalculate MBBs of regular leaves in 𝑙𝑡𝑎;

21 add 𝑙𝑡𝑎 to parent of ℓ ; // R-tree insertion [11]

22 return results;

Algorithm 1 illustrates the shell of the query processing method,
while Algorithm 2 presents the cracking operations. Figure 4 shows

an example where the query overlaps one irregular leaf. We first
choose the axis of largest leaf extent (Line 6), which is the 𝑥-axis.
As the lower 𝑥-bound of the query is closer to the middle of the
leaf’s width (Line 7), we crack on that bound, yielding a new piece
on the left of the query (Line 8), as Figure 4b shows. We repeat on
the piece left on the query side (Line 9). The height of that piece
is larger than its width, hence we crack along the 𝑦-axis. As the
lower 𝑦-bound of the query is closer to the middle of the piece’s
height, we choose that as a cracking pivot, yielding a new piece in
Figure 4c. The process goes on as Figure 4 shows. To determine the
cracking pivot in each step, we apply this heuristic on the query
piece resulting from the previous crack (Lines 12 and 14).

query

Figure 7: Topologies of overlap between leaf and query.

In Figure 4, a leaf MBB fully contains the query. Yet a query may
overlap a leaf MBB partially. Figure 7 shows all leaf-query overlap
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topologies in 2D and the resulting spatial partitions. We always
follow the same process, yet do not crack on query bounds fully
outside the leaf MBB. The first case in Figure 7 is the general case.
In the second case, as the right-side query bound falls outside the
leaf MBB, we do not crack on it; likewise in the other cases.

Yet another complication arises: if all non-query-side objects
intersect the pivot, they are re-assigned to the query-side piece 𝑞𝑝 ,
as we discuss in Section 3.5; thus, the query piece is unaffected
and the other piece is empty and superfluous. Figure 8 shows two
examples of such abortive cracking. If we then choose the next pivot
based on the unaffected query piece, we repeat the same choice. To
avoid this deadlock, we truncate the unaffected query piece on the
pivot anyway (Line 13), yielding the 𝑡𝑐𝑝 piece in each figure, and
apply the heuristic on 𝑡𝑐𝑝 to choose the next pivot (Line 6).

query

query

tcpqp qptcp

Figure 8: Abortive cracking.

At any time, if a piece to be cracked turns out to be regular, i.e.,
holds no more than𝑀ℓ objects, we abandon cracking and scan the
piece to gather query results (Line 15).

ALGORITHM 3: Partition on lower (upper) bound

Result: Partition data-array, D[𝑙 : ℎ] based on 𝑝 in 𝛼

1 partition(𝑙 : start of piece, ℎ: end of piece to crack, 𝛼 : chosen dim)

2 𝑥1 = 𝑙 ;

3 𝑥2 = ℎ − 1;

4 𝑙𝑐[𝑖] = 𝑝𝑖𝑒𝑐𝑒_𝑐𝑜𝑣𝑒𝑟 [𝑖] ∀𝑖 ≠ 𝛼 ; // left chunk

5 𝑟𝑐[𝑖] = 𝑝𝑖𝑒𝑐𝑒_𝑐𝑜𝑣𝑒𝑟 [𝑖] ∀𝑖 ≠ 𝛼 ; // right chunk

6 case min: 𝑟𝑐[𝛼].max = 𝑝𝑖𝑒𝑐𝑒_𝑐𝑜𝑣𝑒𝑟 [𝛼].max;

7 case max: 𝑙𝑐[𝛼].min = 𝑝𝑖𝑒𝑐𝑒_𝑐𝑜𝑣𝑒𝑟 [𝛼].min;

8 initialize other 𝑙𝑐[𝛼] and 𝑟𝑐[𝛼] bounds to extreme values;

9 while (𝑥1 ≤ 𝑥2 ∧ 𝑥2 > 0 )
10 if (D[𝑥1][𝛼].max (min) < p )
11 update 𝑙𝑐 using D[𝑥1];

12 𝑥1 = 𝑥1 + 1;

13 else

14 while (𝑥2 > 0 ∧ 𝑥2 ≥ 𝑥1∧D[𝑥2][𝛼].max (min) ≥ p )
15 update 𝑟𝑐 using D[𝑥2];

16 𝑥2 = 𝑥2 − 1;

17 if (𝑥1 < 𝑥2)
18 swap(D[𝑥1], D[𝑥2]);

19 update 𝑙𝑐 using D[𝑥1];

20 update 𝑟𝑐 using D[𝑥2];

21 𝑥1 = 𝑥1 + 1;

