
Olive: Oblivious Federated Learning on Trusted Execution
Environment Against the Risk of Sparsification

Fumiyuki Kato
Kyoto University

fumiyuki@db.soc.i.kyoto-u.ac.jp

Yang Cao
Hokkaido University

yang@ist.hokudai.ac.jp

Masatoshi Yoshikawa
Osaka Seikei University

yoshikawa-mas@osaka-seikei.ac.jp

ABSTRACT

Combining Federated Learning (FL) with a Trusted Execution En-
vironment (TEE) is a promising approach for realizing privacy-
preserving FL, which has garnered significant academic attention
in recent years. Implementing the TEE on the server side enables
each round of FL to proceed without exposing the client’s gradient
information to untrusted servers. This addresses usability gaps in
existing secure aggregation schemes as well as utility gaps in differ-
entially private FL. However, to address the issue using a TEE, the
vulnerabilities of server-side TEEs need to be considered—this has
not been sufficiently investigated in the context of FL. The main
technical contribution of this study is the analysis of the vulnerabili-
ties of TEE in FL and the defense. First, we theoretically analyze the
leakage of memory access patterns, revealing the risk of sparsified
gradients, which are commonly used in FL to enhance communica-
tion efficiency and model accuracy. Second, we devise an inference
attack to link memory access patterns to sensitive information in
the training dataset. Finally, we propose an oblivious yet efficient
aggregation algorithm to prevent memory access pattern leakage.
Our experiments on real-world data demonstrate that the proposed
method functions efficiently in practical scales.

PVLDB Reference Format:

Fumiyuki Kato, Yang Cao, and Masatoshi Yoshikawa. Olive: Oblivious
Federated Learning on Trusted Execution Environment Against the Risk of
Sparsification. PVLDB, 16(10): 2404 - 2417, 2023.
doi:10.14778/3603581.3603583

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/FumiyukiKato/FL-TEE.

1 INTRODUCTION

In the current Big Data era, the challenge of preserving privacy
in machine learning (ML) techniques has become increasingly ap-
parent, as symbolized by the proposal of the GDPR [24]. Federated
learning (FL) [43] is an innovative paradigm of privacy-preserving
ML, which has been tested in production [8, 53, 55]. Typically, in
FL, the server does not need to collect raw data from users (we use
participants and clients interchangeably)—it only collects gradients
(or model parameters delta) trained on the local data of users during

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 10 ISSN 2150-8097.
doi:10.14778/3603581.3603583

Figure 1: Olive, i.e., ObLIVious fEderated learning on TEE is

the first method of its kind to prevent privacy risks caused by

the leakage of memory access patterns during aggregation

in FL rigorously. This allows, for example, to enjoy utility of

CDP-FL without requiring a trusted server like LDP-FL.

each round of model training. The server then aggregates the col-
lected gradients into a global model. Thus, FL is expected to enable
data analyzers avoid the expenses and privacy risks of collecting
and managing training data containing sensitive information.

However, multiple studies have highlighted the vulnerability of
FL to various types of attacks owing to its decentralized scheme.
One of its most extensively studied vulnerabilities is an inference
attack on a client’s sensitive training data during the aggregation
phase by an untrusted server [21, 63, 72, 79, 84]. This attack arises
from the requirement for each client to share raw gradient informa-
tion with the central aggregation server in plain FL. This creates
the risk of privacy leakage from the training data, making it a vul-
nerable attack surface. These attacks highlight the privacy/security
problems of running FL on an untrusted server.

Enhancing FL using a Trusted Execution Environment (TEE) is
a promising approach to achieve privacy-preserving FL, which has
garnered significant attention in recent years [45, 50, 77, 78, 80].
TEE [18, 57] is a secure hardware technique that enables secure
computation in an untrusted environment without exposing data
or processing to the host (i.e., OS or hypervisor). TEE guarantees
confidentiality, integrity, verifiability, and functionalities such as
remote attestation, fully justifying its use on the untrusted server
side in FL [29, 77, 78]. Gradients are transmitted to the TEE via
a secure channel and computed securely in confidential memory,
thereby eliminating the aforementioned attack surface.

Utilization of TEE is advantageous from several perspectives. Al-
though similar functionality is provided by secure aggregation (SA)1
based on pairwise masking, it sacrifices usability [10, 19, 32, 40].
This requires time-consuming synchronous distributed mask gen-
eration among multiple clients and lacks robustness with respect
1The recent paper [46] categorized TEE as a method of secure aggregation in FL.

2404

https://doi.org/10.14778/3603581.3603583
https://github.com/FumiyukiKato/FL-TEE
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3603581.3603583
https://www.acm.org/publications/policies/artifact-review-and-badging-current


to participant asynchronicity/dropouts [46], which is difficult to
handle and can impede implementation by general practitioners.
Further, SA is inflexible and makes it hard to do extensions, such as
Byzantine resistance [80] and asynchrony [50]. In addition, applica-
tion of gradient sparsification to FL with SA requires either random
sparsification [19] or a common sparsified index among multiple
clients [40] because of the pairwise constraints, impairing training
quality. One simple and important solution to these problems is the
use of a TEE, even though it requires additional special hardware.

In addition, FL with TEE addresses the utility gap in differentially
private FLs [20, 22, 44], i.e., between local DP (LDP) and central DP
(CDP). The recently studied ShuffleDP-FL [20, 23, 38], which aims to
combine the best LDP-FL trust model [73, 82] with the model utility
of the CDP-FL [3, 22, 44], exhibits a gap with respect to CDP-FL in
terms of utility [20]. As depicted in Figure 1, TEE facilitates secure
model aggregation on an untrusted server, which ensures only
differentially private models are observable by the server. Without
trust in the server, as in LDP-FL, model utility is equivalent to
that of conventional CDP-FL because any DP mechanism can be
implemented within the TEE, whereas the mechanism is restricted
when using SA [32]. Since combining CDP-FL and TEE is one of
the interesting use cases of our proposed method, we describe it in
detail in Appendix D of the full paper [34] for completeness.

However, implementing a server-side TEE to achieve the afore-
mentioned benefits requires careful analysis of the vulnerabilities
of TEE. Several serious vulnerabilities are known to affect TEE
owing to side-channel attacks [51, 71, 76], which can cause privacy
leakage despite encryption. In particular, such attacks can expose
data-dependent memory access patterns of confidential execution
and enable attackers to steal sensitive information, such as RSA
private keys and genome information [12]. The specific information
that may be stolen from these memory access patterns is domain-
specific and is not yet known for FL, although several studies have
attempted to use TEE for FL [16, 45, 47, 77, 78]. Thus, the extent of
the threat of side-channel attacks against FL on a TEE and the types
of possible attacks remain critical open problems in this context.

Oblivious algorithms [25, 52, 65] are important leakage preven-
tion techniques that generate only data-independent memory ac-
cess patterns. A general approach involves making the RAM oblivi-
ous, e.g., oblivious RAM (ORAM). PathORAM [65] is known to be
the most efficient technique. However, it assumes a private memory
space of a certain size and is not applicable to practical TEE, such as
Intel SGX [18]. Although Zerotrace [59] addresses this issue, its still
incurs significant overhead. Therefore, the design of an algorithm-
specific method to obtain an efficient algorithm is an important
problem. In this context, [52] proposed an efficient oblivious algo-
rithm for specific ML algorithms, and [83] studied SQL processing.
However, an efficient method for FL-specific aggregation algorithm,
which can be a vulnerable component of FL with a server-side TEE,
has not yet been proposed.

In this study, we address the aforementioned gaps; (1) we clarify
privacy risks associated with FL using server-side TEE by designing
specific attacks and demonstrating them in real-world scenarios;
(2) we propose a novel defense mechanism against these attacks
by designing efficient oblivious algorithms and evaluating them
empirically on a practical scale. Our analysis reveals that parame-
ter position information is leaked during the execution of the FL

aggregation algorithm in a sparsified environment. Sparsification is
a common technique in FL [19, 37, 40, 58] to reduce communica-
tion costs and/or improve model accuracy [1]. We assume that the
goal of an attacker is to infer a set of sensitive labels included in
the target user’s training data, which is a similar goal to previous
works on privacy attacks in FL [21, 72]. We further assume that the
attacker has access to the memory access patterns, the dataset for
model validation, and the trained model for each round. Although
sparsified index information in FL has been considered as some-
what private information in previous studies [38, 40], unlike in
our study, no specific attacks have been investigated. After demon-
strating the proposed attack on real-world datasets, we propose
efficient oblivious algorithms to prevent such attacks completely. To
this end, we carefully construct existing oblivious building blocks,
such as the oblivious sort [6] and our designed components. Our
proposed method Olive, an oblivious federated learning system
based on server-side TEE, is resistant to side-channel attacks, en-
abling truly privacy-preserving FL. In addition to fully oblivious
algorithms, we further investigate optimization by adjusting the
data size in the enclave, and study more efficient algorithms by re-
laxing the definition of obliviousness. Finally, we conduct extensive
experiments on real-world data to demonstrate that the proposed
algorithm, designed for FL aggregation, is more efficient than the
general-purpose PathORAM with SGX [59].

The contributions of this study are summarized below:
• We investigate the potential exposure of memory access

patterns to an untrusted server when using TEE for model
aggregation in FL. We discover a risk associated with spar-
sified gradients, which are frequently utilized in FL.

• We develop a supervised learning-based sensitive label in-
ference attack that leverages index information obtained
from the side-channels of sparsified gradients. We demon-
strate the effectiveness of this attack on real-world datasets.
Our results indicate that, when training a CNNonCIFAR100
with top-1.25% sparsification, the sensitive labels of train-
ing data (where each participant has 2 out of 100 labels) are
leaked with 90% or better accuracy (Figure 6).

• We introduce a novel oblivious algorithm for efficient model
aggregation by thoughtfully integrating oblivious primi-
tives, such as oblivious sort and our custom-designed com-
ponents. We conduct extensive experiments to showcase
the efficiency of our proposed method. Notably, it outper-
forms a PathORAM-based method by more than 10 × and
completes the aggregation process in just a few seconds for
a model with a million parameters (Figure 9).

The remainder of this paper is organized as follows. Preliminary
notions are presented in Section 2. The overview of the proposed
system and the problem setting is described in Section 3. Sections 4
and 5 demonstrate the proposed attack and defense, respectively,
with empirical evaluations. Section 6 discusses related works and
Section 7 concludes.

2 PRELIMINARIES

2.1 Federated Learning

Federated learning (FL) [35, 43] is based on a distributed optimiza-
tion. The basic algorithm, called FedAVG [43], trains models by

2405



repeating model optimization steps in the local environment of the
clients and updating the global model by aggregating the parame-
ters in the server. FedSGD [43] exchanges locally updated gradients
based on distributed stochastic gradient descent. Overall, users are
not required to share their training data with the server, which
represents a major advantage over traditional centralized ML.

