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ABSTRACT
Graph Neural Networks (GNNs) have significantly boosted the
performance of many graph-based applications, yet they serve as
black-box models. To understand how GNNs make decisions, ex-
plainability techniques have been extensively studied. While the
majority of existing methods focus on local explainability, we pro-
pose DAG-Explainer in this work aiming for global explainability.
Specifically, we observe three properties of superior explanations
for a pretrained GNN: they should be highly recognized by the
model, compliant with the data distribution and discriminative
among all the classes. The first property entails an explanation to
be faithful to the model, as the other two require the explanation
to be convincing regarding the data distribution. Guided by these
properties, we design metrics to quantify the quality of each sin-
gle explanation and formulate the problem of finding data-aware
global explanations for a pretrained GNN as an optimizing problem.
We prove that the problem is NP-hard and adopt a randomized
greedy algorithm to find a near optimal solution. Furthermore, we
derive an improved bound of the approximation algorithm in our
problem over the state-of-the-art (SOTA) best. Experimental results
show that DAG-Explainer can efficiently produce meaningful and
trustworthy explanations while preserving comparable quantitative
evaluation results to the SOTA methods.
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1 INTRODUCTION
Graph Neural Networks (GNNs) have been widely employed in
tasks using graph-structure data owing to their outstanding perfor-
mance. However, the models are not yet fully trusted due to their
black-box nature, as users cannot verify if the model is truly reliable.
As a result, intensive research efforts have been devoted to under-
stand how GNNs make decisions [15, 31, 43, 54, 65, 72]. Researchers
attempt to identify substructures that are critical for GNNs to clas-
sify the instances. Such a subgraph, termed an explanation of the
GNN, shows the focus of the complex model and sheds light on
its decision making mechanism by answering the question “what
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leads the model to make such a prediction?”. The majority of existing
methods target local explainability, i.e., instance-level explanation
[29, 31, 52, 54, 56, 65, 69], which aims to find one explanation for a
given input instance. Yet, the global explainability is under shallow
exploration, i.e., model-level techniques [32, 66], which produce
input-independent explanations to capture the general behavior
of the model. Though global methods could be less precise for one
specific instance, they provide a higher-level interpretation of the
model’s decision making mechanism and thus avoid exploring the
explanations for a large number of instances before we can trust
the models. Hence, before the model takes any real-world service,
global explanations can help domain experts examine the network’s
trustworthiness and capture any possible systematic errors . Not to
mention that model-level explanations provide easy generalization
to an inductive setting, which is the nature of many GNN appli-
cations [31]. In this work, we focus on model-level explanation to
understand pretrained GNNs form a global view.

An open issue in explaining black-box models is the absence of
a unified evaluation scheme for measuring explainability. Due to
the scarcity of natural ground truths, common evaluation metrics
such as accuracy, F1 score, and AUC score can no longer be applied
to measure effectiveness in a scientific manner. Without golden
knowledge, the key challenge lies in quantifying the quality of an
explanation. To tackle this problem, we investigate and analyze
the interrelation between GNNs and their training data. In some
situations, outputs of existing methods cannot serve as superior
model-level explanations. We elaborate on them in the following,
using two datasets from different domains. The first one is the
MUTAG dataset, comprised of molecular structures classified by
their mutagenic effect. The second one is a social network dataset
named Highschool, where each graph in it is a face-to-face contact
network between highschool students, in which either a high-risk
or ordinary epidemic is spreading. Selected examples from the two
datasets1 are shown in Figure 1(b) and (d), respectively.
Case 1. The generated explanation is not (highly) recognized by
the GNN. As shown in Case 1. of Figure 1(a) is a 6-carbon ring found
by SubgraphX [68] as an explanation for the mutagenic class in the
MUTAG dataset; however its prediction score from the GNN for
the underlying label is only 0.0028, which means the model does
not recognize this structure asmutagenic. In Case 1. in Figure 1(c), a
pattern of sequential social contacts between four students is found
by Glocal [32] as an explanation for the high-risk epidemic class, yet
its GNN score is only 0.5164. Though the predicted label is correct,
the model is not exactly sure about its decision.
Case 2. The generated explanation does not exist in the data. A
typical example is the explanation generated by XGNN [66], one of
its output is shown in Case 2. in Figure 1(a). Besides, the structure

1In the MUTAG dataset [24], nodes represent atoms and edges represent chemical
bounds. In the Highschool dataset, an edge represents a safe contact, or a risky contact
without infection, or a risky contact with infection caused (see Section 3.1.1).
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Figure 1: (a) & (c) The generated explanations by existing methods. (b) Examples form the MUTAG dataset, where nodes represent atoms and edges represent
chemical bounds. (d) Examples from the Highschool dataset, where nodes represent susceptible or infected students and an edge represents a safe contact, or a risky
contact without infection, or a risky contact with infection caused. More details on the datasets are presented in Section 3.1.1.

violates the chemical rules: take the oxygen atoms as examples,
the maximum absolute value of their valency is two [21], however
their degrees in the structure are four and six respectively; the same
problem also happens with other atoms. Thus rationality of the
explanation structure is doubtful. In Case 2. in Figure 1(c) shows a
complete network of four infected students, all of their contacts are
risky ones with infection caused. The structure is believed to be a
traditional high-risk epidemic network [58]. However, this struc-
ture does not exist in the data, thus it cannot serve as a superior
model-level explanation.
Case 3. The generated explanation does not discriminate among
classes. For instance, shown in the red box in Figure 1(a) is a carbon
ring attached with an NO2 structure (Case 3.) found by GNNEx-
plainer [65] as an explanation for mutagenic class, it receives a
GNN score as high as 0.99998, and exists in 91.2% of graphs in
the class. The issue is that this structure also presents in 84.1% of
instances in the non-mutagenic class. Similarly, as shown in the
blue box in Figure 1(b) is a windmill-shaped structure found for
explaining the high-risk epidemic class [32]. It is not only present in
66 graphs in the target class, but also in 37 graphs of the ordinary
epidemic class. The explainers are then trapped in the predicament
where graphs containing an explanation of some class are actually
predicted as another class by the GNN.

Essentially, the first case demonstrates that existing explainers
may fall short from the model’s perspective: the outputs may not
be faithful to the GNN; the other two show that current techniques
may fail from the data perspective: the outputs may not align with
the knowledge of the data. An example of a high-quality explana-
tion is shown in the green box in Figure 1(b): two oxygen atoms
connected by one carbon atom. The structure has a GNN score of
1.0, and presents in the mutagenic class only, which suggests it is
both faithful to the model and truly data-aware. If an explanation
does not hold faithfulness to the GNN, it becomes invalid and mean-
ingless; if it does not retain data-awareness, it is not trustworthy
or convincing. Thus, our goal is to find superior explanations that
can achieve the best of both worlds.

In conclusion, we aim for a set of substructures that overcomes
the shortcomings of three discussed cases while preserving effec-
tiveness of the existing methods. This is a challenging task due to
the following three reasons. First, without ground truth of the prob-
lem, one needs to design persuasive and vital metrics for defining

the optimization goal as well as measuring the quality of the final
output. Second, for each single explanation, the recipe for solving
different cases may not align with each other, thus finding optimal
subgraphs that can tackle all the discussed problems concurrently is
difficult. Third, the quantifying metrics defined to be optimized do
not necessarily preserve properties required for commonly used op-
timization techniques (e.g.monotonicity and submodularity), hence
designing an algorithm with a theoretical guarantee is non-trivial.