22 𝑥2 = 𝑥2 − 1;

23 return 𝑥1, 𝑟𝑐 , 𝑙𝑐 ;

3.4 In-place array partitioning

To avoid the overhead of dynamic memory allocation, we store the
data in a static array, as in [14]. Each index leaf points to a range
of array entries. We perform cracking in place [29] by swapping

array entries around the pivot on the chosen dimension. Figure 5
shows an example corresponding to Figure 4. Algorithm 3 shows
the quicksort-inspired cracking process for a lower (upper) query
bound serving as pivot, which we compare to the max (min) MBB
bound values of data objects along the chosen dimension 𝛼 . In both
cases, we set a pointer at each end of the 𝛼 axis (Lines 2 and 3), one
moving rightwards (Lines 12 and 21) while stowing objects of value
less than the pivot on its left (Lines 10 and 18), the other moving
leftwards (Lines 16 and 22), while stowing objects of value greater
than the pivot on its right (Lines 14 and 18). When the two meet
(Line 9), the procedure ends and returns the first pointer, pointing
at the pivot location (Line 23).

3.5 Data partitioning

We have hitherto focused on how we partition space in response to
queries. However, the MBBs we create do not necessarily follow the
space partition boundaries. To enhance performance, we adjust the
MBB boundaries of the two partitions resulting from cracking to
tightly enclose the data objects allocated to each partition on the fly,
while swapping data objects (Lines 11, 15, 19, 20). As discussed in
Section 3.3, the resulting partition on the query side may be cracked
next, while the other spawns a new leaf with the associated MBB.

Figure 6 shows the data partitioning resulting from the space
partitioning of Figure 4. In case a data object intersects a partition
boundary, we allocate the whole object to the query-side partition
and adjust its boundaries accordingly, so that its MBB contains
query results. As discussed in Section 3.4, when cracking on a lower
query bound, as in Figure 6b, we allocate data objects among the two
sides by comparing their max MBB bounds to the pivot (Lines 10
and 14); when cracking on an upper query bound, as in Figure 6e,
we allocate data objects by comparing their min MBB bounds to
the pivot; in effect, we always keep objects intersecting the query
range on the query side. The MBBs for each non-query-side data
partition are shrunk compared to those of the corresponding space
partition. On the other hand, the MBB taking the place of the query
window in Figure 6e has its lower 𝑦-axis bound lowered to include
an object partially overlapping the query window at that locale.

r1

r2

(a) Overlap

query

(b) Margins

query

(c) Dead Space

Figure 9: AIR-tree heuristics.

To sum up, we aim for the three quantitative characteristics of a
well-designed R-tree mentioned in Section 3.1 (i.e., small overlap,
small margins, and small dead space) as follows:

• To reduce overlap amongst node MBBs, we assign data
objects intersecting the crack pivot hyperplane, like 𝑟1 in
Figure 9a, to the resulting piece on the query side (in the
figure, upper side); any persisting overlap is due to data
objects on the non-query-side MBB (in the figure, lower
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side) whose pivot axis (𝑦) range overlaps that of a pivot-
intersecting object, as the 𝑦-range of 𝑟2 overlaps that of 𝑟1.

• To achieve small margins, we strive to create square-like
pieces; to that end, we choose a cracking pivot as the most
centrally located query bound along the longest dimension
of a piece to be cracked; thereby, we bring MBBs closer to
a square-like shape. Figure 9b shows an example where an
MBB is broken into two more square-like ones by the query
bound near the middle of its 𝑦-axis stretch.

• Lastly, by their tightness, MBBs avoid indexing dead space

devoid of data; besides, while cracking, a query that inter-
sects dead space in an MBB spawns more compact MBBs
curtailing that dead space; Figure 9c shows an example.

3.6 Lazy boundary maintenance

As discussed in Section 3.4, we calculate the MBBs of the partitions
resulting from cracking on the fly, avoiding extra passes on the
data. To that end, we should check and possibly update a parti-
tion’s MBB boundaries whenever we assign a data object therein.
We do so in Lines 11, 15, 19, 20 of Algorithm 3. In these updates,
we might maintain tight boundaries for all dimensions. However,
this operation does not scale as the number of dimensions grows.
In our trial experiments, performance deteriorated already when
moving from two to three dimensions. Therefore, we eschew such
eager MBB boundary maintenance on all dimensions in favor of
a lazy MBB boundary maintenance along the cracking dimension

only for the two pieces resulting from cracking. Accordingly, Algo-
rithm 3 updates MBB boundaries of lc and rc only on the cracking
dimension 𝛼 ; MBB boundaries on other dimensions follow those
of the original piece (Lines 4 and 5). Further, we forego updating
the non-pivot-side boundary of the query-side partition along the
cracking dimension (Lines 15 and 20); this omission is innocuous,
since any data object that defines this boundary remains on the
query side; in case the boundary is tight, it remains tight; in case it
is loose, it remains equally loose.

query query

Figure 10: MBB calculation in partition.