Sparsification. To reduce communication costs and improve
model accuracy, the sparsification of the model parameters before
their transmission to the server has been extensively studied in
FL [19, 28, 37, 40, 58, 61, 75]. All of the aforementioned methods
sparsify parameters on the client side, apply an encoding that rep-
resents them as value and index information [75], transmit them
to the server, and aggregate them into a dense global model on
the server side. Exceptionally, [28, 40] used common sparsification
among all clients using common sparsified indices and aggregated
them into a sparse global model. However, as observed in [19], there
is practically little overlap among the top-𝑘 indices for each client
in real-world data, especially in the non-i.i.d. environment, which
is common in FL. This highlights the one of limitations of pairwise
masking-based SA [19, 40] (see Section 6). In general, top-𝑘 spar-
sification is the standard method. By transmitting only the top-𝑘
parameters with large absolute gradients to the aggregation server,
communication cost is reduced by more than 1 ~3 orders of magni-
tude [58]. This technique outperforms the random selection of 𝑘
indices (random-𝑘) [19], particularly when the compression ratio
is smaller than 1% [28, 40, 58, 75]. Other sparsification methods,
such as threshold-based [58], top-𝑘 under LDP [39] and the recently
proposed convolutional kernel [75], also exist. However, these spar-
sified gradients can lead to privacy leakages through the index. In
[38, 40], the set of user-specific top-𝑘 indices was treated as private
information; however, no specific attacks were investigated.

2.2 Trusted Execution Environment

The TEE, as defined formally in [57], creates an isolated execu-
tion environment within untrusted computers (e.g., cloud VMs).
We focus on a well-known TEE implementation—Intel SGX [18].
It is an extended instruction set for Intel x86 processors, which
enables the creation of an isolated memory region called an enclave.
The enclave resides in an encrypted and protected memory region
called an EPC. The data and programs in the EPC are transparently
encrypted outside the CPU package by the Memory Encryption En-
gine, enabling performance comparable to native performance. SGX
assumes the CPU package to be the trust boundary—everything be-
yond it is considered untrusted—and prohibits access to the enclave
by any untrusted software, including the OS/hypervisor. Note that
for design reasons, the user-available size of the EPC is limited to
approximately 96 MB for most current machines. When memory
is allocated beyond this limit, SGX with Linux provides a special
paging mechanism. This incurs significant overhead for encryption
and integrity checks, resulting in poor performance [33, 41, 68].

Attestation. SGX supports remote attestation (RA), which can
verify the correct initial state and genuineness of an enclave. On
requesting the RA, a report with measurements based on the hash
of the initial enclave state generated by the trusted processor is
received. This facilitates the identification of the program and com-
pletes the memory layout. Intel EPID signs this measurement and

the Intel Attestation Service verifies the correctness of the signa-
ture as a trusted third party. Consequently, verifiable and secure
computations are performed in a remote enclave. Simultaneously,
a secure key exchange is performed between the enclave and the
remote client within this RA protocol. Therefore, after performing
RA, communication with a remote enclave can be initiated over a
secure channel using AES-GCM and so on.

2.3 Memory Access Pattern Leakage

Although the data are encrypted and cannot be viewed in enclaves,
memory/page access patterns or instruction traces can be exposed
irrespective of the use of a TEE [12, 36, 51, 71, 76]. This may lead to
sensitive information being stolen from enclaves [12]. For example,
cacheline-level access pattern leakage occurs when a malicious
OS injects page faults [76] or uses page-table-based threats [51,
71]. Moreover, if a physical machine is accessible, probes may be
attached to the memory bus directly.

To prevent such attacks, oblivious algorithms have been pro-
posed to hide access patterns during the secure execution of the
process. An oblivious algorithm is defined as follows.

Definition 2.1 (Oblivious algorithm [14]). An algorithmM is 𝛿-
statistically oblivious if, for any two input data 𝐼 and 𝐼 ′ of equal
length and any security parameter 𝜆, the following relation holds:

AccessesM (𝜆, 𝐼 )
𝛿 (𝜆)
≡ AccessesM (𝜆, 𝐼 ′)

where AccessesM (𝜆, 𝐼 ) denotes a random variable representing
the ordered sequence of memory accesses. The algorithm M is

generated upon receiving the inputs, 𝜆 and 𝐼 .
𝛿 (𝜆)
≡ indicates that the

statistical distance between the two distributions is at most 𝛿 (𝜆).
The term 𝛿 is a function of 𝜆 which corresponds to a cryptographic
security parameter. When 𝛿 is negligible, we say thatM is fully
oblivious, and when 𝛿 is 1, it is not oblivious.

A typical approach for constructing an oblivious algorithm uti-
lizes an ORAM, such as PathORAM [65]. Although ORAMs are
designed for general use as key-value stores, several oblivious task-
specific algorithms, such as ML [52] and SQL processing [83] (see
Section 6 for details), have been proposed from a performance per-
spective. They are constructed based on oblivious sort [6] and/or
access to all memory (i.e., linear scan), and are distinct from ORAM
at the algorithmic level. Further, ORAM generally assumes that
the existence of a trusted memory space such as client storage [65],
which is incompatible with the SGX assumption of leaking access
patterns in enclaves. Thus, only CPU registers should be considered
to be trusted memory spaces [59]. [52] implemented oblivious ML
algorithms using CMOV, which is an x86 instruction providing a con-
ditional copy in the CPU registers. CMOV moves data from register
to register based on a condition flag in the register, which is not ob-
served by any memory access patterns. Using the CMOV instruction,
conditional branching can be implemented with a constant memory
access pattern that does not depend on the input, thereby removing
the leakage of subsequent code addresses. For example, Zerotrace
[59] implements PathORAM on SGX by obliviously implementing
client storage based on CMOV. We can construct and use low-level
oblivious primitives, such as oblivious move (o_mov, Listing 1 in
our full paper [34]) and oblivious swap (o_swap, Listing 2 in [34]).

2406



o_mov(flag,x,y) is a function that accepts a Boolean condition
flag as its first argument and returns x or y depending on the flag.
Therefore, designing an appropriate oblivious algorithm for SGX
requires a combination of high-level algorithm designs, such as the
oblivious sort and low-level primitives.

3 PROPOSED SYSTEM

In this section, we first clarify our scenario and threat model, and
then present a system overview of the Olive. Finally, we analyze
the details of the potential privacy risk, followed by discussion of a
specific privacy attack and evaluation in Section 4.

3.1 Scenario

We target a typical FL scenario with a single server and clients using
identical format data (i.e., horizontal FL). The server is responsible
for training orchestration, aggregating parameters, updating the
global model, selecting clients for each training round, and validat-
ing model quality. The server-side machine is assumed to be placed
in a public or private environment [29, 77] and is equipped with a
TEE capable of RA (e.g., Intel SGX).

Threat model. We assume an adversary to be a semi-honest
server that allows FL algorithms to run as intended, while trying to
infer the sensitive information of clients based on shared parame-
ters. This is a compatible threat model with those in existing studies
on FL with SA [10] and even with server-side TEE [45, 77, 78]. The
semi-honest threat model is selected despite using TEE, because
the assumed attack in this work does not diverge from the estab-
lished FL protocol. The goal of the adversary is not to damage the
availability (e.g., DoS attacks) or undermine the utility of the model
(e.g., data-poisoning attacks) [5, 66, 80] as malicious attackers in FL
context. Note that several side-channel attacks against TEE require
malicious (i.e., privileged) system software, which we distinguish
from an attacker and categorize as malicious in FL. Nevertheless,
[9] reported that malicious servers improve inference attacks in FL.
In Section 5.6, we discuss the relationship between such malicious
servers and the privacy and security of the proposed system.

We assume that the server has (1) access to the trained model
during each round of FL, (2) access to the global test dataset, and (3)
the capability to observe the memory access patterns of the TEE.
These requirements can be justified as follows. (1): Because the
server is in charge of model validation, it makes sense for the server
to have access to the global models during all rounds. Alternatively,
attackers can easily blend in with clients to access global models. (2):
Generally, the semi-honest server that has access to public datasets
for model validation covers the overall dataset distribution, which
is essential in production uses. Similar assumptions have been made
in previous studies on inference attacks [28, 74]. Subsequently, we
experimentally evaluate the required dataset volume (Figure 8).
(3): This follows the general threat assumption for TEE. The SGX
excludes side-channel attacks from the scope of protection [18, 51].
Except for the trusted hardware component (i.e., the CPU package),
all other components of the server, e.g., the system software (i.e.,
OS/hypervisor), main memory, and all communication paths, are
considered to be untrusted. The server can observe memory ac-
cess patterns through known or unknown side-channel attacks, as
described in Section 2.3.

3.2 System overview

The proposed system, namely the Olive (Figure 1), follows basic
FedAVG algorihtm with standard top-𝑘 sparsification; however, the
TEE is placed on the server side with a server-side algorithm resis-
tant to side-channel attacks. As an initial configuration, we provide
an enclave in which each client verifies the integrity of the pro-
cesses running on the enclave via RA and exchanges shared keys
(AES-GCM). If attestation fails, the client must refuse to join the FL
in this phase. We assume that communication between the client
and server is performed over a secure channel (TLS), which the
untrusted server terminates, and that the transmitted gradients2 are
doubly encrypted and can only be decrypted in the trusted enclave.

The overall algorithm of the Olive is presented in Algorithm 1,
where the differences with respect to the basic FedAVG algorithm are
highlighted in red. The initial provisioning is omitted and a different
shared key, 𝑠𝑘𝑖 , is stored in the enclave for each user, 𝑖 (∈ [𝑁 ])
(line 1). In each round, the participants are securely sampled in the
enclave (line 4). The selected users are memorized in the enclave
and used for client verification (line 9) after the encrypted data are
loaded into the enclave (line 8). On the client side, locally trained
parameters are top-𝑘 sparsified (line 21), and then encoded and
encrypted (line 22). The encrypted data loaded into the enclave
are decrypted and verified (line 11). Verification (lines 9, 11) is
not essential to our work; however, it prevents man-in-the-middle
attacks and biased client selection. As discussed in Section 3.3, the
aggregation operation (line 12) is required to be oblivious, and we
present lower-level and detailed algorithms in Section 5 to this
end. In accordance with the principle that the Trusted Computing
Base (TCB) should be minimized, only the aggregation operation is
performed in the enclave. Finally, the aggregated parameters are
loaded outward from the enclave (line 13). Thus, the parameters
transmitted by all clients remain completely invisible to the server,—
only the aggregated parameters are observable.

3.3 Security Analysis

Although TEE enables model training while protecting raw gradi-
ents, an untrusted server can observe the memory access patterns,
as described in Section 2.3. Here, we analyze the threats that exist
based on memory access patterns.

For formal modeling, let 𝑔𝑖 denote the 𝑘-dimensional gradient
transmitted by user 𝑖 and let 𝑔∗ be the 𝑑-dimensional global pa-
rameter after aggregation. In the typical case, 𝑘 = 𝑑 , when dense
gradients are used. Let G𝑖 and G∗ denote the memories required
to store the gradients of 𝑔𝑖 and 𝑔∗, respectively, and let the num-
ber of clients participating in each round be 𝑛. The memory that
stores the entire gradient is denoted by G = G1 ∥ ... ∥ G𝑛 , where
∥ denotes concatenation. A memory access, 𝑎, is represented as a
triple 𝑎 = (A[𝑖], op, val), where A[𝑖] denotes the 𝑖-th address of
the memory, A; op denotes the operation for the memory—either
read or write; and val denotes the value to be written when op is
write, and null otherwise. Therefore, the observed memory access
pattern, Accesses, can be represented as Accesses = [𝑎1, 𝑎2, ..., 𝑎𝑚]
when the length of the memory access sequence is𝑚.