To address these issues, we propose a framework named DAG-
Explainer (Data-Aware Global Explainer), in which we first define
a number of new metrics to quantify how superior an explanation
is from the perspectives of both the model and the data, and further
introduce an objective function that scores the quality of different
sets of model-level explanations; then we propose a randomized
greedy algorithm with theoretical bound to find a final set of expla-
nations that optimizes the objective function. Our contribution is
summarized as follows:

• We propose a unified evaluation scheme to quantify the
explainability of a structure, which can be used to measure
the quality of explanations in a model-agnostic fashion.

• We formulate the data-aware global explanations gener-
ation problem as finding an optimal set that maximizes
an objective function. We then show that solving it for
the optima is NP-hard by proving the objective is weakly-
submodular.

• Wepropose a framework namedDAG-Explainer that adopts
a randomized greedy algorithm to find a near-optimal solu-
tion to the problem, and derive an improved bound of the
approximation algorithm in our problem over the state-of-
the-art best.

• We conduct experiments on one synthetic dataset and two
real-world datasets to demonstrate that our method out-
puts meaningful and trustworthy explanations with decent
quantitative evaluation results for GNNs.

2 DATA-AWARE GLOBAL EXPLAINABILITY
OF GRAPH NEURAL NETWORKS

In this section, we first present related concepts and preliminaries of
our problem, then formally introduce our proposed DAG-Explainer.
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2.1 Preliminaries
In general, GNNs learn node representations by iteratively aggre-
gating neural messages along edges between neighboring nodes.
Consider a graph 𝐺 = (𝑉 , 𝐸) consisting of a set of nodes 𝑉 =

{𝑣1, 𝑣2, ..., 𝑣𝑁 } and a set of edges 𝐸 ⊆ 𝑉 ×𝑉 , the nodes are associ-
ated with 𝑑-dimensional node featuresX = {𝑥1, 𝑥2, ..., 𝑥𝑁 }, 𝑥𝑖 ∈ R𝑑 .
Let Â = D̄

1
2 ĀD̄−

1
2 be the symmetrically normalized adjacency ma-

trix in GCN [26], where Ā = A + I𝑁 is the adjacency matrix of
𝐺 after adding self-loops and D̄ = D + I𝑁 is the diagonal node
degree matrix. Without loss of generality, the 𝑙-th layer message
propagation of GNNs [2, 60] can be formulated in matrix form as
below:

H(𝑙 ) = 𝜎
(︁
H(𝑙−1) , Â; W(𝑙−1) )︁,

where 𝜎 is the non-linear activation function and W( ·) is a trainable
weight matrix. Initially, the node feature matrix X is used as H(0) .
By stacking 𝑘 layers, the 𝑘-hop neighborhood information can be
aggregated. For graph classification, a global pooling layer (e.g., max
pooling, mean pooling) is needed to combine node representations
to give a single representation for the graph; mathematically, it is
calculated as z𝐺 = POOL

(︁
H(𝑘 )

)︁
for a𝑘-layer GNN. Finally, the node

or graph representation is input to a classifier (e.g., fully connected
layers) to give a prediction on the instance. In summary, GNNs take
the adjacency matrix and the node feature matrix as input, then
output a predicted class for each instance.

In this work, we consider a pretrained GNN 𝜙 (·), the goal is to
find a set of substructures that best explain the model. We denote
a candidate explanation as 𝑒 = (𝑠, 𝑐), where 𝑠 is a subgraph mined
from the dataset and 𝑐 is the predicted class when input 𝑠 into the
GNN. Let I = {𝑔1, ..., 𝑔𝑁 } be the set of all instances in the dataset,
and note that instances can be either graphs in graph classification
or computational graphs of nodes in node classification. We use
𝑠 ⊑ 𝑔 to denote that 𝑠 is a subgraph of 𝑔, the set of candidates of
data-aware global explanations of 𝜙 (·) for class 𝑐∗ is defined as:

C(𝑐∗) =
⋃︂
∀𝑔∈I

{𝑒 = (𝑠, 𝑐) | 𝑠 ⊑ 𝑔 ∧ 𝑐 = 𝑐∗}. (1)

For the convenience of notation, we simply write C in the rest of the
paper. We seek for a group of high-quality explanations, denoted by
E, that is the optimal set of candidates which can best explain the
pretrained GNN, and the desired output should not fail in any case
discussed in Section 1. For the sake of guiding the optimization,
we first conclude criteria from the perspectives of both the model
and the data that global explanations should preserve based on our
observation, then further design quantitative metrics to measure to
what extend a candidate satisfies the criteria.

2.2 Properties of High-quality Explanations
While analyzing the interrelation between GNNs and their training
data, we identify three properties of superior model-level explana-
tions, which form the basis of our method.
Property 1. A high-quality explanation should be highly recog-
nized by the GNN. Desired explanations are expected to receive
high GNN scores for their respective class so as to ensure they
faithfully explain the GNN. High prediction scores are crucial for
global explainability since only when the model is decidedly confi-
dent about its decision, one can conclude that the input structure is

truly critical for the GNN to make decisions in general. As a matter
of fact, this property aligns with the input optimization technique
for model-level explainability in dealing with image and text data
[37, 38, 40], which has recently been introduced to graph-based data
[66]. The technique aims at optimizing input that can maximize a
certain prediction score while keeping the model fixed. Likewise,
we directly employ the prediction score for the respective class
when inputting the candidate structure into the GNN as a metric,
considering that the score provides a direct and faithful indication
of the model’s behavior. Formally, it is defined as below.

Definition 2.1. Faithfulness of a candidate 𝑒 = (𝑠, 𝑐) is the predic-
tion score that the GNN gives for class 𝑐 when input 𝑠:

𝑓 𝑎𝑖𝑡ℎ𝑓 𝑢𝑙𝑛𝑒𝑠𝑠 (𝑒) = 𝜙 (𝑠) [ŷ = 𝑐],
where𝜙 (·) is the GNN and [�̂� = 𝑐] denotes that the score is specified
for the underlying class 𝑐 .

Property 2. A high-quality explanation should be compliant
with the data distribution. Otherwise, it may contradict the knowl-
edge that the GNN learned form the data, or even violate domain
rules and consequently decrease users’ trust in the model. If the
explanation structure is doubtful regarding the data distribution,
it will result in human users rejecting the explained GNN even if
its performance is decent. For this property, candidate structures
are prepared by mining subgraphs from the dataset, which already
ensure the candidate explanations are compliant with the data dis-
tribution. Furthermore, we consider that superior explanations are
also closely related to salient structures in input graphs, i.e. the re-
occurring subgraphs [43]. Intuitively, frequent patterns with higher
support in the class possess stronger evidence to prove themselves
representative of the data and qualified as high-quality explana-
tions. Hence, we first introduce support of an explanation as below:

Definition 2.2. Support of an explanation 𝑒 = (𝑠, 𝑐) is defined as
the set of instances 𝑔 in the underlying class and 𝑠 is a subgraph of
𝑔, i.e.,

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑒) = {𝑔 | 𝑠 ⊑ 𝑔,∀𝑔 ∈ I𝑐 },
where I𝑐 = {𝑔 | 𝜙 (𝑔) = 𝑐,∀𝑔 ∈ I}.