Figure 10 shows an example on the 2-dimensional case. When
cracking for the query in the figure along the 𝑥-axis (the vertical
dashed lines), we set the 𝑦-axis boundaries for both resulting parti-
tions as equal to those of the original parent piece, as the top and
bottom (dotted and dash-dotted lines) lines indicate. On the other
hand, we eagerly update, with each data object swap, both 𝑥-axis
boundaries of the non-query-side partition resulting from cracking,
as well as the pivot-side 𝑥-axis boundary of the query-side partition.
Still, we do not update the non-pivot-side 𝑥-axis boundary of the
query-side partition (indicated in orange striped lines).

Notably, this lazy boundary maintenance lets some loose bound-
aries exist in newly added tree leaves for some time during adaptive
indexing. Such loose boundaries may result in redundant tree tra-
versal and search operations in subsequent queries. However, this

overhead is negligible and overshadowed by the gains of avoiding
eager boundary updates, as we update at most 2 rather than 2𝑑

boundaries per swap operation. Besides, whenever we crack a piece
along a dimension on which there is a loose boundary, that bound-
ary becomes tight. To ensure the eventual tree has tight bound-
aries, we recalculate tight MBB boundaries on all dimensions when
adding to the tree a regular leaf node, not to be ever cracked again.
Thus, when all leaves become regular, all MBBs are tight.

ALGORITHM 4: S-ND-Crack

1 𝑝𝑠𝑐 = most populated piece in 𝑙𝑡𝑎; // piece to scrack

2 𝛼𝑠 = longest side of 𝑝𝑠𝑐 ;

3 𝑝𝑠 =mediocre of 𝛼𝑠 -axis values in 𝑝𝑠𝑐 ; // pivot for scrack

4 𝑙𝑝, 𝑟𝑝 = 𝑝𝑠𝑐. partition(𝛼𝑠 , 𝑝𝑠 ); // left, right pieces

5 if (𝑟𝑝 not empty ∧ 𝑙𝑝 not empty)
6 𝑙𝑡𝑎.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑝𝑠𝑐 ) ;

7 𝑙𝑡𝑎.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑙𝑝 ) ;

8 𝑙𝑡𝑎.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟𝑝 ) ;

3.7 Stochastic extension

Skewed workloads may have a negative effect on the performance
of adaptive indexing, as they trigger repetitive cracking actions on
large non-indexed areas [12]. To address such repercussions, we
extend our procedure with a benign stochastic element: that is, we
crack on an additional randomly chosen pivot within each cracked
tree node, after all cracks on query bounds. We implement this
extension by adding the pseudo-code in Algorithm 4 to Algorithm 2
after Line 18. In particular, we choose the largest remaining piece
(Line 1), find its axis of longest extent (Line 2), and crack on a
value along that extent (Line 4). This choice is similar to the pivot
choice in quicksort; for best results, we should choose the median

value among all data objects, hence partition them in two halves.
However, the overhead of finding a median is too high a price to
pay. Instead of an exact median, we opt for a mediocre element, i.e.,
the median of a small data sample (Line 3). Even the median of a
small constant-sized sample serves the purpose well [35], while the
single extra crack does not cause a distressing amount of overhead.
By the analysis in [35], we employ a small constant-size sample.

3.8 Three-dimensional case

While we have discussed the two-dimensional case, our solution
applies to the general 𝑑-dimensional case, for any 𝑑 . Figure 11
illustrates how the discussed principles apply to three dimensions.
The initial irregular leaf node is a cuboid anchored at (0, 0, 0), with
width and height 10 and depth 20. The query range is a cuboid with
origin at (3, 5, 8), width 3, depth 2, and height 7, as Figure 11a shows.
Since the leaf node is larger on depth, we first crack along the 𝑧
axis; the 𝑧-axis query bounds are 8 and 15, while the 𝑧-axis middle
of the leaf’s MBB is at 10, thus we use bound 8, which is closer to
the middle, as pivot. Figure 11b shows the first crack as a plane
perpendicular to the 𝑧 axis. We move on to the subspace above this
plane, which contains the query; the extent of this subspace along
the 𝑧 axis, 12, is still larger than others, so we crack along 𝑧 again,
this time on the higher query bound 15, as in Figure 11c. Now the
piece containing the query has largest extent 10 along both axes 𝑥
and 𝑦; we pick 𝑦 at random. The 𝑦-axis query bounds are 5 and 7,
the former exactly at the 𝑦-axis middle of the piece’s extent, hence
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Figure 11: 3D-Crack: spatial partitioning.