2In FedAVG, the data shared by users are not exactly gradients—rather, they are the
delta of model weights. However, in the context of compatibility with FedSGD, we
jointly refer to model update data transmitted by users as gradients or parameters.

2407



Algorithm 1 Olive: Oblivious FL on TEE
Input: 𝑁 : # participants, 𝜂𝑐 , 𝜂𝑠 : learning rate
1: KeyStore← Remote Attestation with all user 𝑖 ⊲ key-value store in

enclave that stores 𝑠𝑘𝑖 : user 𝑖’s shared key from RA in provisioning
2: procedure Train(𝑞, 𝜂𝑐 , 𝜂𝑠 )
3: Initialize model 𝜃 0

4: for each round 𝑡 = 0, 1, 2, . . . do
5: Q𝑡 ← (sample users from 𝑁 for round 𝑡 ) ⊲ securely in enclave
6: for each user 𝑖 ∈ Q𝑡 in parallel do

7: Enc(Δ𝑡
𝑖
) ← EncClient(𝑖, 𝜃𝑡 , 𝜂𝑐 )

8: LoadToEnclave(Enc(Δ𝑡
𝑖
) )

9: check if user 𝑖 is in Q𝑡
10: 𝑠𝑘𝑖 ← KeyStore[𝑖 ] ⊲ retrieve user 𝑖’s shared key
11: Δ𝑡

𝑖
← Decrypt(𝐸𝑛𝑐 (Δ𝑡

𝑖
), 𝑠𝑘𝑖 )

12: /* Obliviously performed, such as Algorithm 3 or 4 */
∆̃t = 1

|Qt |
∑

i∈Qt ∆t
i ⊲ oblivious algorithm

13: LoadFromEnclave(Δ̃𝑡 )
14: 𝜃𝑡+1 ← 𝜃𝑡 + 𝜂𝑠 Δ̄𝑡

15: procedure EncClient(𝑖 , 𝜃𝑡 , 𝜂,𝐶)
16: 𝜃 ← 𝜃𝑡

17: G ← (user 𝑖’s local data split into batches)
18: for batch 𝑔 ∈ G do

19: 𝜃 ← 𝜃 − 𝜂∇ℓ (𝜃 ;𝑔)
20: Δ← 𝜃 − 𝜃𝑡
21: Δ← TopkSparse(Δ) ⊲ top-𝑘 sparsification on gradients
22: Enc(Δ′ ) ← Encrypt(Δ, 𝑠𝑘𝑖 ) ⊲ Authenticated Encryption (AE)

mode, such as AES-GCM, with shared key, 𝑠𝑘𝑖 , from RA
23: return Enc(Δ)

Figure 2: Dense gradients induce uniform access patterns.

Figure 3: Sparse gradients induce biased access patterns.

In FL, operations performed on the server side generally consist
of summing and averaging the gradients obtained from all users.
We first note that this procedure is oblivious to dense gradients. As
depicted in Figure 2, the summing operation involves updating the
value of the corresponding index of G∗ while performing a linear
scan on G, where memory accesses are performed in a fixed order
and at fixed addresses, irrespective of the content of G. We refer to
this general summing part as the linear algorithm and present it in
Appendix B of [34] for completeness.

Proposition 3.1. The linear algorithm is fully oblivious to dense
gradients. (An formal proof is presented in [34]).

The linear algorithm is executed in 𝑂 (𝑛𝑑) because all the elements
of the gradient G are accessed. In addition, the averaging operation
only accesses G∗ linearly in𝑂 (𝑑), which is obviously fully oblivious.

However, when the gradients are sparsified, which is often an im-
portant scenario in FL, the access pattern of the linear algorithm is
not oblivious, and sensitive information may be leaked. The weights
of sparse gradients are generally given by tuples of index, which
hold the location information of the parameter, and a value, which
holds the gradient value. This is irrespective of its quantization
and/or encoding because it requires calculating the sum of the orig-
inal dense gradients. Figure 3 depicts the access pattern when an
aggregation operation is used for sparsified gradients.

Proposition 3.2. The linear algorithm is not oblivious to sparsi-
fied gradients.

Proof. Linear access to G for sparsified gradients occurs when
the access pattern, Accessessparse, satisfies

Accessessparse =

[ (G[1], read, ∗), (G∗ [idx11 ], read, ∗), (G∗ [idx11 ], write, ∗), ...,
(G[𝑛𝑘 ], read, ∗), (G∗ [idx𝑛𝑘 ], read, ∗), (G∗ [idx𝑛𝑘 ], write, ∗) ]

where the indexes of sparsified gradients of user 𝑖 are idx𝑖1, .., idx𝑖𝑘
for all 𝑖 ∈ [𝑛]. The access pattern, Accessessparse, is deterministic
and corresponds in a one-to-one fashion with the sequence of the
indexes of the input data. Considering two input data, 𝐼 and 𝐼 ′,
with different sequences of indexes, no overlap exists in the output
distribution. Then, the statistical distance between them is 1. □

The access pattern on the aggregated gradients, G∗, reveals at least
one set of indices {idx𝑖 𝑗 | 𝑗 ∈ [𝑑]} for each user 𝑖 , depending on the
given gradients. Considering data-dependent sparsifications, such
as top-𝑘 , which are generally used in FL, the gradient indices of the
sparsified gradients may be sensitive to the training data. In the
next section, we demonstrate that privacy leakage can be caused
on a real-world dataset.

Generality and Limitation. Let us now clarify the format
and method of sparsified gradients. Although various quantization
and/or encoding methods in FL have been studied(e.g., [60]), quan-
tization is irrelevant to the problem of leakage considered in this
study because it affects only the values and not the index, and encod-
ing is irrelevant because it is eventually decoded on the server side.
For example, in [19, 40], the index location informationwas encoded
in 𝑑-dimensional one-bit array, but the same problem occurred dur-
ing aggregation. As aggregation is performed on the original dense
gradients, each update requires access to a specific index of the
dense gradients (G∗), resulting in identical access patterns. It should
also be noted that risk is sparsification-dependent. If the client’s
training data and observed indices are uncorrelated, then index
leakage is not considered to be a risk. For example, when random-𝑘
is adopted, as in [19], no risk is involved. While threshold-based
sparsification [58] is almost identical to top-𝑘 , LDP-guaranteed in-
dex [39] and the recently proposed convolution-kernel-based index
[75] are still unclear. These index information can correlate to some
extent with the client’s training data, but not as much as top-𝑘 . The
scope of our study is limited to the demonstration that attacks are
possible with the standard top-𝑘—the investigation of various other
sparsifications are left for future research.

2408



Algorithm 2 Attack on index: Jac or NN
Input: 𝑖: target user, 𝑋𝑙 : test data with label 𝑙 (𝑙 ∈ 𝐿) , round:𝑇
1: index← {} ⊲ observed access patterns
2: /* Prepare teacher and target indices */
3: teacher← {} ⊲ teacher access patterns to train a classifier
4: for each round 𝑡 = 1, . . . ,𝑇 do

5: /*𝑇𝑖 : rounds participated in by user 𝑖 */
6: if 𝑡 ∈ 𝑇𝑖 then
7: /* 𝐴(𝑡 )

𝑖
: observed top-𝑘 indices of user 𝑖 of round 𝑡 */

8: Store 𝐴(𝑡 )
𝑖

to index[𝑖, 𝑡 ]
9: for each label 𝑙 ∈ 𝐿 do

10: /* 𝜃𝑡 : the global model after round 𝑡 */
11: /* 𝐼 (𝑡 )

𝑙
: top-𝑘 indexes training with 𝜃𝑡 and 𝑋𝑙 */

12: Store 𝐼 (𝑡 )
𝑙

to teacher[𝑙, 𝑡 ]
13: /* Calculate scores for each label 𝑙 */
14: S← [] ⊲ form of [(label, similarity)]
15: /* If Jac: Jaccard similarity-based scoring (Sim) */
16: for each label 𝑙 ∈ 𝐿 do

17: Store (𝑙 , Sim( ∥𝜏 ∈𝑇𝑖 index[𝑖, 𝜏 ], ∥𝜏 ∈𝑇𝑖 teacher[𝑙, 𝜏 ] ) to S

18: /* If NN: neural network-based scoring */
19: Train the model𝑀𝑡 with teacher[𝑙, 𝑡 ] (𝑙 ∈ 𝐿) for each 𝑡 (∈ 𝑇 )
20: for each label 𝑙 ∈ 𝐿 do

21: Store (𝑙 , predict(𝑀1, ..., 𝑀𝑇 , ∥𝜏 ∈𝑇𝑖 index[𝑖, 𝜏 ] ) ) to S

22: /* If NN-single: using single neural network */
23: Train the model𝑀0 with ∥𝜏 ∈𝑇 teacher[𝑙, 𝜏 ] (𝑙 ∈ 𝐿)
24: for each label 𝑙 ∈ 𝐿 do

25: Store (𝑙 , predict(𝑀0, ∥𝜏 ∈𝑇 index[𝑖, 𝜏 ] ) ) to S
26: /* 1D K-Means clustering Kmeans */
27: [labels, centroid]← Kmeans(S)
28: return labels of the cluster with the largest centroid

4 ATTACK ON GRADIENT INDEX

4.1 Design

In this section, we design a server-side attack to demonstrate that
privacy leakage of the training data can occur based on the index
information in the gradients. We assume a sparsified gradient based
on top-𝑘 [37, 58, 62]. The attacker is assumed to satisfy the assump-
tions listed in Section 3.1. The proposed attacks can be used to raise
awareness of the security/privacy risks of FL on TEE, which have
not been reported in related works [16, 45, 47, 77], and also serve
as an evaluation framework for defenses.

The goal of the attack is to infer the target client’s sensitive
label information based on the training data. For example, when
training FL on medical image data, such as image data on breast
cancer, the label of the cancer is very sensitive, and participants
may not want to reveal this information. A similar attack goal was
considered in [21, 72]. Our designed attack is based on the intuition
that the top-𝑘 indices of the locally converged model parameters
are correlated with the labels of the local training data. We train a
classifier that accepts the observed index information as the input
by supervised learning using a public test dataset and the output is
the sensitive label set. Access to the dataset is justified, for example,
by the need for model validation, as described in Section 3.1 and in
previous studies on inference attacks [28, 74]. We design two basic
methods—the Jaccard similarity-based nearest neighbor approach

(Jac) and a neural network (NN). The detailed algorithm is presented
in Algorithm 2. An overview of these methods is provided below:
(1) First, the server prepares the test data 𝑋𝑙 with label 𝑙 for all

𝑙 ∈ 𝐿, where 𝐿 denotes the set of all possible labels.
(2) In each round 𝑡 (∈ 𝑇 ), an untrusted server observes the mem-

ory access patterns through side-channels, obtains the index
information of the top-𝑘 gradient indices index[𝑖, 𝑡] for each
user 𝑖 , and stores it (lines 4–8).