Naturally, the size of the support set can be directly employed
as a metric for measuring Property 2.
Property 3. A high-quality explanation should be discriminative
among classes. In contrast to local explainability, global explana-
tions bear an additional liability to show how the model perceives
the difference between two classes. Failing to preserve the prop-
erty will lead to a predicament that instances containing a global
explanation for some class are predicted as another class by the
GNN, where the explanation turns out to be invalid due to the
lack of discrimination among classes. The property is also termed
contrastive [17, 18], which aims for similarities to graphs within the
same class and differences from those in the other class(es). Since
we already consider the compliance level of an explanation in the
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 metric, we utilize the amount of its wrong-class presences
to evaluate the discrimination level. We define the denial of an
explanation as below:

Definition 2.3. Denial of an explanation 𝑒 = (𝑠, 𝑐) is defined as
the set of instances𝑔, of which 𝑠 is a subgraph and𝑔 does not belong
to class 𝑐:

𝑑𝑒𝑛𝑖𝑎𝑙 (𝑒) = {𝑔 | 𝑠 ⊑ 𝑔,∀𝑔 ∈ I/I𝑐 }
where I𝑐 = {𝑔′ | 𝜙 (𝑔′) = 𝑐,∀𝑔′ ∈ I}, and I/I𝑐 denotes the relative
complement of I𝑐 with respect to I.
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Figure 2: Illustrative examples of 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and 𝑑𝑒𝑛𝑖𝑎𝑙 of explanations, which are highlighted in colored background, and workflow of DAG-Explainer.

As a result, the size of the denial set is then considered a met-
ric for measuring Property 3. To illustrate the concepts of 𝑠𝑢𝑝𝑝𝑜𝑟𝑡
and 𝑑𝑒𝑛𝑖𝑎𝑙 , we show two example explanations 𝑒1 and 𝑒1 in Fig-
ure 2 in the MUTAG dataset. In the instance set I divided by
class labels (mutagenic class and non-mutagenic class), 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑒1)
is highlighted in pink and yellow, 𝑑𝑒𝑛𝑖𝑎𝑙 (𝑒1) is highlighted in
green. Meanwhile, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑒2) is highlighted in purple and yel-
low, with 𝑑𝑒𝑛𝑖𝑎𝑙 (𝑒2) in blue and green. In graph mining research
[12, 23, 62, 63], the union 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑒)⋃︁𝑑𝑒𝑛𝑖𝑎𝑙 (𝑒) of an explanation
𝑒 = (𝑠, 𝑐) is the set of graphs that contains 𝑠 as its subgraph, and
|𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑒)⋃︁𝑑𝑒𝑛𝑖𝑎𝑙 (𝑒) | equals the frequency of 𝑠 in the dataset I.
We equip this idea with class labels in the GNN explanation task to
measure the data-awareness of a candidate.

2.3 Objective Function
With the help of all the observed properties and metrics described
above, we are now ready to introduce the optimization problem
and the underlying objective function for the data-aware global
explanation task. The function consists of components that cor-
respond to characteristics desired for the final output. To assist
the optimization procedure, we always define the components of
the objective to be non-negative. In addition, each of them will be
normalized via dividing by the corresponding upper bound, so that
their values will fall in the interval between 0 and 1 to match the
range of GNN score. The joint objective comprises the following
measurements on a set of candidates.
Overall fidelity. Primarily, the level of recognition from the pre-
trained GNN regarding an explanation set is computed as the aver-
age faithfulness of each single candidate in the set:

𝐹 (E) =
∑︁
𝑒∈E 𝑓 𝑎𝑖𝑡ℎ𝑓 𝑢𝑙𝑛𝑒𝑠𝑠 (𝑒)

|E | ,

where |E | is the cardinality of the current explanation set.
Total support. Secondly, we favor a set with higher overall support.
Although Property 2 only requires the explanation to conform to
the data distribution, it is still expected that more support leads to
more reliability; besides, this objective also encourages the diversity
of the explanation set. Formally, total support is calculated as:

𝑆 (E) = |
⋃︁

𝑒∈E 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑒) |
|I| .

Average denial. Different from support, we care more about lower
denial, thus we design the corresponding object to minimize the
average denial ratio out of all the explanations of the candidate set.

The subtrahend is normalized by the product of |I | and |C|, while
the former is the upper bound for denial of one candidate, and the
latter is the upper bound of possible candidates to be selected. The
average denial is computed as:

𝐷 (E) = 1 −
∑︁
𝑒∈E |𝑑𝑒𝑛𝑖𝑎𝑙 (𝑒) |
|I| · |C| .

Size. Finally, we seek explanation sets of a smaller size for the ease of
human understanding, thus we encourage a small-size explanation
set using the measurement below:

𝑍 (E) = 1 − |E||C| .

We are now ready to propose our integrated learning objective,
mathematically, the function is written as

𝐽 (E) = 𝐹 (E) + 𝜆1 · 𝑆 (E) + 𝜆2 · 𝐷 (E) + 𝜆3 · 𝑍 (E), (2)

where 𝜆𝑖 for 𝑖 = 1, 2, 3 are non-negative, which represent the
relative importance of the components. They can be set depending
on the underlying GNN application, or according to some cross-
validation requirements as used in the setting of our experiments.
The problem studied in this work is formally defined as below:

Definition 2.4. Given a GNN trained on a group of instances I
and a set of candidates C generated according to Equation (1), the
data-aware global explanation generation problem for the pretrained
GNN is to find a set of substructures that maximizes the objective
function (2).

2.4 Optimizing the Objective
As the objective considers different metrics that may not align with
each other, optimizing it is non-trivial. Nonetheless, it retains a dis-
tinctive structure that can be utilized for approximating the optima
with a theoretical guarantee. In the objective function (2), all com-
ponents are constructed in a way to ensure they are non-negative.
𝐷 (E) and 𝑍 (E) are modular, subsequently, they are submodular.
The other component 𝑆 (E) is also submodular. While the crux lies
in 𝐹 (E), because GNN 𝜙 (·) is a complex black-box function, which
is neither submodular nor monotone. Yet we can prove that 𝐹 (E) is
a non-negative non-monotone weakly submodular function, and so
is the complete objective function. Weak submodularity was origi-
nally introduced on monotone functions by Abhimanyu and Kempe
[14], which is further generalized to non-monotone functions by
Santiago and Yoshida [49]. Before presenting more theoretical anal-
ysis, we introduce the notation to be used throughout this paper:
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for a set function 𝑓 : 2𝐸 → R+, the marginal gain of adding the set
𝐵 to 𝐴 is denoted as 𝑓𝐴 (𝐵), i.e. 𝑓 (𝐴 ∪ 𝐵) − 𝑓 (𝐴), and 𝑓𝐴 (𝑒) is used
instead of 𝑓𝐴 ({𝑒}) for simplicity. Formally, the (non-monotone)
weakly submodular function is defined as below:

Definition 2.5 (Definition 1.1 [49]). Given a scalar 𝛾 ∈ (0, 1], a set
(non-monotone) function 𝑓 : 2𝐸 → R+ is 𝛾-weakly submodular

if
∑︁
𝑒∈𝐵 𝑓𝐴 (𝑒) ≥ min{𝛾 𝑓𝐴 (𝐵), 1

𝛾 𝑓𝐴 (𝐵)} for any pair of disjoint sets
𝐴, 𝐵 ⊆ 𝐸.

According to this definition, we propose the below lemma:
Lemma 2.6. 𝐽 (E) is a non-negative, non-monotone and 𝛾-weakly

submodular function with 𝛾 = 1
| C | on the candidate set C.

As discussed, all components in Equation (2) are non-negative. In
addition, 𝑆 (E), 𝐷 (E), 𝑍 (E) are submodular. Note that non-negativity
and (weak) submodularity are closed under the operation of ad-
dition and multiplication with non-negative constants. Hence to
prove Lemma 2.6, it is sufficient to prove 𝐹 (E) is weakly submodu-
lar. We now give the proof below.