we crack on that, as in Figure 11d. The resulting query-side piece
has largest extent along the 𝑥 axis, while the query’s 𝑥-bounds are
3 and 6; we crack at pivot 6, which is closer to the piece’s middle, as
in Figure 11e. The resulting query-side piece still has larger extent,
6, on the 𝑥 axis, so we crack on 𝑥 again, now with query bound 3 as
pivot, as in Figure 11f. Lastly, we crack on the higher 𝑦-bound, 7, as
Figure 11g shows. By the same principle, in dimensionality 𝑑 we do
one crack for each of two query bounds per dimension, hence 2𝑑
cracks in total, spawning at most 2𝑑 + 1 pieces. When a query is
not fully contained in a leaf node’s MBB, we have fewer cracks.

The natural application domain of the AIR-tree is real-world
data objects with spatial extent in two or three dimensions; in this
domain, R-trees outperform indexes designed for point data [4].
Besides, the size of an R-tree is not affected by dimensionality 𝑑 ,
while the height of KD-tree-based indexes increases with 𝑑 [17]; the
AIR-tree preserves this advantage. In effect, the cost of a root-to-leaf
traversal in an AIR-tree does not grow with 𝑑 , while the cost of
cracking operations grows only linearly with 𝑑 .

4 EXPERIMENTS

We conducted exhaustive experiments on the AIR-tree vs. previ-
ous work on in-memory multidimensional adaptive indexing using
real and synthetic data and realistic workloads. We implemented1

all methods in C++ and compiled them in g++ 7.4.0 with the -o3
switch; experiments ran on a 10-core Intel Xeonmachine at 3.10GHz
with 396G RAM running Ubuntu 18.04.3 LTS. We compare the AIR-
tree and its stochastic extension, s-AIR, against standard implemen-
tations of the following methods:

• QUASII [27];
• Cracking KD-trees [13]: Adaptive KD-tree (AKD), Progres-

sive (PKD) and Greedy Progressive KD-tree (GPKD);
• A static2 in-memory R-tree.

As QUASII and Cracking KD-Tree3 target point data, we employ
query window extension [27] to accommodate data objects with spa-
tial extent: we represent data objects by their lower coordinates in
each dimension, and extend each query window by the maximum
data object extent towards the lower side in each dimension; this
way, a query hits the lower coordinates of any object overlapping
its range. We filter false hits in a post-processing step. We measure
runtime including post-processing, yet omit the geometric refine-
ment of results checking object shapes, common to all methods. All
methods produce the same query results. We use the settings rec-
ommended in previous works: QUASII and Cracking KD-trees use
a partition size of 1024 and PKD uses 𝛿 = 0.2. The static R-tree uses

1Code available at https://gitlab.com/adaptivertree/artree
2Code available at https://www.boost.org/users/history/version_1_61_0.html
3Code at http://github.com/pdet/MultidimensionalAdaptiveIndexing

fanout 16, as recommended in the implementation. We set AIR-tree
parameter 𝑀ℓ to 64 and 𝑀𝑓 to 16, as discussed in Section 4.4. In
s-AIR, we select the mediocre as the median of 3 sampled points.

Table 1: Data sets.

Name Size dim. max ext. avg ext.

Uniform 64M 2 (5.73, 5.4) (0.3, 0.3)

ROADS 20M 2 (0.27, 0.25) (4e-4, 3e-4)

EDGES 70M 2 (0.5, 0.1) (1e-4, 1e-4)

LAKES 7M 2 (7.9, 5.5) (4e-3, 3e-3)

Uniform 64M 3 (5.8, 4.9, 5.5) (0.3, 0.3, 0.3)

TLC 75M 3 (0.01, 0.98, 0.99) (1.5e-5, 0.07, 0.1)

4.1 Data sets

We focus on the adaptive indexing of data objects with spatial extent.
As real-world spatial data objects exist in two or three dimensions,
that is the natural application domain of our methods.

We crafted a large synthetic 2D data set of 64M objects. This data
set consists of rectangles whose lower-left corner is located uni-
formly in (0, 10) on each dimension. The objects’ width and height
follow an exponential distribution 𝑔(𝑣) = 3 𝑒−3𝑣 . We use subsets of
this data set for our scalability experiments in Section 4.6.1.