(3) The server computes the gradient of the global model with
𝜃𝑡 and 𝑋𝑙 , without model updates for each round 𝑡 (∈ 𝑇 ),
using the test data categorized by labels, and obtains the top-𝑘
indices teacher[𝑙, 𝑡] as teacher data for each label (lines 9–12).

(4) After the completion of all rounds 𝑇 , in Jac, we calculate the
Jaccard similarity between ∥𝜏∈𝑇𝑖 teacher[𝑙, 𝜏] and observed ac-
cess patterns, ∥𝜏∈𝑇𝑖 index[𝑖, 𝜏] for each label 𝑙 (lines 15–17).
Jaccard similarity is selected because, in the worst-case sce-
nario, the index information transmitted by a participant is
randomly shuffled, rendering the sequence meaningless.

(5) In NN, the attacker trains neural networks using teacher[𝑙, 𝑡],
with indices as the features and labels as the target (line 19).
The outputs of the model are the scores of the label. Subse-
quently, we use a trained model to predict the labels included
in the training data corresponding to the input, index[𝑖]. For
this task, we design the two following NN-based methods. In
the first method, a model,𝑀𝑡 , is trained during each round, 𝑡 ,
and the output scores of the models are averaged to predict
the labels (NN). In the second method, a single model, 𝑀0,
is trained using the concatenated indices of the entire round
as input and a single output is obtained (NN-single). In our
experiment, both cases involve a multilayer perceptron with
three layers (described in Appendix F of [34]). Note that as the
model input, index information is represented as a multi-hot
vector. In the case of NN-single, each client participates in
only a proportion of the rounds—the indices of the rounds
they do not participate in are set to zero as the input to the
model. Although NN-single is expected to be able to capture
the correlation over rounds better than NN, this zeroization
may reduce the accuracy. Finally, as in Jac, we store the scores
for each label obtained via model prediction (lines 20–21).

(6) If the number of labels of the target client is known, the scores
are sorted in descending order and the highest labels are re-
turned. If the number of labels is unknown, K-means clustering
is applied to the scores to classify them into 2 classes, and the
labels with the highest centroid are returned (lines 23–24).

Finally, the information obtained from the side-channels can also
be used to design attacks for other purposes, such as additional
features in reconstruction [27] or other inference attacks [49]. The
aim of this study is simply to demonstrate that the top-𝑘 gradient
indices that can be observed on untrusted servers contain sufficient
information to cause privacy leakages; therefore, we leave the study
of attacks for different purposes to future research.

4.2 Evaluation Task

In our evaluation of attacks, the server performs an inference attack
on any client in the scenario detailed in Section 3.1. The clients have
a subset of labels, and the attacker’s goal is to infer the sensitive label

2409



Figure 4: Attack results on datasets with a fixed number of labels: Vulnerable, especially when there are few labels.

Figure 5: Attack results on datasets with a random number of labels (more difficult setting): When the number of labels is low,

the attacker can attack the client without knowing the exact number of labels.

Table 1: Datasets and global models in the experiments.

Dataset Model (#Params) #Label #Record (Test)

MNIST MLP (50890) 10 70000 (10000)

CIFAR10

MLP (197320)
CNN (62006)

10 60000 (10000)

Purchase100 MLP (44964) 100 144000 (24000)
CIFAR100 CNN (201588) 100 60000 (10000)

set of a target client based on their training data. The attacker selects
any subset or the entire set of users and performs an inference
attack on each user. We utilize all and top-1 as accuracy metrics for
evaluating attack performance. We define all as the percentage of
clients that match the inferred labels exactly, e.g., the inferred label
set is {1,3,5}, and the target client’s label set is {1,3,5}. We define
top-1 as the percentage of clients that contain the highest scored
inferred label, e.g., the highest scored inferred label is five, and the
target client’s label set is {4,5}, which we consider to be a minimal
privacy leak. In addition, we adjust the distribution of the label set
such that the client is able to control the difficulty of the attack. The
number of labels in the set and the number of labels that are fixed
or random are configurable. In the case of a fixed label, all users
exhibit the same number of labels, which is known to the attacker.
In the case of the random label, the maximum number is assigned,
and all users exhibit various numbers of labels. Generally, random
label and larger numbers of labels are more difficult to infer.

4.3 Empirical Analysis

Here, we demonstrate the effectiveness of the designed attack.
Setup. Table 1 lists the datasets and global models used in the ex-
periments. Details of the model, including the attacker’s NN, are

Figure 6: Attack results w.r.t. sparse ratios: Higher the spar-

sity, the more successful the attack tends to be.

provided in Appendix F of [34]. In addition to the well-known image
datasets, MNIST and CIFAR 10 and 100, we also use Purchase100,
which comprises tabular data used in [31] for membership infer-
ence attacks. We train the global models using different numbers of
parameters, as listed in Table 1. The learning algorithm is based on
Algorithm 1, in which we provide the sparse ratio, 𝛼 , instead of 𝑘
in top-𝑘 . FL’s learning parameters include the number of users, 𝑁 ;
the participant sampling rate, 𝑞; the number of rounds, 𝑇 . The de-
fault values are given by (𝑁,𝑞,𝑇 , 𝛼) = (1000, 0.1, 3, 0.1). The attack
methods are evaluated for Jac, NN, and NN-single, as described
in the previous section. 𝑇 is smaller than that in normal FL scenar-
ios, which implies that our method requires only a few rounds of
attacks. All experimental source codes and datasets are open3.
Results. Figure 4 depicts the attack results for NN, NN-single,
and Jac on all datasets with a fixed number of labels, and Figure 5
presents the results with a random number of labels. In CIFAR100,
𝑇 = 1 is used because the model size is large. The y-axis represents
3https://github.com/FumiyukiKato/FL-TEE

2410

https://github.com/FumiyukiKato/FL-TEE


Figure 7: Cacheline-level leakage on CNN of CIFAR10: At-

tacks are possible with at least slightly less accuracy.

Figure 8: The size of data that an attacker needs to access to

achieve high success rate can be very small.

the success rate of the attacks, and the x-axis represents the number
of labels possessed by each client. When the number of labels is
small, all three attacks exhibit a high probability of success. The
success rate of top-1 is high irrespective of the number of labels,
whereas all decreases with each additional label. On CIFAR10, the
MLP model maintains a higher success rate for a large number of
labels compared to the CNN model. This indicates that the com-
plexity of the target model is directly related to the contribution
of the index information to the attack. The NN-based method is
more powerful on MNIST, but it performs similarly to the other
methods on the other datasets. This indicates that the gradient
index information is not complex and can be attacked using simple
methods, such as Jac. The results of NN and NN-single are almost
identical; therefore, there is not much effective correlation across
the rounds. When the number of class label is 100 (Purchase100,
CIFAR100), the success rate of the attack is reduced. In particular,
the accuracy of CIFAR100 is low in this case. However, as shown in
later, this is surprisingly improved by using a smaller sparse rate.

Figure 6 depicts the relationship between the sparse ratio and
attack performance. The number of client labels is fixed to two.
The results indicate that the sparse ratio is inversely related to
the success rate of the attack. This is because the indices of label-
correlated gradients become more distinguishable as the sparsity
increases. In particular, the case of CIFAR100 demonstrates that the
attack is successful only when the sparsity ratio is low. For instance,

when the sparsity ratio is 0.3%, the success rate is almost 1.0. Thus,
sparsity ratio is an important factor in an attack.

Figure 7 depicts a comparison of attack performance based only
on index information observed at the cacheline granularity (64 B),
which can be easily observed against SGX [76] with CIFAR10 and
CNN. The accuracies are almost identical. TheNN-based method ex-
hibits slightly higher accuracy, whereas Jac exhibits slightly poorer
accuracy. Therefore, the attack is still possible despite observa-
tions at the granularity of the cacheline, which indicates that the
well-known vulnerability of SGX is sufficient to complete an attack.

Figure 8 depicts the evaluation of the size of a dataset required by
an attacker to succeed in an attack. The default test dataset accessi-
ble to the attacker is presented in Table 1—we randomly reduce it on
this basis while maintaining the same number of samples for each
label. We evaluate the number of labels in the fixed and random
labels using the MNIST and Purchase100 datasets, respectively. In
MNIST, performance can be preserved even when the amount of
data is reduced, which weakens the assumption on dataset size. For
example, it is surprisingly noted that, even with 100 samples (i.e., 10
samples per label and 1% of the original evaluation), performance is
not affected significantly. On Purchase100, the impact is small, but
a meaningful attack is possible with some reduction in data size.

5 OBLIVIOUS ALGORITHMS

In this section, we focus on an aggregation algorithm that can cause
privacy leakage, as described in the previous section, and discuss
potential avenues of attack prevention. The notation used here is
identical to that in Section 3.3.

First, we introduce the general ORAM-based method. We initial-
ize ORAM with 𝑑 zero values for the aggregated parameters, 𝑔∗;
update the values with the received 𝑛𝑘 gradients, 𝑔, sequentially;
and finally retrieve the 𝑑 values from the ORAM. Because ORAM
completely hides memory access to 𝑔∗, the algorithm is fully oblivi-
ous. However, as established in the experimental section, even the
state-of-the-art PathORAM adapted to TEE [59] incurs a significant
overhead—thus, a task-specific algorithm is preferable.

5.1 Baseline method

Full obliviousness can be simply achieved by accessing all memory
addresses to hide access to a specific address. When accessing G∗ [𝑖],
a dummy access is performed on G∗ [ 𝑗] for each 𝑗 ∈ [𝑑]. For each
access, either a dummy or an updated true value is written, and
the timing of writing the true value is hidden by an oblivious move
(o_mov). The Baseline algorithm is described in Algorithm 3. It
accepts the concatenated gradients transmitted by all participants,
𝑔 (𝑛𝑘-dimensional vector), as input and returns the aggregated
gradients, 𝑔∗ (𝑑-dimensional vector) as output. We make linear
accesses to G∗ for a number of times equal to the length of G.
Assuming that the memory address is observable at the granularity
of the cacheline, as in a traditional attack against the SGX [76], some
optimization may be performed. When the weight is four bytes (32-
bit floating point) and cacheline is 64 bytes, a 16× acceleration can
be achieved. Irrespective of this optimization, the computational
and spatial complexities are 𝑂 (𝑛𝑘𝑑) and 𝑂 (𝑛𝑘 + 𝑑), respectively.

Proposition 5.1. Algorithm 3 is (cacheline-level) fully oblivious.
(A formal proof is provided in Appendix C of [34].)