Proof. Let 𝑃 = {𝜌𝑖 } and 𝑇 = {𝜏 𝑗 } be two arbitrary non-empty
disjoint subsets in the domain of 𝐹 (E), i.e., the subsets of the can-
didate space C. Thus we have 𝜌𝑖 , 𝜏 𝑗 ∈ (0, 1], since C consists of
candidates with target predicted class, whose confidence is the high-
est among all labels. Function 𝐹 (E) computes the average value of
all elements in the input set. Let 𝑝 = |𝑃 | and 𝑡 = |𝑇 |, thus 𝑝, 𝑡 ≥ 1.
We further denote

𝜌 = 𝐹 (𝑃) =
∑︁

𝜌𝑖 ∈𝑃 𝜌𝑖

𝑝
and 𝜏 = 𝐹 (𝑇 ) =

∑︁
𝜏 𝑗 ∈𝑇 𝜏 𝑗

𝑡
.

Then 𝜌, 𝜏 ∈ (0, 1]. We aim to find 𝛾 ∈ (0, 1] s.t.∑︂
𝜏∈𝑇

𝐹𝑃 (𝜏) ≥ min{𝛾𝐹𝑃 (𝑇 ),
1
𝛾
𝐹𝑃 (𝑇 )} (3)

for any pair of disjoint sets 𝑃 and 𝑇 in the domain.
In L.H.S. of Equation (3),∑︂
𝜏∈𝑇

𝐹𝑃 (𝜏) =
∑︂
𝜏∈𝑇

(︁
𝐹 (𝑃∪{𝜏})−𝐹 (𝑃)

)︁
=
∑︂
𝜏∈𝑇

(︁𝑝𝜌 + 𝜏
𝑝 + 1

−𝜌
)︁
=
𝑡 (𝜏 − 𝜌)
𝑝 + 1

.

(4)
In R.H.S. of Equation (3),

𝐹𝑃 (𝑇 ) = 𝐹 (𝑃 ∪𝑇 ) − 𝐹 (𝑃) = 𝑝𝜌 + 𝑡𝜏
𝑝 + 𝑡 − 𝜌 =

𝑡 (𝜏 − 𝜌)
𝑝 + 𝑡 . (5)

Consider the two cases below:
Case i. 𝜏 ≥ 𝜌 , since 𝑡 ≥ 1, R.H.S. of Equation (4) ≥ R.H.S. of

Equation (5). Thus Equation (3) holds with 𝛾 = 1.
Case ii. 𝜏 < 𝜌 , R.H.S. of Equation (5)< 0, then

min{𝛾𝐹𝑃 (𝑇 ),
1
𝛾
𝐹𝑃 (𝑇 )} =

1
𝛾
𝐹𝑃 (𝑇 ).

Assume there exists some 𝛾 ∈ (0, 1] such that the R.H.S. of Equation
(4) ≥ 1

𝛾 R.H.S. of Equation (5), that is
𝑡 (𝜏 − 𝜌)
𝑝 + 1

≥ 𝑡 (𝜏 − 𝜌)
𝛾 (𝑝 + 𝑡) ⇔ 𝑝+1 ≥ 𝛾 (𝑝+𝑡) ⇔ (1−𝛾)𝑝+1−𝛾𝑡 ≥ 0.

(6)
Since 1−𝛾 ≥ 0, we only need 1−𝛾𝑡 ≥ 0; 𝑡 is the size of a non-empty
subset of C, hence 𝑡 ≤ |C|. Thus let 𝛾 = 1

| C | , we have Equation (6)
satisfied in Case ii. Combining both cases, we finish the proof. □

In the sense of relaxing the diminishing marginal gain property,
weak submodularity is equivalent to submodularity [49]. Maximiz-
ing a 𝛾-weakly submodular function is NP-hard since maximizing

Algorithm 1: DAG-Explainer
1 Input: the pretrained GNN model, candidate set C defined by

Equation (1), cardinality constraint 𝑘 ;
2 Output: generated explanation set E;
3 Initialization: E ← ∅, 𝑖 = 0;
4 while 𝑖 < 𝑘 do
5 𝑀 ← ∅;
6 for 𝑒 ∈ C do
7 𝑔 = marginal gain of 𝑒 given E;
8 if 𝑔 ≥ 0 then
9 if |𝑀 | = 𝑘 then
10 if 𝑔 > lowest marginal gain for all 𝑒 ∈ 𝑀 then
11 Replace the element with minimal marginal

gain in𝑀 with 𝑒 ;
12 else
13 𝑀 = 𝑀 ∪ {𝑒 };
14 if |𝑀 | = 0 then
15 return E;// no more positive marginal gain
16 else
17 Add (𝑘 − |𝑀 | ) dummy variables to𝑀 ;
18 Uniformly random pick an element 𝑒′ ∈ 𝑀 ;
19 while a dummy variable is picked and 𝑖 < 𝑘 do
20 𝑖 = 𝑖 + 1; // start a new iteration and pick

again
21 Pick a new 𝑒′ uniformly random;
22 if 𝑖 = 𝑘 then
23 return E;// used up all iterations
24 else
25 E = E ∪ {𝑒′ };
26 𝑖 = 𝑖 + 1;
27 return E;
a submodular function, which is a special case of weak submod-
ularity (𝛾 = 1) is NP-hard [28]. Specifically, the problem defined
in Definition 2.4 is an NP-hard problem with a hardness factor 𝛾 ,
where 𝛾 = 1

| C | and C is the candidate space defined in Equation (1).
As the problem is non-traceable in polynomial time, and commonly
used techniques such as Smooth Local Search [19] no longer pro-
vide a theoretical guarantee, we then introduce the RandomGreedy
algorithm proposed by Buchbinder, et al. [8] to optimize the ob-
jective function; pseudo code is available in Algorithm 1 and the
workflow is shown in Figure 2. In each iteration, the algorithm first
constructs a candidate pool 𝑀 of size 𝑘 , where every candidate
retains a positive marginal gain given the current explanation set.
In the case where the number of candidates with positive marginal
gain is less than 𝑘 , dummy variables with a virtual marginal gain as
zero are supplied to make sure the pool𝑀 is of size 𝑘 . The algorithm
then iteratively picks candidates with non-negative marginal gain
with a probability 1

𝑘
. As a result, we ensure the objective function

increases in each iteration. In addition, the algorithm is quite effi-
cient as it only queries 𝑂 (𝑘 |C|) times for marginal gain, which is
of the same cost as the standard deterministic greedy algorithm.

The RandomGreedy algorithm with cardinality constraints has
been employed to handle various objective functions and the cor-
responding approximation factor is well studied. When optimiz-
ing submodular functions, if the objective function is additionally
monotone, the RandomGreedy algorithm retains an approximation
ratio of 1 − 𝑒−1, while preserving an approximation of 𝑒−1 for non-
monotone submodular objectives [8]. For a non-negative monotone
𝛾-weakly submodular function, the algorithm guarantees an ap-
proximation ratio of at least (1 + 1/𝛾)−2 [11]. In our problem, the
objective function is non-negative, non-monotone and 𝛾-weakly
submodular, the state-of-the-art approximation ratio proved for
the RandomGreedy algorithm is 𝛾 · 𝑒−1/𝛾 [49]; that is 1

| C | · 𝑒
−|C | for
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the data-aware global explanation generation problem studied in
this work. The guarantee is rather pessimistic, because the weak
submodularity ratio 𝛾 is defined universally so that it must hold for
all possible cases with any disjoint sets in the domain of an arbitrary
objective, and the candidate space C in our problem is generally
large. Yet we believe there exists an improved local bound for DAG-
Explainer, because our objective function has a particular structure
with one component as a weakly submodular function and all the
others are submordular. To find a better theoretical guarantee, we
present the below theorem proved by Santiago and Yoshida (2020),
on which our proposed approximation factor is based.