We also use three public real-world 2D data-sets: the ROADS
data feature shapes of U.S. roads and the EDGES data comprise
lines on the U.S. map, including roads, rivers, and borders. The
LAKES data hold global boundaries of bodies of water extracted4

from OpenStreetMaps. All three data sets are available5 at the
University of Minnessota [9]. To examine 3D data, we generate a
synthetic data set following the same process and parameters as in
two dimensions. For a real-world analysis of 3D data, we use taxi
cab trip records6 of the year 2010 by the New York City Taxi and
Limousine Commission (TLC), normalizing pick-up and drop-off
longitudes, latitudes, and timestamps to represent 3D boxes in the
location-time space. Table 1 summarizes data statistics.

4.2 Workloads

Table 2 shows the characteristics of our workloads.We generate syn-
thetic workloads, as in [25], comprising 100K queries each. Query
locations (i.e., lower-left corner coordinates) follow a uniform or a
clustered Gaussian distribution. Query dimensions (widths, heights,
depths) follow a normal distribution. We also generate a skewed
sequential workload for the synthetic data set. In more detail:

Uniform. To devise uniform workloads, we generate corner
points from a uniform distribution within the range of each data
set. The synthetic and TLC data are normalized to the range [0, 1].
Thus, for 𝑑-dimensional synthetic data, we produce query ranges

4https://www.openstreetmap.org/
5http://spatialhadoop.cs.umn.edu/datasets.html
6https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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from Gaussian distribution 𝑁 (1 × 10
−4/𝑑 , 1 × 10

−5), resulting in
boxes that cover 0.01% of the space on average; for the TLC data,
we create query boxes with width in 𝑁 (1 × 10

−3, 1 × 10
−5), height

in 𝑁 (0.02, 1 × 10
−5), and depth in 𝑁 (0.05, 1 × 10

−5). The ROADS
and EDGES data comprise latitudes and longitudes, so we use the
minimum and maximum values per dimension to obtain ranges;
we generate query extents that cover 0.01% of the space on average,
as for the synthetic data, with appropriate scaling.

Skewed. To devise clustered workloads, we generate corner
points as isotropic Gaussian blobs using the make_blobs function
of Python’s scikit-learn [28] module. Figure 12a renders such a
distribution of the lower-left query corners in a workload. We also
use a sequential workload of consecutive queries as in Figure 12b,
fixing query extents to ensure the chosen selectivity; the corners
of query rectangles are points on the identity line.

(a) Clustered (b) Sequential

Figure 12: Skewed workload distributions.

Data Distribution. Unlike the ROADS and EDGES data, which
pertain to the contiguous United States, the LAKES data feature
bodies of water all over the world. In effect, oceanic areas, which
cover some 69% of the earth’s surface, are empty. To avoid a preva-
lence of empty query results, for the LAKES data we use a workload
that follows the data distribution. We randomly select 100K objects
from the data set and extend their widths and heights by 1.5 times
on each side, rendering the query area 16 times larger than, and
centered on, the data object MBB.

Table 2: Workloads.

Location distribution Size distribution Source Size

Uniform Uniform Synthetic 100k

Clustered Uniform Synthetic 100k

Data Distribution Data Distribution Synthetic 100k

Sequential Fixed Synthetic 1000

4.3 Measures

We measure the progressively evolving response times and sizes of
the constructed indexes. In terms of response times, we follow the
conventions in previous works [12, 13, 15, 27], measuring: (i) the
oscillating cost per query over a workload, averaged over 10 runs Ð
which we aim to progressively lower and eventually render indis-
tinguishable from, or even lower than, that achieved with a static
pre-built index; and (ii) the monotonically growing cumulative cost,
which aggregates the cost per query over a workload. For the sake
of fairness, all methods perform identical count queries; we ver-
ified the correctness of results. Query response times inevitably
fluctuate, as some queries trigger more cracking operations than
others; to visualize results comprehensibly, we add a continuous

moving-average line in plots, with window size ranging from 5
to 20 based on the variance of measurements.

Table 3: Parameters, uniform 2D shape data and workload.

𝑀ℓ

𝑀𝑓 4 8 16 32

16 104.559 92.68 91.254 -

64 94.323 87.433 86.132 88.078

256 94.584 91.378 91.367 92.505

1024 116.793 114.685 114.496 115.536

4096 176.418 173.539 174.047 174.337

9 piece static lazy 5 piece dynamic lazy 5 piece static lazy
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Figure 13: Ablation study, uniform workload.