2411



Algorithm 3 Baseline
Input: 𝑔 = 𝑔1 ∥ ... ∥ 𝑔𝑛 : concatenated gradients, 𝑛𝑘 length
Output: 𝑔∗: aggregated parameters, 𝑑 length
1: initialize aggregated gradients 𝑔∗
2: for each (𝑖𝑑𝑥 , 𝑣𝑎𝑙 ) ∈ 𝑔 do

3: /* 𝑐 is the number of weights included in one cacheline */
4: /* offset indicates the position of 𝑖𝑑𝑥 in the cacheline */
5: for each (𝑖𝑑𝑥∗, 𝑣𝑎𝑙∗ ) ∈ 𝑔∗ if 𝑖𝑑𝑥∗ ≡ offset (mod 𝑐 ) do
6: 𝑓 𝑙𝑎𝑔← 𝑖𝑑𝑥∗ == 𝑖𝑑𝑥 ⊲ target index or not
7: 𝑣𝑎𝑙 ′ ← o_mov(𝑓 𝑙𝑎𝑔, 𝑣𝑎𝑙∗, 𝑣𝑎𝑙∗ + 𝑣𝑎𝑙 )
8: write 𝑣𝑎𝑙 ′ into 𝑖𝑑𝑥∗ of 𝑔∗

9: return 𝑔∗

Algorithm 4 Advanced
Input: 𝑔 = 𝑔1 ∥ ... ∥ 𝑔𝑛 : concatenated gradients, 𝑛𝑘 length
Output: 𝑔∗: aggregated parameters, 𝑑 length
1: /* initialization: prepare zero-valued gradients for each index */
2: 𝑔′ ← {(1, 0), ..., (𝑑, 0) } ⊲ all values are zero
3: 𝑔← 𝑔 ∥ 𝑔′ ⊲ concatenation
4: /* oblivious sort in𝑂 ( (𝑛𝑘 + 𝑑 ) log2 (𝑛𝑘 + 𝑑 ) ) */
5: oblivious sort 𝑔 by index
6: /* oblivious folding in𝑂 (𝑛𝑘 + 𝑑 ) */
7: 𝑖𝑑𝑥 ← index of the first weight of 𝑔
8: 𝑣𝑎𝑙 ← value of the first weight of 𝑔
9: for each (𝑖𝑑𝑥 ′ , 𝑣𝑎𝑙 ′) ∈ 𝑔 do ⊲ Note: start from the second weight of 𝑔
10: 𝑓 𝑙𝑎𝑔← 𝑖𝑑𝑥 ′ == 𝑖𝑑𝑥

11: /*𝑀0 is a dummy index and very large integer */
12: 𝑖𝑑𝑥𝑝𝑟𝑖𝑜𝑟 , 𝑣𝑎𝑙𝑝𝑟𝑖𝑜𝑟 ← o_mov(𝑓 𝑙𝑎𝑔, (𝑖𝑑𝑥, 𝑣𝑎𝑙 ), (𝑀0, 0) )
13: write (𝑖𝑑𝑥𝑝𝑟𝑖𝑜𝑟 , 𝑣𝑎𝑙𝑝𝑟𝑖𝑜𝑟 ) into 𝑖𝑑𝑥 ′ - 1 of 𝑔
14: 𝑖𝑑𝑥, 𝑣𝑎𝑙 ← o_mov(𝑓 𝑙𝑎𝑔, (𝑖𝑑𝑥 ′, 𝑣𝑎𝑙 ′ ), (𝑖𝑑𝑥, 𝑣𝑎𝑙 + 𝑣𝑎𝑙 ′ ) )
15: /* oblivious sort in𝑂 ( (𝑛𝑘 + 𝑑 ) log2 (𝑛𝑘 + 𝑑 ) ) */
16: oblivious sort 𝑔 by index again
17: return take the first 𝑑 values as 𝑔∗

5.2 Advanced method

Here, we present a more advanced approach to FL aggregation.
In cases with large numbers of model parameters, 𝑘 and 𝑑 are
significant factors and the computational complexity of the Baseline
method becomes extremely high because of the product of 𝑘 and 𝑑 .
As described in Algorithm 4, we design a more efficient Advanced
algorithm by carefully analyzing the operations on the gradients.
Intuitively, our method is designed to compute 𝑔∗ directly from
the operations on the gradient data, 𝑔, to eliminate access to each
memory address of the aggregated gradients, 𝑔∗. This avoids the
overhead incurred by dummy access to 𝑔∗, as in the Baseline. The
method is divided into four main steps: initialization on gradients
vector 𝑔 (line 1), oblivious sort (line 4), oblivious folding (line 6), and
a second oblivious sort (line 16). For oblivious sort, we use Batcher’s
Bitonic Sort [6], which is implemented in a register-level oblivious
manner using oblivious swap (o_swap) to compare and swap at all
comparators in the sorting network obliviously. Appendix E in [34]
illustrates a running example for better understanding.

As given by Algorithm 4, we first apply an initialization to 𝑔,
where we prepare zero-valued gradients for each index between 1
and 𝑑 (declared 𝑔′) and concatenate them with 𝑔 (lines 1–3). Thus,
𝑔 has length 𝑛𝑘 + 𝑑 . This process guarantees that 𝑔 has at least one

weight indexed for each value between 1 and 𝑑 ; however, aggre-
gation of the concatenated 𝑔 yields exactly the same result as the
original 𝑔 because the added values are all zero. We then apply an
oblivious sort to 𝑔 using the parameter’s index (lines 4–5). Rather
than eliminating the connection between the client and gradient,
this serves as a preparation for subsequent operations to compute
the per-index aggregate values. Next, the oblivious folding routine
is executed (lines 6–14). It linearly accesses the values of 𝑔 and
cumulatively writes the sum of the values for each index in 𝑔. Start-
ing from the first place, it adds each value to the subsequent value
if the neighboring indices are identical, and writes a zero-valued
dummy index,𝑀0, in place of the original one.𝑀0 is a large integer.
Otherwise, if the neighboring indices are different, we stop adding
values, and the summation of the new index is initiated anew. Thus,
we finally obtain 𝑔 such that only the last weight of each index
bears the correct index and aggregated value, and all the remaining
ones bear dummy indices. In addition, the initialization process
described above guarantees that 𝑑 distinct indices always exist. In
this phase, the index change-points on𝑔 during folding are carefully
hidden. If the index change-points are exposed, the number corre-
sponding to each index (i.e., the histogram of the indices) is leaked,
which can cause catastrophic results. Therefore, oblivious folding
employs o_mov to make conditional updates oblivious and hide not
only the memory access of the data, but also low-level instructions.
Finally, we apply an oblivious sort to 𝑔 (lines 15–16). After sorting,
in 𝑔, weights with indices between 1 and 𝑑 are arranged individu-
ally, followed by weights with dummy indices. Finally, taking the
values of the first 𝑑 weights of the sorted 𝑔, we return this as the
final aggregated gradient, 𝑔∗ (line 17).

Proposition 5.2. Algorithm 4 is fully oblivious.

Proof. The access pattern, Accessesadvanced, is somewhat com-
plicated, but obliviousness can be considered using a modular ap-
proach. Our oblivious sort relies on Batcher’s Bitonic Sort, in which
sorting is completed by comparing and swapping the data in a
deterministic order, irrespective of the input data. Therefore, ac-
cess patterns generated using this method are always identical.
In oblivious folding, the gradient is linearly accessed once; thus,
the generated access pattern is identical for all input data of equal
length. Finally, Accessesadvanced are identical and independent of
inputs of equal length, this implies 0-statistical obliviousness. □

The complexity of the entire operation is𝑂 ((𝑛𝑘+𝑑) log2 (𝑛𝑘 + 𝑑))
in time and𝑂 (𝑛𝑘 +𝑑) in space. The proposed algorithm relies on an
oblivious sort, which dominates the asymptotic computational com-
plexity. We use Batcher’s Bitonic Sort [6], which has 𝑂 (𝑛 log2 𝑛)
time complexity. The Advanced is asymptotically better than the
Baseline because of the elimination of the 𝑘𝑑 term.

5.3 Optimization

In this subsection, we describe an optimization method that fits the
basic SGX memory characteristics. The current SGX comprises two
major levels of memory size optimization. The first factor is the size
of the L3 cache (e.g., 8 MB). In SGX, the acceleration is significant
because the cache hit reduces not only the memory access time but
also the data-decrypting process. The second factor is the EPC size
(e.g., 96 MB). As mentioned in Section 2.2, accessing data outside

2412



the EPC incurs serious paging overhead. Compared to the proposed
methods, the Baseline is computationally expensive; however, most
memory accesses are linear. Thus, it is greatly accelerated by the
high cache hit rates and the prefetch functionality of the CPU.
However, in Advanced, the low locality of memory accesses in
Batcher’s sort reduces the cache and EPC hit rates.

Therefore, optimization is performed by introducing a function
to split users into appropriate groups before executing Advanced
to keep the data processed at one time within the EPC size. This
procedure involves the following steps: (1) divide into groups of ℎ
users each; (2) aggregate values for each group using Advanced;
(3) record the aggregated value in the enclave, and carry over the
result to the next group; and (4) only average the result when all
groups have been completed and then load them from the enclave
to the untrusted area. Note that the improvement to Advanced does
not change its security characteristics. An external attacker can
only see the encrypted data, and any irregularities in the order
or content of the grouped data can be detected and aborted by
enclave. The key parameter is the number of people, ℎ, in each
group. The overall computational complexity increases slightly to
𝑂 (𝑛/ℎ((ℎ𝑘+𝑑) log2 (ℎ𝑘 + 𝑑))). However, this hides the acceleration
induced by cache hits and/or the overhead incurred by repeated
data loading. Basically, although lowering ℎ improves the benefit of
cache hits, lowering it too much results in a large amount of data
loading. The optimal value of ℎ is independent of data and can be
explored offline. Our results indicate that there exists an optimal ℎ
that achieves the highest efficiency in the experiment.

5.4 Relaxation of Obliviousness

We investigate further improvements by relaxing the condition of
full obliviousness to achieve better efficiency. A relaxed security def-
inition that has recently garnered attention is that of differentially
oblivious (DO) [2, 14, 17, 42, 54]. DO is DP applied to obliviousness.
This relaxation can theoretically improves the efficiency from full
obliviousness. In practice, improvements have been reported for
RDB queries [54] whose security model, in which access pattern
leakage within the enclave is out of the scope, differs from ours.

However, DO is unlikely to work in the FL setting. DO ap-
proaches commonly guarantee DP for the histogram of observed
memory accesses. We construct a DO algorithm based on [2, 42].
The procedure involves the following steps: pad dummy data, per-
form an obvious shuffle (or sorting), and update 𝑔∗ by performing
linear access on G. The observed memory access pattern is equiv-
alent to a histogram of the indices corresponding to all gradients,
and the dummy data are required to be padded with sufficient ran-
dom noise to make this histogram DP. However, this inevitably
incurs prohibitive costs in the FL setting. The first reason for this
is that the randomization mechanism can only be implemented by
padding dummy data [13], which implies that only positive noise
can be added, and the algorithms covered by padding are limited
(e.g., the shifted Laplace mechanism). The second reason is critical
in our case and differs from previous studies [2, 42]. Considering
that the ML model dimension, 𝑑 , and even the sparsified dimen-
sion, 𝑘 , can be large, noise easily becomes significant. For example,
considering the DO guaranteed by Laplace noise, where 𝑘 denotes
the sensitivity and 𝑑 is the dimension of the histogram, the amount

Figure 9: Performance results on a synthetic dataset w.r.t.

models of various sizes: Advanced functions efficiently. 𝛼

(sparse ratio) = 0.01 and 𝑛 (number of clients per round) = 100.

of noise is proportional to 𝑘𝑑 and multiplied by a non-negligible
constant, owing to the first reason [2]. This produces huge array
data to which oblivious operations must be applied, resulting in a
larger overhead than in the fully oblivious case.