Theorem 2.7 (Theorem 2.4. [49]). Let 𝑓 : 2𝐸 → R+ be a set
function. Assume there are values 0 ≤ �̄�𝑖 ≤ �̄�𝑖 ≤ 𝑘 and 0 ≤ 𝛼𝑖 ≤
𝛽𝑖 ≤ 𝑘 such that∑︂
𝑢∈𝑀𝑖

𝑓𝑆𝑖−1∪OPT (𝑢) ≥ 𝑚𝑖𝑛{�̄�𝑖 · 𝑓𝑆𝑖−1∪OPT (𝑀𝑖 ), �̄�𝑖 · 𝑓𝑆𝑖−1∪OPT (𝑀𝑖 )}

(7)
and∑︂
𝑒∈OPT

𝑓𝑆𝑖−1 (𝑒) ≥ 𝑚𝑖𝑛{𝛼𝑖−1 · 𝑓𝑆𝑖−1 (OPT), 𝛽𝑖−1 · 𝑓𝑆𝑖−1 (OPT)}. (8)

is satisfied for any choice of 𝑀𝑖 and 𝑆𝑖−1 throughout the execution
of the RandomGreedy algorithm. Then at any iteration 1 ≥ 𝑖 ≥ 𝑘 the
algorithm satisfies

E[𝑓 (𝑆𝑖 )] ≥ ⎛⎜⎝
𝑖−1∏︂
𝑗=1

min{1 −
�̄� 𝑗

𝑘
, 1 −

𝛼 𝑗

𝑘
}⎞⎟⎠ ·

(︂ 𝑖−1∑︂
𝑗=0

𝛼 𝑗

𝑘

)︂
· 𝑓 (OPT) .

In the respective analysis, the substitution of 𝛼𝑖 , �̄�𝑖 by 𝛾 and
𝛽𝑖 , �̄�𝑖 by

1
𝛾 immediately leads to an approximation of 𝛾 (1 − 1

𝛾𝑘
)𝑘−1

for a non-negative non-monotone 𝛾-weakly submodular function,
which is asymptotically 𝛾𝑒−1/𝛾 as 𝑘 →∞. A better bound can be
derived using the above theorem for the objective function 𝐽 (E).
Before proposing the guarantee, we introduce the following lemma:

Lemma 2.8. A submodular function 𝑓 : 2𝐸 → R+ always satisfies∑︂
𝑒∈𝐵

𝑓𝐴 (𝑒) ≥ 𝑚𝑖𝑛{𝑓𝐴 (𝐵), 𝛽∗ 𝑓𝐴 (𝐵)} (9)

for an arbitrary real number 𝛽∗ ≥ 1 and any pair of sets 𝐴, 𝐵 ⊆ 𝐸.
The proof of this lemma is presented in the Supplementary Mate-

rial [1]. It is worth noting that by taking 𝛽∗ = 1, Lemma 2.8 verifies
that submodularity is a special case of 𝛾-weak submodularity with
𝛾 = 1. Now we are ready to propose a useful theorem that pro-
vides a theoretical guarantee of the RandomGreedy algorithm for
maximizing functions with a particular structure.

Theorem 2.9. LetU = {𝑐 |𝑐 ∈ R+} be a finite set of positive real
numbers, a set function 𝑔 : ℘+ (U) → R+ is defined as

𝑔(S) =
∑︁
𝑐∈S 𝑐

|S| + ℎ(S),

where ℎ(S) is an arbitrary non-negative submodular function and
℘+ (U) denotes the set of non-empty subsets ofU. The execution of the
RandomGreedy algorithm for maximizing 𝑔 produces (on expectation)
an approximation factor of at least (1− |U |+12𝑘 )

𝑘−1 with a cardinality

constraint 𝑘 ≥
⌈︂
|U |+1

2

⌉︂
, which is asymptotically 𝑒−

|U|
2 as 𝑘 →∞.

Proof. To prove the theorem, we denote �̂�(S) =
∑︁

𝑐∈S 𝑐
|S | and

first prove that for any pair of non-empty sets 𝐴, 𝐵 ∈ ℘+ (U),∑︂
𝑒∈𝐵

�̂�𝐴 (𝑒) ≥ 𝑚𝑖𝑛{�̂�𝐴 (𝐵), 𝛽∗�̂�𝐴 (𝐵)} (10)

is always satisfied with 𝛽∗ = |U |+12 .
For simplicity, we continue to adopt the notation used in the

proof of Lemma 2.6, where two cases are discussed separately. Let
𝑃,𝑇 ⊆ U be two arbitrary non-empty disjoint sets in the domain
of �̂�(S), denote 𝑝 = |𝑃 |, 𝑡 = |𝑇 |, 𝜌 = �̂�(𝑃), 𝜏 = �̂�(𝑇 ) and the we
discuss the two cases respectively.

Case i. �̂�𝑃 (𝑇 ) ≥ 0, Equation (10)⇔ ∑︁
𝑒∈𝑇 �̂�𝑃 (𝑒) ≥ �̂�𝑃 (𝑇 ) since

𝛽∗ ≥ 1 givenU is non-empty. Without the constraint on the range
of elements inU, it can still be easily verified that, the condition
always holds (refer to Case i. in the proof of Lemma 2.6).

Case ii. �̂�𝑃 (𝑇 ) < 0, that is 𝜏 < 𝜌 , one needs to verify that∑︁
𝑒∈𝑇 �̂�𝑃 (𝑒) ≥ 𝛽∗�̂�𝑃 (𝑇 ), which is

𝑡 (𝜏 − 𝜌)
𝑝 + 1

≥ 𝛽∗𝑡 (𝜏 − 𝜌)
(𝑝 + 𝑡) ⇔ 𝛽∗ ≥ 1 + 𝑡 − 1

𝑝 + 1
,

(see Case ii. in the proof of Lemma 2.6). Since 𝑡, 𝑝 ∈ [1, |U|], we see
that

1 + 𝑡 − 1
𝑝 + 1

≤ 1 + |U| − 1
2

.

Let 𝛽∗ = |U |+12 , Equation (10) is satisfied in this case.
Without loss of generality, one also needs to consider the situ-

ation where 𝑃 and 𝑇 are not disjoint. When 𝑇 ⊆ 𝑃 , Equation (10)
is trivial; when 𝑇 \𝑃 ≠ ∅, it can be easily proved by substituting 𝑇
with𝑇 ′ = 𝑇 \𝑃 in the above discussion. In conclusion, Equation (10)
always holds for any pair of non-empty sets 𝐴, 𝐵 ∈ ℘+ (U).

Combining Equation (10) and Lemma 2.6 for the submodular
component ℎ(S), we conclude that∑︂

𝑒∈𝐵
𝑔𝐴 (𝑒) ≥ 𝑚𝑖𝑛{𝑔𝐴 (𝐵), 𝛽∗𝑔𝐴 (𝐵)},

for 𝛽∗ =
|U |+1

2 . Consider 𝑔 in the setting of Theorem 2.7, let
𝛼𝑖 = �̄�𝑖 = 1, 𝛽𝑖 = �̄�𝑖 = 𝛽∗ and 𝑘 ≥

⌈︂
|U |+1

2

⌉︂
, the theorem guar-

antees that at any iteration 1 ≥ 𝑖 ≥ 𝑘 during the execution of the
RandomGreedy algorithm, the inequality below is always satisfied:

E[𝑔(𝑆𝑖 )] ≥
(︂ 𝑖−1∏︂
𝑗=1

(︁
1 − 𝛽∗

𝑘

)︁ )︂
·
(︂ 𝑖−1∑︂
𝑗=0

1
𝑘

)︂
· 𝑓 (OPT).