4.4 Parameter settings

We first inspect the settings of two AIR-tree parameters: fanout𝑀𝑓

and leaf threshold𝑀ℓ . We measure the cumulative response time to
a workload under different settings on the 64M Uniform synthetic
data and the Uniform workload. Table 3 shows the results. We ob-
serve that the best-performing set of parameters is fanout 16 and
leaf threshold 64; we use these parameters in all subsequent experi-
ments. These parameters diverge from traditionally recommended
R-tree parameters in terms of leaf threshold. This divergence is
reasonable, since the traditional settings optimize disk I/O, as op-
posed to main-memory indexing. Indeed, the benefit of scanning a
relatively small set of objects per leaf turns out to be worth the cost
of traversing the deeper index structure resulting from a smaller
leaf threshold. We set the lower threshold𝑚𝑓 on entries an internal
node may have to rounded 0.4 of𝑀𝑓 , i.e., 6.
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(d) 64M

Figure 14: Uniform 2D shape data & workload, time per query.
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Figure 15: Uniform 2D shape data & workload, cumulative time.

4.5 Ablation study

We now study the effect of AIR-tree design choices: the number of
crack pieces created, the data storage scheme, and lazy partitioning.

Number of pieces.We opted to crack in at most 2𝑑 + 1 pieces.
Another option is to crack at all query bounds to their full extent,
creating a grid, as in Figure 3, resulting in at most 3𝑑 pieces in 𝑑

dimensions. Figure 13 reports time per query and cumulative time
results on a 9-piece static lazy variant, which cracks to 9 pieces
in 2D vs. the default 5-piece static lazy one, on the 64M Uniform
synthetic, ROADS, and EDGES data with the uniform workload.
Observably, cracking to 5 pieces is the dominant strategy.

Static array. Another design choice is to store the data in a
static array 𝐴, with each index leaf pointing to an interval in 𝐴 and
cracking operations swapping elements within 𝐴, rather than use a
dynamic data structure. Figure 13 also presents results on a 5-piece
dynamic lazy variant, which indexes data in leaves by dynamic
memory allocation. The static-memory variant vastly outperforms
the dynamic-memory one. This dynamic-memory variant only
gains traction after the index has converged and cracking actions
are no longer performed. As we aim for good performance in the
early stages of a workload, we opt for the static-memory AIR-tree.

Lazy boundary maintenance. Lastly, we examine the effect of
lazy boundary maintenance (Section 3.6). For the sake of scalability,
while cracking we update MBB boundaries along the cracking
dimension only. We argue that this strategy does not impair query
performance. Figure 13 presents results on a 5-piece static eager
variant, which maintains exact boundaries, vs. its lazy counterpart.
On all data sets, the lazy variant has a clear advantage during

the initial queries, while performances converge later, as the two
variants are indistinguishable once leaves become regular.

4.6 Synthetic 2D data

Here, we present experimental results on synthetic 2D data.

4.6.1 Scalability. We first assess the scalability of the AIR-tree
against competing methods on uniform synthetic 2D data with the
uniform workload, using subsets of size 8M, 16M, 32M, and 64M.
Figure 14 shows the time per query results. By virtue of managing
all spatial dimensions concurrently while adapting to the workload,
both AIR-tree variants achieve response times faster than QUASII
and Cracking KD-tree variants and, after about 200 queries, even
faster than the static R-tree. Figure 15 shows cumulative times; the
predominant performance of AIR-tree variants is again apparent.

4.6.2 Comparison to static R-tree. Surprisingly, the incrementally
built AIR-tree not only reaches, but also surpasses the response
times of the pre-built static R-tree on these data. Still, the Boost
R-tree we use has fanout 16 for internal and leaf nodes, leading to a
tall tree, and does not allow tuning those parameters. To investigate
the matter, we tried the Superliminal7 R-tree, in which we can
set the same parameter values as in AIR-tree, i.e., internal node
fanout 𝑀𝑓 = 16 and leaf threshold 𝑀ℓ = 64. Figure 16 depicts
the results, along with those for the Boost R-tree as an R-tree
with𝑀𝑓 = 𝑀ℓ = 16 and AIR-tree variants for each of these settings.