5.5 Experimental results

In this section, we demonstrate the efficiency of the designed de-
fense method on a practical scale. Because it is obvious that the
proposed algorithms provide complete defense against our attack
method, their attack performances are not evaluated here. In ad-
dition, our previous algorithms do not degrade utility—the only
trade-off for enhanced security is computational efficiency.
Setup: We use an HP Z2 SFF G4 Workstation with a Intel Xeon
E-2174G CPU, 64 GB RAM, and 8 MB L3 cache, which supports the
SGX instruction set and has 128 MB processor reserved memory,
of which 96 MB EPC is available for user use. We use the same
datasets as those in Table 1 and synthetic data. Note that the pro-
posed method is fully oblivious and its efficiency depends only on
the model size. The aggregation methods are the Non Oblivious
(linear algorithm in Section 3.3), the Baseline (Algorithm 3), the
Advanced(Algorithm 4), and PathORAM. We implement PathORAM
based on an open-source library4 that involves a Rust implementa-
tion of Zerotrace [59]. The stash size is fixed to 20. In the experi-
ments, we use execution time as an efficiency metric. We measure
the time required by an untrusted server from loading the encrypted
data to the enclave to completion of aggregation.
Results: Figure 9 depicts the execution time for the aggregation
operation on the synthetic dataset with respect to model size. 𝛼 is
fixed to 0.01, and the x-axis represents the original model parame-
ter size, 𝑑 . The proposed Advanced is approximately one order of
magnitude faster than Baseline. Moreover, it is more robust with
respect to an increase in the number of parameters. Only when the
number of parameters is very small is Baseline faster than Advanced,
because when the model is extremely small, Baseline’s simplicity
becomes dominant. PathORAM also incurs a large overhead. The
theoretical asymptotic complexity of the original PathORAM-based
algorithm is𝑂 ((𝑛𝑘) log (𝑑)) because a single update on ORAM can
be performed in 𝑂 (log (𝑑)). However, this is an ideal case and the
overhead of the constant factor is large when PathORAM is adapted
to the SGX security model (i.e., ZeroTrace [59]). The overhead is
4https://github.com/mobilecoinofficial/mc-oblivious

2413

https://github.com/mobilecoinofficial/mc-oblivious


Figure 10: Performance results w.r.t. various numbers of

clients (𝑁 ) at low sparsity (𝛼 = 0.1): the Advanced gradu-

ally worsens with increasing number of clients.

Figure 11: The effects of optimizing the Advanced on MLP

models on MNIST (left) and CIFAR100 (right).

primarily induced by the refresh operation corresponding to each
update and the oblivious reading of the position maps. The result
suggests that PathORAM’s superiority does not appear until the
data size increases hugely. Overall, the results indicate that the
aggregation process can be completed in a few seconds, even if the
model scale involves approximately 1M parameters.

Figure 10 depicts the performances on MNIST (MLP) correspond-
ing to various numbers of clients and low sparsity (𝛼 = 0.1). The
Baseline method is more efficient when the number of clients, 𝑁 ,
is large (104). Firstly, the model size 𝑑 is fairly small (i.e., MNIST
(MLP) consists of only 50K parameters). Hence, the overhead of
the dummy access operations of Baseline is not significant. The
second reason is that the lower sparsity and higher number of
clients increases 𝑛𝑘 , which increases the overhead for both Base-
line and Advanced, but affects Advanced more, as explained by the
analysis of cache hits in Section 5.3. At 𝑁 = 104, the memory size
required by Advanced is given by (vector to be obliviously sorted)
= 5089 ∗ 8 ∗ 3000 + 50890 ∗ 8 ≈ 122 MB (> 96 MB of EPC size) since
each cell of gradient is 8 bytes (32-bit unsigned integer for index
and 32-bit floating point for value). Batcher’s sort requires repeated
accesses between two very distant points on the vector, which
could require a large number of pagings until Advanced finishes;
however, in Baseline, this hardly occurs. However, the optimization
introduced in Section 5.3 successfully addresses this problem.

Figure 11 illustrates the effects of the optimization method on
Advanced. The left figure shows the results under the same condi-
tions as the rightmost bars in Figure 10 (𝑁 = 104), indicating that

Advanced is dramatically faster with an optimal client size. When
the number of clients per group, ℎ (represented along the x-axis), is
small, the costs of iterative loading to the enclave become dominant,
and the overhead conversely increases. However, if ℎ is gradually
increased, the execution time decreases. Considering that the size
of the L3 cache is 8 MB and data size per user is 𝑑𝛼 = 0.04 MB, the
L3 cache can accommodate up to approximately 200 clients. The re-
sults of MNIST (MLP) indicate that the lowest is, approximately 10
s, at around ℎ = 100, which is a significant improvement compared
to 290 s in the original Advanced. The small waviness of the plot
appears to be related to the L2 cache (1 MB), which does not have
an impact as large as that of the L3 cache. The efficiency decreases
significantly around ℎ = 2000, owing to the EPC paging. The figure
on the right depicts the results on CIFAR100 (MLP) at 𝛼 = 0.01 and
𝑁 = 104. In this case, Advanced is initially much faster, but there is
an optimal ℎ that can be further improved. The pre-optimization
execution time of 16 s is reduced to 5.7 s at around 150 clients.

5.6 Discussion

Threat assumption. Boenisch et al. [9] reported that malicious
servers improve inference attack performance beyond semi-honest.
This type of attack involves crafting global model parameters (called
trap weights in [9]) and controlling client selection in rounds to
highlight the updates of the target user by a malicious server. To
prevent parameter tampering, [11] proposed a defense strategy
using a cryptographic commitment scheme. The Olive can adopt a
similar strategy based on a cryptographic signature. Aggregation
is performed within the enclave, and the aggregated global model
is signed with the private key in the enclave. This ensures that the
model is not tamperedwith outside the enclave, i.e., malicious server.
Any client can verify this using a public key which can be easily
distributed after RA. In addition, TEE prevents malicious client
selection by securely running in the enclave. Therefore, privacy is
not violated at least such type of the attack. Other possible malicious
server behaviors can influence the security of the Olive, including
denial-of-service (DoS) attacks [30], which are outside the threat
model of the Olive, as well as TEE and are difficult to prevent.

Security of SGX. Finally, we discuss the use of SGX as a secu-
rity primitive against known attacks. According to [51], the objec-
tives of attacks against SGX can be classified into the following
three: (1) stealingmemory/page access patterns or instruction traces
[12, 36, 71, 76], (2) reading out memory content [15, 69], and (3)
fault injection [48]. (1) is the target of our defense. The speculative
execution attacks of (2) are mostly handled by microcode patches.
Hence, the protection is usually not required in the application.
However, if the microcode is not updated, the gradient information
of the enclave may be stolen by a malicious attacker, which is be-
yond the scope of this study. The fault injection of (3) is covered
within the scope of microcode/hardware [48, 51] and lies outside
our security. This may cause DoS even using TEE [30].

In addition, another risk exists if malicious code is embedded in
the code executed in the enclave. This can be prevented by verifying
the enclave state using RA; however, this requires the source code
to be publicly available and assessed. Further, as discussed in [70],
the SDK may involve unintended vulnerabilities. To benefit from
the security of SGX, the code of TCB must be written properly.

2414



6 RELATEDWORKS

Security and Privacy threats in FL. FL contains many attack sur-
faces because of its decentralized and collaborative scheme. These
can be broadly classified into inference attacks by semi-honest par-
ties [21, 49, 72] and attacks that degrade or control the quality of the
model by malicious parties [5, 66, 80]. However, [9] demonstrated
that malicious servers may enable effective inference attacks by
crafting aggregated parameters. Our target is taken to be an infer-
ence attack by a semi-honest server. Inference attacks include re-
construction [7, 27], membership [49], and label inferences [21, 72].
In particular, it has been reported that shared parameters observed
by a server contain large amounts of private information [79, 84].
Our work targets gradient-based label inference attacks, [21, 72]
use the gradients themselves, focusing on the values, and not only
on the indices leaking from the side-channel, as in our method. To
the best of our knowledge, this is the first study to demonstrate
label inference using only sparsified index information.

Secure aggregation (SA) [46] is a popular FL method for conceal-
ing individual parameters from the server and it is based on the
lightweight pairwise-masking method [10, 19, 32], homomorphic
encryption [4, 26] or TEE [78, 80]. Another approach is to ensure
(local) DP for the parameter to privatize the shared data; however,
this sacrifices the utility of the model [67, 81, 82]. In this study,
we study SA using TEE—further details are provided in the next
paragraph. Recent studies have investigated combinations of SA
and sparsification, such as random-𝑘 [19] and top-𝑘 [40]. However,
these are not in harmony because they require the same sparsified
indices among clients for mask cancellation. [40] proposed gen-
eration of common masks by taking a union set of top-𝑘 indexes
among clients, which incurs extra communication costs and strong
constraints. This can be serious for the top-𝑘 because, in fact, Er-
gun et al. [19] showed that the top-𝑘 indices exhibits little overlap
between clients, which is especially noticeable in the non-i.i.d. as in
FL. In [19], only a pair of users exhibited a common index; however,
this was applicable only to random-𝑘 sparsification. In the case of
TEE, a common index or random-𝑘 is not required; but, individual
indices can still be leaked through side-channels. Therefore, our
work focuses on attacks and defense strategies at this point.

FL with TEE. Using TEE in FL is a promising approach [16, 45,
47, 77, 78] in this context. In addition to the confidentiality of gradi-
ents (i.e., SA functionality), TEE provides remote program integrity
and verifiability via remote attestation. The major difference from
centralized ML using TEE [29, 52] is that the training data are not
shared to the server and they are not centralized in the latter case,
which can be critical because of privacy or contractual/regulatory
reasons or for practical reasons, i.e., big and fast data at multiple
edges. It is also important to outsource heavy computations re-
quired for ML training from TEE’s limited computational resources
to external clients. PPFL [45] uses a TEE to hide parameters to
prevent semi-honest client and server attacks on a global model.
Citadel [77] addressed the important goal of making the design of
models confidential in collaborative ML using TEE. However, side-
channel attacks were not covered. In [78] and [16], the gradient
aggregation step was taken to be hierarchical and/or partitioned
using multiple servers such that the gradient information could
only be partially observed by each server. The authors assumed

reconstruction attack and that a gradient leakage of less than 80%
was acceptable, which differs from our assumption completely. In
this study, the attack is based only on the gradient index informa-
tion, and the goal is label inference. Further, our proposed defense
is more practical since we require only one server and one TEE,
compared to the aforementioned method of distributed processing,
which assumes multiple non-colluding servers with TEEs. Flatee
[47] used TEE and DP in FL. [47] mentioned server-side oblivious-
ness, but did not provide any analysis and solution for the leakages
via side-channels. Our study includes an analysis of access patterns
in the aggregation procedure of FL and the design and demon-
stration of attack methods to motivate our defenses thoroughly in
addition to specific solutions that lead to stronger security than
any other method in FL on a single central TEE.