Upon finishing the execution, i.e., 𝑖 = 𝑘 , we have

E[𝑓 (𝑆𝑖 )] ≥
(︁
1 − 𝛽∗

𝑘

)︁𝑘−1 · 𝑓 (OPT),

where 𝛽∗ = |U |+12 . The proposed theorem is then proved. □

The conclusion directly leads to the below corollary regarding
our problem using a direct mapping fromU to C and taking 𝐽 (E)
as the objective function.

Corollary 2.10. The execution of the RandomGreedy algorithm
to solve the data-aware global explanation generation problem defined

in Definition 2.4 with a cardinality constraint 𝑘 ≥
⌈︂
| C |+1

2

⌉︂
produces

(on expectation) an approximation factor of at least (1 − | C |+12𝑘 )
𝑘−1.

When 𝑘 →∞, the solution has a theoretical guarantee of 𝑂 (𝑒−
|C|
2 ).
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Hereby, we have shown that DAG-Explainer has an improved
bound 𝑂 (𝑒−

|C|
2 ) over the state-of-the-art bound 𝑂 ( 1

| C | · 𝑒
−|C | ) in

our problem. In next section, we present our experimental study.

3 EXPERIMENTAL EVALUATION
In this section, we present details of the experimental study of the
proposed DAG-Explainer. We intend to answer the questions below
through the evaluation:

1) With respect to the quantitative metrics, how does DAG-
Explainer perform compared to the existing methods?

2) Does DAG-Explainer output meaningful and convincing
explanations compared to the existing methods?

3) What is the difference of the explanations for different
GNNs on the same dataset?

4) How does DAG-Explainer perform if edge information (e.g.,
edge labels) in the graph is given additionally?

5) Compared with existing methods, can DAG-Explainer bet-
ter help users understand the model?

Table 1: Properties of the datasets and accuracy of the pretrained GNNs.
Numbers of nodes and edges are averaged values.

Dataset # Nodes # Edges GNN Accuracy

GCN GIN GINE
isAcyclic 30.04 28.46 0.992 0.983 -
MUTAG 17.93 19.79 0.963 0.979 -

Highschool 13.71 15.85 - - 0.999

3.1 Datasets and Competitors
3.1.1 Datasets. Statistics of the datasets are shown in Table 1.
isAcyclic dataset. This datasets is a synthetic dataset designed by
Hao, et al. [66] specifically for evaluating model-level explanations,
in which the ground truth of explanations is prepared. Each graph in
the dataset is labeled either Cyclic or Acyclic according to whether
it encloses cycle(s). The Cyclic class contains grid-like structures,
circle structures, circular ladder structures or wheel-like structures;
whereas the Acyclic class consists of star-like structures, binary tree
structures, path-like structures and full rary tree structures [51].
MUTAG dataset. This dataset consists of molecule structures of
chemical compounds, where node labels represent atom types and
edge labels represent chemical bonds. There are in total seven ele-
ments in the dataset: carbon, nitrogen, oxygen, chlorine, fluorine,
bromine and iodine. Each instance is labeled according to its muta-
genic effect on a bacterium [15]. The dataset is widely used in GNN
explanation works [65, 66, 68] given its distinct structural feature
with respect to the underlying domain (see Figure 1(b)).
Highschool dataset. Each graph in the dataset is a face-to-face con-
tact network between students in a highschool over a short period,
on which spreading processes of two epidemics (an ordinary one
and a high-risk one) are simulated using the Susceptible-Infected
Model [6]. Each person in a network is either susceptible or infected,
an infected person will disseminate the epidemic to a susceptible
person via a face-to-face contact with a probability, which equals 0.2
for the ordinary epidemic and 0.8 for the high-risk epidemic. Note
that two students may have multiple face-to-face contacts during
the period, while they may become infected at a specific time point.
Hence, for each pair of connected nodes, the edge between them is

labeled as the number of contacts when they hold different labels,
i.e., one is infected and the other is not; such contacts are dangerous
since dissemination may happen. Thus the higher the edge label
value, the more dangerous it is for the disinfected student. See the
Supplementary Materials [1] for more details.

3.1.2 Competitors. We compare DAG-Explainer with 3 baselines.
XGNN [66] is a learning-based explainer, we compareDAG-Explainer
to XGNN on the isAcyclic and MUTAG datasets. The method re-
quires user-set parameters, including number of nodes in an expla-
nation and the label of the initial node for graph generation. Size of
the explanations and diversity of node labels will affect the infor-
mation contained in the structure and node features, which further
affects the model recognition. Hence, for fair comparison, we have
the following settings. On the isAcyclic dataset, we follow XGNN
to set the number of nodes in candidates for DAG-Expaliner to be a
specific value in {3, 4, ..., 7}; correspondingly, we use isAcyclic-n* to
refer to experiments on the isAcyclic dataset using only candidates
with n nodes. On the MUTAG dataset, we set the number of nodes
for XGNN as the same number of outputs as DAG-Explainer, and
run XGNN multiple times using an initial node with every label in
the compared explanation generated by DAG-Explainer. Regarding
the Highschool dataset, XGNN is not designed to be capable of
choosing an edge with a certain label during the graph generation,
thus we cannot use XGNN on the Highschool dataset.
Glocal [32] is a graph-mining-based explainer, the method includes
a pruning strategy guided by the GNN’s behavior when a candidate
explanation is occluded from the original instances. We compare
our explainer to Glocal on all datasets, including isAcyclic-n*.
Optima baseline. We further implement a power set search algo-
rithm to find the optima for the objective function on isAcyclic-n*,
where the candidate spaces are rather small and exhaustive enu-
meration is feasible. We denote this baseline as OPT.

3.2 GNN Models to Be Explained
In this work, experiments are conducted to explain GNNs in graph
classification task. While, without loss of generality, DAG-Explainer
can be effortlessly adopted in node-level and edge-level tasks for
various graph-based applications by considering the computational
graphs of the input instances. We choose two widely employed
models, GCN [26] and GIN [61] to explain. Other GNNs can also
be used as explained objects, we simply choose these two for the
purpose of demonstration as they are classic models. We also im-
plement a GNN model that additionally consumes edge labels to
answer the question “How does DAG-Explainer perform if edge infor-
mation in the graph is given additionally?”. We uniformly use two
fully connected layers as the final classifier for all the GNNs, which
are implemented using Pytorch [42] and trained using the Adam
optimizer [25]. All models are trained to a reasonable accuracy to
ensure they have learned the knowledge from the datasets. The
training accuracies are reported in Table 1.
GCN model. We train two GCNs [26] for the isAcyclic and MU-
TAG datasets accordingly. For the former, a 2-layer GCN is trained
with hidden dimensions as 8 and 16 respectively, the dimension of
the fully connected layers is set to 32. For the MUTAG dataset, we
train a 3-layer GCN with hidden dimensions all equal to 128 and
set the dimension of fully connected layers to 64. In both models,
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Relu is adopted as the non-linear function and global mean pooling
is employed. Node degree is used as node feature for the isAcyclic
dataset2; as for the MUTAG dataset, we use the one-hot feature to
encode the node labels, i.e. atom types in the molecular. For fair
comparison with the baseline work XGNN, we also ignore the edge
label in the MUTAG dataset and investigate the GNN’s learned
knowledge from graph structures and node labels only, the same
settings apply to the GIN model as well.
GIN model.We additionally train two GIN models [61] on the two
datasets above with the same structure aiming to inspect possible
different explanations for different GNNs on the same dataset. We
build 3-layer GIN models with the dimension as 64 for all hidden
layers and the final fully connected layers. We use Relu for both
datasets as the non-linear activation function.
GINE model. For the Highschool dataset, to make use of the edge
label, we employ the GINE model proposed in [35], which is an
extension of the GIN model [61] equipped by an additional utility to
consume edge features besides node features. In each layer of GINE
model, a 2-layer Multi-layer Perceptron (MLP) is used to process the
edge features to match the dimension of node features, finally the
network sums the two to give an embedding containing both node
and edge information. Moreover, global mean pooling is adopted
to pool the leaned embeddings. The complete GINE model uses 3
layers described above with the hidden layer dimension equals 32.
Node labels and edge labels are encoded with one-hot features.