The Boost R-tree implementation builds the index by STR pack-
ing [20], whereas the superliminal implementation inserts data
one by one following the quadratic split [11], which causes a large

7Code available at https://superliminal.com/sources/
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difference in index-building time. In steady-state query response
times, AIR-tree variants outperform their static R-tree counterparts
in both cases of parameter settings. This result suggests that the
reason for the observed performance gap does not lie with parame-
ter settings; if that were the case, then the AIR-tree response times
would converge to those of the respective static R-tree in each case.
Since such a convergence does not occur, we conclude that the
AIR-tree index, progressively built by crafting tree nodes for query
results, is inherently well-adjusted to these synthetic spatial data
that follow an exponential size distribution. This finding suggests
that the AIR-tree may provide a viable index-building method with
lightweight workloads, in addition to quick adaptation.
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Figure 16: Uniform 2D shape data & workload, R-tree forms.
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4.6.3 Time breakdown. To further understand the measured cu-
mulative response times on the uniform data and workload, we
segment them by distinct type of operation, namely (i) adaptation,
time to extend the index structure; (ii) index search, time to traverse
the index; and (iii) scan, time to scan through results in leaf nodes.
As Figure 17 shows (on a logarithmic scale), QUASII and AKD spend
a considerable amount of time scanning, attributed to the additional
filtering they perform due to query window extension. By contrast,
tree traversal amounts to most of the AIR-tree response time. As
a result of building a shallower index, QUASII takes less time for
index traversal, albeit more time for other operations.

4.6.4 Sequential workload. We now inspect the performance of
the stochastic variant (Section 3.7) on the the uniform data set with
the sequential workload (Figure 12b). Such workloads engender
precarious performance with standard cracking [12], which sto-

chastic cracking actions aim to assuage. As our results in Figure 18
show, AIR-tree, here represented by its stochastic variant, outstrips
competitors throughout the workload. In this case, the per query

performance struggles to converge to that of the fully built index,
due to the challenging nature of the sequential workload. Still, the
effort pays off eventually over the entire end-to-end workload, an-
swering 1000 queries in less time than the time the static R-tree
needs to build its index. The AIR-tree remains the best choice.
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Figure 18: Uniform 2D shape data, sequential workload.

Interestingly, the static R-tree response time grows linearly over
the first 100 queries. This is due to the fact that, to generate these
uniform data, we choose a lower-left corner uniformly at random

and expand it to an object MBB; thus, the two ends of the sequential
query workload yield fewer results than its middle parts.
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Figure 19: Uniform 2D shape data, partial match workload.

4.6.5 Partial-match workload. We created a partial matchworkload
by removing the bounds on a randomly chosen dimension from
each of 10K queries from the synthetic workload. Figure 19 shows
our results. As these queries yield larger result sets, they take longer.
AIR-tree variants still stand out in the first thousand queries.
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Figure 20: Uniform 2D point data, uniform workload.

4.6.6 Synthetic 2D point data. All preceding experiments were on
data sets of objects with spatial extent. The performance advantage
of the AIR-tree may yet depend on the nature of data objects, owing
to the fact that Cracking KD-trees were proposed for point data. To
investigate this matter, we compare all methods on a synthetic point
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Figure 21: ROADS data, uniform and clustered workloads.
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Figure 22: EDGES data, uniform and clustered workloads.

data set: we obtain point data using the lowest coordinates of data
objects on all dimensions, and apply the same uniform workload
as before. Cracking KD-tree variants treat those data as points,
whereas the AIR-tree, R-tree, and QUASII treat them as shapes with
no spatial extent. Our results on Figure 20 match those obtained
with other data, while the task is easier. The stochastic AIR-tree has
the best performance. As the advantage of AIR-tree variants also
holds with points, it is not an artifact of the nature of the data.
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Figure 23: ROADS data, partial match workload.

4.7 Real 2D data

ROADS data. Next, we examine performance with real 2D data,
starting with the ROADS data. Figure 21 presents results with the
uniform and clustered workloads. In both cases, AIR-tree variants
have an advantage over other methods from the very first query
and outperform all adaptive methods in cumulative performance, as
Figures 21b and 21d show. These results reconfirm our findings with
synthetic data. Besides, after more than 100K queries, the cumula-
tive query response time of the default AIR-tree just passes that of
the static R-tree, while the stochastic variant retains its advantage.

The per-query performance of AIR-tree variants approaches that of
the pre-built index already after 1000 queries, while other adaptive
indexes do not reach that response time even after 100K queries.
Further, the AIR-tree is robust to different workloads. QUASII does
not share in such robustness, as its query response time fails to
converge with the clustered workload as quickly as it does with the
uniform one. Overall, the AIR-tree achieves an up to 205x speedup
in total response time compared to other adaptive methods.

We also tried a partial match workload made from the uniform
one on this data set, as in Section 4.6.5. Figure 23 shows the results;
while this workload is challenging due to large results sets, s-AIR
stills answer the first thousand queries competitively vs. the R-tree.
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Figure 24: LAKES data, synthetic workload.