Oblivious techniques. The oblivious algorithm [25, 52, 65] is
known to induce only independent memory access patterns for the
input data. Although PathORAM [65] is the most efficient ORAM
implementation, it assumes a private memory space of a certain
size (called as client storage) and is not applicable to Intel SGX [59].
Zerotrace [59] adapted PathORAM to the SGX security model, in
which the register is only private memory. The authors used the
oblivious primitive proposed in [52], in which the program did not
leak instruction sequences from the CPU register, using x86 condi-
tional instructions. Our proposed algorithm also uses the low-level
primitives; however, high-level algorithms are considerably differ-
ent. [83] studied oblivious SQL processing. Their proposal included
a group-by query, which is similar to our proposed algorithm in
concept. Our aggregation algorithm computes the summed dense
gradients based on multiple sparse gradients, which can be viewed
as a special case of the group-by query. But, our method is more
specialized, for instance, we first prepare the zero-initialized dense
gradients to hide the all of index set that are included and then
obliviously aggregated, which is impossible in the case of group-
by. In addition, the aforementioned algorithms are fundamentally
different because they focus on the data distributed across nodes.
Further, [83] did not consider the technique proposed by [52] for
linear access, which can induce additional information leaks in the
conditional code [76]. [56, 64] studied compiling and transform-
ing approaches from high-level source code to low-level oblivious
code. They proposed a compiler that automatically identifies non-
oblivious parts of the original source code and fixes them. But, the
authors did not provide customized high-level algorithms for spe-
cific purposes, unlike our method. The Differentially Obliviousness
(DO) [2, 14, 54] is described in detail in Section 5.4.

7 CONCLUSIONS

In this study, we analyzed the risks of FL with server-side TEE in a
sparsified gradient setting, and designed and demonstrated a novel
inference attack using gradient index information that is observ-
able from side-channels. To mitigate these risks, we proposed an
oblivious federated learning system, called the Olive, by designing
fully oblivious but efficient algorithms. Our experimental results
demonstrated that the proposed algorithm is more efficient than the
state-of-the-art general-purpose ORAM and can serve as a practical
method on a real-world scale. We believe that our study is useful
for realizing privacy-preserving FL using a TEE.

2415



REFERENCES

[1] Mohammed Aledhari, Rehma Razzak, Reza M Parizi, and Fahad Saeed. 2020. Fed-
erated learning: A survey on enabling technologies, protocols, and applications.
IEEE Access 8 (2020), 140699–140725.

[2] Joshua Allen, Bolin Ding, Janardhan Kulkarni, Harsha Nori, Olga Ohrimenko,
and Sergey Yekhanin. 2019. An algorithmic framework for differentially private
data analysis on trusted processors. Advances in Neural Information Processing
Systems 32 (2019).

[3] Galen Andrew, Om Thakkar, H Brendan McMahan, and Swaroop Ramaswamy.
2021. Differentially Private Learning with Adaptive Clipping. Advances in Neural
Information Processing Systems (NeurIPS 2021) (2021).

[4] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. 2017. Privacy-
preserving deep learning via additively homomorphic encryption. IEEE Transac-
tions on Information Forensics and Security 13, 5 (2017), 1333–1345.

[5] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. 2020. How To Backdoor Federated Learning. In Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics
(Proceedings of Machine Learning Research), Silvia Chiappa and Roberto Ca-
landra (Eds.), Vol. 108. PMLR, 2938–2948. https://proceedings.mlr.press/v108/
bagdasaryan20a.html

[6] Kenneth E Batcher. 1968. Sorting networks and their applications. In Proceedings
of the April 30–May 2, 1968, spring joint computer conference. 307–314.

[7] Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor, and Ryan
Rogers. 2018. Protection against reconstruction and its applications in private
federated learning. arXiv preprint arXiv:1812.00984 (2018).

[8] Google AI Blog. 2017. Federated Learning: Collaborative Machine Learning
without Centralized Training Data. https://ai.googleblog.com/2017/04/federated-
learning-collaborative.html

[9] Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia
Shumailov, and Nicolas Papernot. 2021. When the curious abandon honesty:
Federated learning is not private. arXiv preprint arXiv:2112.02918 (2021).

[10] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Practi-
cal Secure Aggregation for Privacy-Preserving Machine Learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery, New York,
NY, USA, 1175–1191. https://doi.org/10.1145/3133956.3133982

[11] Simone Bottoni, Giulio Zizzo, Stefano Braghin, and Alberto Trombetta. 2022. Ver-
ifiable Federated Learning. In Workshop on Federated Learning: Recent Advances
and New Challenges (in Conjunction with NeurIPS 2022). https://openreview.net/
forum?id=0HIa3HIyIHN

[12] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software grand exposure:SGX cache
attacks are practical. In 11th USENIX Workshop on Offensive Technologies.

[13] Benjamin M Case, James Honaker, and Mahnush Movahedi. 2021. The Privacy-
preserving Padding Problem: Non-negative Mechanisms for Conservative An-
swers with Differential Privacy. arXiv preprint arXiv:2110.08177 (2021).

[14] TH Hubert Chan, Kai-Min Chung, Bruce M Maggs, and Elaine Shi. 2019. Founda-
tions of differentially oblivious algorithms. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2448–2467.

[15] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
TenH Lai. 2019. Sgxpectre: Stealing intel secrets from sgx enclaves via speculative
execution. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 142–157.

[16] Pau-Chen Cheng, Kevin Eykholt, Zhongshu Gu, Hani Jamjoom, K. R. Jayaram,
Enriquillo Valdez, and Ashish Verma. 2021. Separation of Powers in Feder-
ated Learning (Poster Paper). In Proceedings of the First Workshop on Systems
Challenges in Reliable and Secure Federated Learning (Virtual Event, Germany)
(ResilientFL ’21). Association for Computing Machinery, New York, NY, USA,
16–18. https://doi.org/10.1145/3477114.3488765

[17] Shumo Chu, Danyang Zhuo, Elaine Shi, and THHubert Chan. 2021. Differentially
Oblivious Database Joins: Overcoming the Worst-Case Curse of Fully Oblivious
Algorithms. Cryptology ePrint Archive (2021).

[18] Victor Costan and Srinivas Devadas. 2016. Intel sgx explained. IACR Cryptol.
ePrint Arch. 2016, 86 (2016), 1–118.

[19] Irem Ergun, Hasin Us Sami, and Basak Guler. 2021. Sparsified secure aggregation
for privacy-preserving federated learning. arXiv preprint arXiv:2112.12872 (2021).

[20] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Shuang
Song, Kunal Talwar, and Abhradeep Thakurta. 2020. Encode, shuffle, ana-
lyze privacy revisited: Formalizations and empirical evaluation. arXiv preprint
arXiv:2001.03618 (2020).

[21] Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu, Shanqing
Guo, Jun Zhou, Alex X Liu, and Ting Wang. 2022. Label inference attacks against
vertical federated learning. In 31st USENIX Security Symposium (USENIX Security
22). 1397–1414.

[22] Robin C Geyer, Tassilo Klein, and Moin Nabi. 2017. Differentially private feder-
ated learning: A client level perspective. NIPS 2017 Workshop: Machine Learning
on the Phone and other Consumer Devices (2017).

[23] Antonious Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and
Ananda Theertha Suresh. 2021. Shuffled Model of Differential Privacy in Feder-
ated Learning. In International Conference on Artificial Intelligence and Statistics.
PMLR, 2521–2529.

[24] Michelle Goddard. 2017. The EU General Data Protection Regulation (GDPR):
European regulation that has a global impact. International Journal of Market
Research 59, 6 (2017), 703–705.

[25] Oded Goldreich. 1987. Towards a theory of software protection and simulation
by oblivious RAMs. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing. 182–194.

[26] Meng Hao, Hongwei Li, Guowen Xu, Sen Liu, and Haomiao Yang. 2019. Towards
efficient and privacy-preserving federated deep learning. In ICC 2019-2019 IEEE
International Conference on Communications (ICC). IEEE, 1–6.

[27] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. 2017. Deep models
under the GAN: information leakage from collaborative deep learning. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 603–618.

[28] Rui Hu, Yanmin Gong, and Yuanxiong Guo. 2022. Federated learning with
sparsified model perturbation: Improving accuracy under client-level differential
privacy. arXiv preprint arXiv:2202.07178 (2022).

[29] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett
Witchel. 2018. Chiron: Privacy-preserving machine learning as a service. arXiv
preprint arXiv:1803.05961 (2018).

[30] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-Bomb:
Locking down the processor via Rowhammer attack. In Proceedings of the 2nd
Workshop on System Software for Trusted Execution. 1–6.

[31] Bargav Jayaraman and David Evans. 2019. Evaluating Differentially Private
Machine Learning in Practice. In 28th USENIX Security Symposium (USENIX
Security 19). USENIX Association, Santa Clara, CA, 1895–1912. https://www.
usenix.org/conference/usenixsecurity19/presentation/jayaraman

[32] Peter Kairouz, Ziyu Liu, and Thomas Steinke. 2021. The Distributed Dis-
crete Gaussian Mechanism for Federated Learning with Secure Aggregation.
In Proceedings of the 38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event (Proceedings of Machine Learning Research),
Marina Meila and Tong Zhang (Eds.), Vol. 139. PMLR, 5201–5212. http:
//proceedings.mlr.press/v139/kairouz21a.html

[33] Fumiyuki Kato, Yang Cao, and Mastoshi Yoshikawa. 2021. PCT-TEE: Trajectory-
based Private Contact Tracing System with Trusted Execution Environment.
ACM Transactions on Spatial Algorithms and Systems (TSAS) 8, 2 (2021), 1–35.

[34] Fumiyuki Kato, Yang Cao, and Masatoshi Yoshikawa. 2023. Olive: Oblivious
Federated Learning on Trusted Execution Environment against the risk of spar-
sification. arXiv preprint arXiv:2202.07165 (2023).

[35] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[36] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, andMarcus
Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing.. In USENIX Security Symposium, Vol. 19. 16–18.

[37] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2018. Deep
Gradient Compression: Reducing the communication bandwidth for distributed
training. In The International Conference on Learning Representations.

[38] Ruixuan Liu, Yang Cao, Hong Chen, Ruoyang Guo, and Masatoshi Yoshikawa.
2021. Flame: Differentially private federated learning in the shuffle model. In
AAAI.

[39] Ruixuan Liu, Yang Cao, Masatoshi Yoshikawa, and Hong Chen. 2020. Fedsel:
Federated sgd under local differential privacy with top-k dimension selection. In
International Conference on Database Systems for Advanced Applications. Springer,
485–501.

[40] Shiwei Lu, Ruihu Li, Wenbin Liu, Chaofeng Guan, and Xiaopeng Yang. 2023.
Top-k sparsification with secure aggregation for privacy-preserving federated
learning. Computers & Security 124 (2023), 102993.

[41] Kajetan Maliszewski, Jorge-Arnulfo Quiané-Ruiz, Jonas Traub, and Volker Markl.
2021. What is the price for joining securely? benchmarking equi-joins in trusted
execution environments. Proceedings of the VLDB Endowment 15, 3 (2021), 659–
672.