3.3 Setup of Algorithmic Experiments
Candidates Generation. Before running the proposed algorithm,
explanation candidates need to be prepared. In the area of graph
theory, there exists a rich body of research works proving preemi-
nent tools for mining subgraphs [23, 62, 63]. In regard of preparing
candidate subgraphs, we utilize gSpan [62] for fair comparison as
it is the mining algorithm Glocal is based on. We highlight that the
candidate generation procedure is not a part of our contribution,
and advanced mining techniques developed in the future can be
further plugged in to improve the preprocessing practice. However,
this is out of the scope of this work. Below we detail the settings of
our experiments. We set the number of nodes in the explanation
candidates to be between 3 and 7, which is a common setting for
finding model-level explanations [66]. Following the conversion
[48], the support threshold is set to 1% for the MUTAG dataset and
10% for the other datasets. The same settings apply to Glocal.
Algorithm Setting. The objective function (2) to be optimized
contains parameters 𝜆𝑖 . Coordinate ascent has been proved to be
effective for tuning the parameters equipped with cross-validation
requirements [7, 27]. In practice, depending on the application
scenarios, users may prefer model-level explanations with certain
characteristics. For example, if users prefer explanations that ex-
plore more knowledge models learned from the data, the overall
support should be high; else if users want to know more about
the difference between classes, the average denial should be low.
2Regarding the comparison with XGNN, official implementation of the method is
open to the public for the MUTAG dataset only, it is unclear how XGNN handles node
features for the isAcyclic dataset during explanation generation as node degrees change
when the structure grows, we use the results reported in the paper for comparative
study, which explains a GCN model. For evaluating other methods on the isAcyclic
dataset, we build a GCN with the same structure as the one used for XGNN; ordinary p
and italic p are then used in Figure 3 to differentiate scores from the two GCN models.

We introduce a general guideline on setting up DAG-Explainer in
our experiment, but users can always adapt the method to meet
practical needs. Specifically, we conduct the same excise to sample
20% of candidates of the isAcyclic and MUTAG datasets, 10% of
candidates of the Highschool dataset for estimating the parameters
using coordinate ascent while preserving the following constrains:
the average GNN score of the output explanation set should be
greater than 0.95, the self-support ratio must be larger 0.5 and the
size of the output set should be smaller than 10% of the total num-
ber of instances in the underlying class. We tune the parameters to
minimize the average denial ratio. The cardinality constraint 𝑘 is
set to 𝑘 =

⌈︂
| C |+1

2

⌉︂
as required by Corollary 2.10.

Results Processing. As the algorithm is randomized, we run the
method on each dataset for 1000 iterations and take the mean values
for quantitative metrics. Majority voting is used to select the final
explanation set, which will also be evaluated. We compute the vote
of each single explanation as below:

𝑣𝑜𝑡𝑒 (𝑒) =
∑︂
𝑒∈E

1
|E | ,

where E are the outputs of all iterations running the algorithm.
Then the final explanation set is selected as:

E𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = argmax
E’s

∑︁
𝑒∈E 𝑣𝑜𝑡𝑒 (𝑒)
|E | .

3.4 User Study for Model-level Explanations
We design a user study to verify whether DAG-Explainer can really
help humans understand GNNs in practice. Existing user studies for
explaining GNNs are limited to asking 10 general users to rate the
explanations [54], which can be subjective and lack real measures
of “human understanding”. Hence, we design a novel evaluation
scheme. Specifically, we randomly sample 20 instances from each
dataset and present them to the user along with model-level expla-
nations. We then ask the user to predict the GNN’s behavior for
these instances based on their understanding of the explanations; if
the explanations really help users interpret the model, they should
be able to predict the model’s decisions.

For the isAcyclic dataset and the Highschool dataset, users need
to judge the GNN’s predicted class for each instance given ex-
planations of two classes. Therefore the task is formulated as a
classification task with the GNN’s prediction as the ground truth;
accuracy is used as the evaluation metric. Whereas for the MU-
TAG dataset, users need to select instances that they believe the
GNN will predict as mutagenic, given explanations for the class
(base class has no explanation). The task is multiple choice, and
we measure the accuracy, false positive rate (FPR), false negative
rate (FNR), and average number of selected answers. We recruit 40
postgraduate students from the Department of Computer Science
and Engineering of the HKUST (35 PhD students and 5 Master
students) to join the user study. To avoid users guessing the true
label instead of predicting GNN’s decision, we use class A and class
B for notation to eliminate the semantic information contained in
the class names in the study. The online survey is available here.
3.5 Evaluation and Discussion
To conduct our evaluation, a scheme of quantifying the explainabil-
ity of the final output needs to be introduced following the guidance
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of the three properties from both the model and data perspectives.
For simplicity of notation, we use 𝜙 (𝑒) to denote 𝜙 (𝑠) [�̂� = 𝑐] for an
explanation candidate 𝑒 = (𝑠, 𝑐), i.e. the GNN score for the under-
lying class; furthermore, the shorthand p is utilized to denote the
score in figures. Below we introduce the two metrics for measuring
the explainability of the final explanation set.
• Overall recognizability. From themodel’s perspective, GNN recog-

nition for the explanation set is the primary evaluation metric,
which is calculated as

𝜙 (E) =
∑︁
𝑒∈E 𝜙 (𝑒)
|E | .

In fact, the GNN score of the target class is used as an evaluation
metric in many existing model-level methods [37, 38, 40, 66].

• Data-awareness. From the data perspective, the candidate mining
procedure has guaranteed that explanations are compliant with
the data distribution. Hence we measure the discrimination level
for data-aware explanations by a pair of metrics, one is the self-
support ratio computed as

Self-𝑠𝑢𝑝.(𝑒) = |𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑒) |
|𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑒) | + |𝑑𝑒𝑛𝑖𝑎𝑙 (𝑒) | ,

and the other one is Self-𝑑𝑒𝑛., which simply equals 1− Self-𝑠𝑢𝑝 ..
For the outputs by XGNN, we run the subgraph isomorphism
checking algorithm VF2 [13] to measure the data-awareness.

Moreover, the number of explanations contained in the final out-
put is also considered for evaluating our method; while XGNN
generates one single explanation in each run and gives different
outputs in multiple runs, it is meaningless to consider the number
of explanations generated as it is a user-set parameter. Additionally,
the size of the structure is compared. We use the number of edges
instead of nodes as size measurement for distinguishing different
subgraphs induced by the same set of nodes. We also test the effi-
ciency of different methods by measuring running time. All tests
are conducted in CentOS Linux 7 (Core) (x86-64) on a machine with
an 8-core Intel(R) Xeon(R) Silver 4210 CPU@2.20GHz, 8 NVIDIA
GPUs (all GeForce RTX 2080 SUPER) and 225 GB of RAM.