EDGES data.We now examine performance on the EDGES data.
Figure 22 shows our results. Once again, AIR-tree variants surpass
competitors, while the trends are similar to those we observed with
the ROADS data set. These results further corroborate our previous
findings. Still, as the EDGES data is twice the size of the ROADS
data, convergence occurs later. As with the ROADS data, we observe
an up to 43x speedup vs. other adaptive methods.
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LAKES data. As discussed in Section 4.2, on the LAKES data we
use a workload following the data distribution. Results in Figure 24
present a comport similar to that with other real-world data. AIR-
tree variants clearly outperform other adaptive methods and the
stochastic variant has an even clearer advantage. Incidentally, Fig-
ures 21ś24 reveal that the index construction of PKD and GPKD
ends around query 50, as the progressive KD-tree completes in-
dexing after a certain number of queries, causing a sudden drop in
response times. AKD reaches its best performance more smoothly.
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Figure 25: Uniform 3D shape data, uniform workload.

4.8 3D data

4.8.1 Synthetic 3D data. We now turn our attention to 3D data.
Figure 25 shows the results on the synthetic 3D data set with the
uniform workload. The demeanor of all methods resembles that
in 2D; AIR-tree variants surpass other adaptive methods in cumu-
lative time with a 6x speedup and matches the performance of a
static R-tree within about 100 queries; after 10K queries, AIR-tree
cumulative times remain lower than that of the pre-built R-tree.
This outcome is reasonable, as the overhead of a cracking operation
is independent of dimensionality 𝑑 thanks to lazy boundary main-

tenance, while the number of cracks grows only linearly with 𝑑 . We
surmise that these trends are preserved in higher dimensions.
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Figure 26: TLC data, uniform workload.

4.8.2 Real 3D data. Lastly, we try the TLC real-world 3D data with
a uniform workload. In TLC, MBBs reflect pick-up and drop-off
locations and timestamps of taxi trips in New York City. Figure 26
shows our results. Again, AIR-tree variants outstrip other methods,
with a clear competitive edge after 100 queries and a 10-fold speedup
over the whole workload. Due to the nonuniform 3D nature of the
data, response times present a discontinuity compared to other
experiments, even in the case of the pre-built R-tree. Still, the AIR-
tree converges to faster query response times than the static R-tree,
reconfirming that it offers not only a competitive adaptive indexing
method, but a viable index-building method too.

4.9 Space usage on uniform 2D data

As outlined in Section 4.3, we also measure the evolving size of
adaptive indexes. We exclude progressive KD-tree variants, which
eventually reach the same size as the corresponding adaptive vari-
ant, and, for reference, we plot the size of the static R-tree using
the superliminal R-tree implementation. To compare sizes in an
implementation-independent manner, we measure the number of
nodes in each index. We opted for AIR-tree parameters 𝑀𝑓 = 16

and 𝑀ℓ = 64, yet the recommended leaf size for other adaptive
methods is 1024 [25]. To create a level playing field, we also use an
AIR-tree with𝑀ℓ = 1024. Figure 27a shows our node count results
on the Uniform 2D synthetic data and workload including sepa-
rate counts for regular leaves, irregular leaves, and internal nodes
for 𝑀ℓ = 64. The AIR-tree creates more leaves with 𝑀ℓ = 64 than
with 𝑀ℓ = 1024, while, as reported in Table 3, the total response
time for the latter is approximately 32% longer. QUASII ceases cre-
ating new nodes quite early and builds the shallowest and widest
tree, yet underperforms in efficiency. AKD builds a more sizable
index due to its binary structure. The AIR-tree converges last to a
stable size, yet achieves smaller size than the static R-tree in both
configurations. The number of irregular leaves plateaus and starts
decreasing after 10,000 queries as irregular leaves turn regular.
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Figure 27: Space usage, uniform 2D shape data & workload.

Figure 27b shows the implementation-dependent memory each
index structure occupies. The AIR-tree needs less memory than
the R-tree, yet more than other adaptive indexes, as it stores MBBs.

5 CONCLUSION

We proposed the AIR-tree, an inherently multidimensional in-mem-
ory adaptive index for objects with spatial extent, which is built
while processing queries, reapplying criteria for a well-designed
spatial index to cracking purposes. Our experimental results on
synthetic and real data and workloads in 2D and 3D establish the
AIR-tree, especially its stochastic variant, as the method of choice
for in-memory multidimensional adaptive indexing. With a light-
weight query workload, the AIR-tree also offers a viable method for
building an in-memory index. In the future, we aim to extend our
methods to handle updates, queries beyond simple range queries,
and alternative ways of measuring distance [32].
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