[42] SaharMazloom and S. Dov Gordon. 2018. Secure Computation with Differentially
Private Access Patterns. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 490–507. https://doi.org/10.
1145/3243734.3243851

[43] H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas.
2016. Federated learning of deep networks using model averaging. arXiv preprint
arXiv:1602.05629 (2016).

[44] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2018.
Learning Differentially Private Recurrent Language Models. In 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. https:
//openreview.net/forum?id=BJ0hF1Z0b

2416

https://proceedings.mlr.press/v108/bagdasaryan20a.html
https://proceedings.mlr.press/v108/bagdasaryan20a.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://doi.org/10.1145/3133956.3133982
https://openreview.net/forum?id=0HIa3HIyIHN
https://openreview.net/forum?id=0HIa3HIyIHN
https://doi.org/10.1145/3477114.3488765
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
http://proceedings.mlr.press/v139/kairouz21a.html
http://proceedings.mlr.press/v139/kairouz21a.html
https://doi.org/10.1145/3243734.3243851
https://doi.org/10.1145/3243734.3243851
https://openreview.net/forum?id=BJ0hF1Z0b
https://openreview.net/forum?id=BJ0hF1Z0b


[45] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and
Nicolas Kourtellis. 2021. PPFL: Privacy-Preserving Federated Learning with
Trusted Execution Environments. In Proceedings of the 19th Annual International
Conference on Mobile Systems, Applications, and Services (Virtual Event, Wiscon-
sin) (MobiSys ’21). Association for Computing Machinery, New York, NY, USA,
94–108. https://doi.org/10.1145/3458864.3466628

[46] Mansouri Mohamad, Malek Onen, Wafa Ben Jaballah, and Mauro Contu. 2023.
SoK: Secure Aggregation based on cryptographic schemes for Federated Learning.
In Proceedings of Privacy Enhancing Technologies Symposium, Vol. 1.

[47] A. Mondal, Y. More, R. Rooparaghunath, and D. Gupta. 2021. Poster: FLATEE:
Federated Learning Across Trusted Execution Environments. In 2021 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P). IEEE Computer Society, Los
Alamitos, CA, USA, 707–709. https://doi.org/10.1109/EuroSP51992.2021.00054

[48] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and
Frank Piessens. 2020. Plundervolt: Software-based fault injection attacks against
Intel SGX. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1466–1482.

[49] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks against
centralized and federated learning. In 2019 IEEE symposium on security and
privacy (SP). IEEE, 739–753.

[50] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat,
Mani Malek, and Dzmitry Huba. 2022. Federated learning with buffered asyn-
chronous aggregation. In International Conference on Artificial Intelligence and
Statistics. PMLR, 3581–3607.

[51] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. 2020. A survey
of published attacks on Intel SGX. arXiv preprint arXiv:2006.13598 (2020).

[52] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, andManuel Costa. 2016. Oblivious multi-party machine
learning on trusted processors. In 25th USENIX Security Symposium (USENIX
Security 16). 619–636.

[53] Matthias Paulik, Matt Seigel, HenryMason, Dominic Telaar, Joris Kluivers, Rogier
van Dalen, Chi Wai Lau, Luke Carlson, Filip Granqvist, Chris Vandevelde, et al.
2021. Federated Evaluation and Tuning for On-Device Personalization: System
Design & Applications. arXiv preprint arXiv:2102.08503 (2021).

[54] Lianke Qin, Rajesh Jayaram, Elaine Shi, Zhao Song, Danyang Zhuo, and Shumo
Chu. 2022. Adore: Differentially Oblivious Relational Database Operators. Proc.
VLDB Endow. 16, 4 (dec 2022), 842–855. https://doi.org/10.14778/3574245.3574267

[55] Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise Beaufays.
2019. Federated learning for emoji prediction in a mobile keyboard. arXiv
preprint arXiv:1906.04329 (2019).

[56] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing digital side-
channels through obfuscated execution. In 24th {USENIX} Security Symposium
({USENIX} Security 15). 431–446.

[57] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. 2015.
Trusted execution environment: what it is, and what it is not. In 2015 IEEE
Trustcom/BigDataSE/ISPA, Vol. 1. IEEE, 57–64.

[58] Atal Sahu, Aritra Dutta, Ahmed M Abdelmoniem, Trambak Banerjee, Marco
Canini, and Panos Kalnis. 2021. Rethinking gradient sparsification as total error
minimization. Advances in Neural Information Processing Systems 34 (2021),
8133–8146.

[59] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. 2018. ZeroTrace:
Oblivious Memory Primitives from Intel SGX. In 25th Annual Network and Dis-
tributed System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018. The Internet Society.

[60] Felix Sattler, SimonWiedemann, Klaus-Robert Müller, andWojciech Samek. 2019.
Robust and communication-efficient federated learning from non-iid data. IEEE
transactions on neural networks and learning systems 31, 9 (2019), 3400–3413.

[61] Osama Shahid, Seyedamin Pouriyeh, Reza Meimandi Parizi, Quan Z. Sheng, Gau-
tam Srivastava, and Liang Zhao. 2021. Communication Efficiency in Federated
Learning: Achievements and Challenges. ArXiv abs/2107.10996 (2021).

[62] Shaohuai Shi, Kaiyong Zhao, Qiang Wang, Zhenheng Tang, and Xiaowen Chu.
2019. A Convergence Analysis of Distributed SGDwith Communication-Efficient
Gradient Sparsification.. In IJCAI. 3411–3417.

[63] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017.
Membership inference attacks against machine learning models. In 2017 IEEE
symposium on security and privacy (SP). IEEE, 3–18.

[64] Rohit Sinha, Sriram Rajamani, and Sanjit A Seshia. 2017. A compiler and verifier
for page access oblivious computation. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. 649–660.

[65] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: An Extremely Simple
Oblivious RAM Protocol. In Proceedings of the 2013 ACM SIGSAC Conference on

Computer & Communications Security (Berlin, Germany) (CCS ’13). Association
for Computing Machinery, New York, NY, USA, 299–310. https://doi.org/10.
1145/2508859.2516660

[66] Lili Su and Jiaming Xu. 2019. Securing Distributed Gradient Descent in High
Dimensional Statistical Learning. Proc. ACM Meas. Anal. Comput. Syst. 3, 1,
Article 12 (mar 2019), 41 pages. https://doi.org/10.1145/3322205.3311083

[67] Lichao Sun, Jianwei Qian, and Xun Chen. 2021. LDP-FL: Practical Private Ag-
gregation in Federated Learning with Local Differential Privacy. In Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21,
Zhi-Hua Zhou (Ed.). International Joint Conferences on Artificial Intelligence
Organization, 1571–1578. https://doi.org/10.24963/ijcai.2021/217 Main Track.

[68] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. 2018. VAULT: Reduc-
ing paging overheads in SGX with efficient integrity verification structures. In
Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems. 665–678.

[69] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the Intel SGX kingdom with transient
out-of-order execution. In Proceedings fo the 27th USENIX Security Symposium.
USENIX Association.

[70] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D Garcia,
and Frank Piessens. 2019. A tale of two worlds: Assessing the vulnerability of
enclave shielding runtimes. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. 1741–1758.

[71] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. 2017. Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution. In 26th USENIX Security Symposium (USENIX
Security 17). 1041–1056.

[72] AidmarWainakh, Fabrizio Ventola, Till Müßig, Jens Keim, Carlos Garcia Cordero,
Ephraim Zimmer, Tim Grube, Kristian Kersting, and Max Mühlhäuser. 2022.
User-Level Label Leakage from Gradients in Federated Learning. Proceedings on
Privacy Enhancing Technologies 2022, 2 (2022), 227–244.

[73] Teng Wang, Xuefeng Zhang, Jingyu Feng, and Xinyu Yang. 2020. A Comprehen-
sive Survey on Local Differential Privacy toward Data Statistics and Analysis.
Sensors 20, 24 (Dec 2020), 7030. https://doi.org/10.3390/s20247030

[74] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong
Qi. 2019. Beyond inferring class representatives: User-level privacy leakage
from federated learning. In IEEE INFOCOM 2019-IEEE conference on computer
communications. IEEE, 2512–2520.

[75] Donglei Wu, Xiangyu Zou, Shuyu Zhang, Haoyu Jin, Wen Xia, and Binxing
Fang. 2022. SmartIdx: Reducing Communication Cost in Federated Learning
by Exploiting the CNNs Structures. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 36. 4254–4262.

[76] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In 2015
IEEE Symposium on Security and Privacy. IEEE, 640–656.

[77] Chengliang Zhang, Junzhe Xia, Baichen Yang, Huancheng Puyang, Wei Wang,
Ruichuan Chen, Istemi Ekin Akkus, Paarijaat Aditya, and Feng Yan. 2021. Citadel:
Protecting Data Privacy and Model Confidentiality for Collaborative Learning
with SGX. arXiv preprint arXiv:2105.01281 (2021).

[78] Yuhui Zhang, Zhiwei Wang, Jiangfeng Cao, Rui Hou, and Dan Meng. 2021.
ShuffleFL: gradient-preserving federated learning using trusted execution envi-
ronment. In Proceedings of the 18th ACM International Conference on Computing
Frontiers. 161–168.

[79] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2020. idlg: Improved deep
leakage from gradients. arXiv preprint arXiv:2001.02610 (2020).

[80] Lingchen Zhao, Jianlin Jiang, Bo Feng, Qian Wang, Chao Shen, and Qi Li. 2021.
Sear: Secure and efficient aggregation for byzantine-robust federated learning.
IEEE Transactions on Dependable and Secure Computing 19, 5 (2021), 3329–3342.

[81] Qi Zhao, Chuan Zhao, Shujie Cui, Shan Jing, and Zhenxiang Chen. 2020. Pri-
vateDL: privacy-preserving collaborative deep learning against leakage from
gradient sharing. International Journal of Intelligent Systems 35, 8 (2020), 1262–
1279.

[82] Yang Zhao, Jun Zhao, Mengmeng Yang, Teng Wang, Ning Wang, Lingjuan Lyu,
Dusit Niyato, and Kwok-Yan Lam. 2020. Local differential privacy-based federated
learning for internet of things. IEEE Internet of Things Journal 8, 11 (2020), 8836–
8853.

[83] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E
Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed
Analytics Platform. In NSDI, Vol. 17. 283–298.

[84] Ligeng Zhu and Song Han. 2020. Deep leakage from gradients. In Federated
learning. Springer, 17–31.

2417

https://doi.org/10.1145/3458864.3466628
https://doi.org/10.1109/EuroSP51992.2021.00054
https://doi.org/10.14778/3574245.3574267
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1145/3322205.3311083
https://doi.org/10.24963/ijcai.2021/217
https://doi.org/10.3390/s20247030

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Federated Learning
	2.2 Trusted Execution Environment
	2.3 Memory Access Pattern Leakage

	3 Proposed System
	3.1 Scenario
	3.2 System overview
	3.3 Security Analysis

	4 Attack on gradient index
	4.1 Design
	4.2 Evaluation Task
	4.3 Empirical Analysis

	5 Oblivious Algorithms
	5.1 Baseline method
	5.2 Advanced method
	5.3 Optimization
	5.4 Relaxation of Obliviousness
	5.5 Experimental results
	5.6 Discussion

	6 Related works
	7 Conclusions
	References