3.5.1 Quantitative Results. The quantitative results on the isAcyclic,
MUTAG and Highschool datasets are reported in Table 2. Visualiza-
tion of the outputs with quantitative evaluations on the isAcyclic
and isAcyclic-n* datasets are shown in Figure 4 and Figure 3, respec-
tively. In these figures, we report GNN score and Self-sup. (SS.) of
each output, while Self-den. is omitted for simplicity as it equals 1-
Self-sup.. Green (w.r.t. orange) background is used for explanation
of GIN (w.r.t. GCN) model. Outputs of DAG-Explainer, Glocal and
XGNN are shown with blue, yellow and red nodes, accordingly.
For both GIN and GCN, OPT and DAG-Explainer give exactly the
same outputs, thus OPT’s visualization are not shown separately.
Running time on the isAcyclic-n* dataset are reported in Table 3.
Model recognition.Overall DAG-Explainer produces explanations
with comparable GNN prediction scores to XGNN using less edges.
The final output of our method (DAG-final) constantly outperforms
Glocal. Moreover, our method gives exactly the same output as the
optima baseline on both the isAcyclic (see Figure 4) and isAcyclic-n*
(see Figure 3) datasets.

Error analysis.We notice in Table 2, the average score in multiple
runs of DAG-Explainer (DAG-avg.) is slightly lower than Glocal
in three cases: GCN-cyclic, GIN-acyclic and GCN-mutagenic. The

Table 2: Quantitative evaluation on the MUTAG, isAcyclic and Highschool
datasets. For DAG-Explainer, we report both the averagedmetric values among
the 1000 runs and evaluation on the final output. Self-sup., Sefl-den. and
edges number in individual explanations ( |𝑒𝑑𝑔𝑒𝑠 |) are averaged over the entire
output set. OOD stands for Out-of-Distribution, which means the structure
does not exist in the data. For results on the isAcyclic-n*, see Figure 3.

isAcyclic - candidate generation time: 3290.33s
model-class explainer 𝜙 (E) Self-𝑠𝑢𝑝. Self-𝑑𝑒𝑛. |𝑒𝑑𝑔𝑒𝑠 | Time/run | E |

GCN
cyclic

Glocal 1.000 1.000 0.000 4.000 1876.88s 1

DAG-avg. 0.954 1.000 0.000 6.516 0.0012s 3.622

DAG-final 1.000 1.000 0.000 6.000 - 1

GCN
acyclic

Glocal 0.521 0.467 0.531 3.000 2300.81s 1

DAG-avg. 0.992 0.582 0.418 4.000 0.018s 1.475

DAG-final 0.957 0.826 0.174 5.000 - 1

GIN
cyclic

Glocal 0.746 1.000 0.000 5.500 2289.34s 2

DAG-avg. 0.954 1.000 0.000 6.516 0.005s 3.622

DAG-final 1.000 1.000 0.000 7.000 - 1

GIN
acyclic

Glocal 0.999 0.511 0.489 3.750 3107.84s 4

DAG-avg. 0.991 0.585 0.415 5.147 0.012s 1.551

DAG-final 1.000 0.826 0.174 5.000 - 1

MUTAG -candidate generation time: 7.14s
model-class explainer 𝜙 (E) Self-𝑠𝑢𝑝. Self-𝑑𝑒𝑛. |𝑒𝑑𝑔𝑒𝑠 | Time/run | E |

GCN
mutagenic

Glocal 1.000 0.665 0.335 3.000 6.893s 1

XGNN 1.000 OOD OOD 5.900 17.440s -

DAG-avg. 0.997 0.936 0.064 4.753 0.214s 18.535

DAG-final 1.000 1.000 0.000 5.000 - 4

GIN
mutagenic

Glocal 0.959 0.333 0.667 5.000 5.515s 1

XGNN 1.000 OOD OOD 5.429 15.247s -

DAG-avg. 1.000 0.917 0.083 4.704 0.011s 3.214

DAG-final 1.000 1.000 0.000 4.500 - 2

Highschool - candidate generation time: 537.39s
model-class explainer 𝜙 (E) Self-𝑠𝑢𝑝. Self-𝑑𝑒𝑛. |𝑒𝑑𝑔𝑒𝑠 | Time/run | E |

GINE
ordinary

Glocal 0.584 0.537 0.463 3.000 343.34s 2

DAG-avg. 0.930 0.867 0.133 5.066 23.284s 7.167

DAG-final 0.918 0.804 0.196 5.000 - 4

GINE
high-risk

Glocal 0.901 0.524 0.476 2.000 324.59s 2

DAG-avg. 0.972 0.789 0.211 7.760 23.093s 3.940

DAG-final 0.979 0.800 0.200 8.000 - 2
reason is that the GNN scores of candidates in these cases are
generally very low (mean: 0.890, 0.877 and 0.901). Note that GNNs
are complex models and its prediction score of candidates is not
necessarily high. Nonetheless, since users only refer to the final
output, we believe the proposed method is decent as DGA-final
gives superior performance. In Figure 3, all outputs from DAG-
Explainer retain a high GNN score with only a few exceptions: the
5-node explanation of the cyclic class for the GIN model (Figure 3(a),
Row 1, Column 2), 3- and 4- node explanations of the acyclic class
for GCN3 (Figure 3(b), Row 1, Column 5-6). Their prediction scores
are rather low, yet these are the highest ones in the candidates
space. We believe catching the highest score is acceptable. Because
of the same reason, there is no candidate with 5- or 7- nodes of the
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Table 3: Running time on the isAcyclic-n* dataset. For DAG-Explainer and
Glocal, we report the multiples relative to the OPT baseline in brackets. NC is
short for no candidate. In the last row shows candidate generation time.

model
class

method
n=

3 4 5 6 7

GIN
cyclic

OPT NC 0.0003s 0.0003s 0.0019s 0.0020s

Glocal NC 4.66s 19.32s 137.99s 794.88s
(15533.3x) (64400.0x) (72626.3x) (397440.0x)

DAG NC 0.0003s 0.0004s 0.0012s 0.0012s
(1.0x) (1.3x) (0.6x) (0.6x)

GIN
acyclic

OPT 0.0004s 0.0010s 0.0011s 0.0283s 2.1137s

Glocal 2.028s 5.103s 17.34s 161.34s 933.27s
(5070.0x) (5103.0x) (15763.6x) (5701.1x) (441.5x)

DAG 0.0003s 0.0011s 0.0011s 0.0028s 0.0047s
(0.7x) (1.1x) (1.0x) (0.1x) (0.0x)

GCN
cyclic

OPT NC 0.0004s NC 0.0018s NC

Glocal NC 4.331s 18.798s 138.230s 827.610s
(10827.5x) - (76794.4x) -

DAG NC 0.0004s NC 0.0016s NC(1.0x) (0.9x)

GCN
acyclic

OPT 0.0004s 0.0011s 0.0020s 0.0303s 3.2205s

Glocal 1.873s 4.125s 21.348s 141.973s 893.439s
(4682.5x) (3750.0x) (10674.0x) (4685.6x) (277.4x)

DAG 0.0004s 0.0011s 0.0015s 0.0031s 0.0042s
(1.0x) (1.0x) (0.8x) (0.1x) (0.0x)

DAG cand. gen. 1.12s 3.18s 17.23s 133.93s 801.98s
cyclic class for the GCN (Figure 3(b), Row 1, Column 2&4), as the
mined structures are all predicted as the other class.

The number of generated explanations in the output set by DAG-
Explainer is generally small, except for the GCN in the mutagenic
class in the MUTAG dataset. However, the final output drawn by
the majority voting only contains 4 structures. That is because high-
quality explanations have many repeating occurrences in multiple
runs, and they offer superior global explainability.
Data-awareness. Overall, our method (both DAG-avg. and DAG-
final) outperforms the two competitors in data-awareness metrics,
i.e., retains the highest (w.r.t. lowest) Self-sup. (w.r.t. Self-den.).

Error analysis. Outputs of our explainer has relatively high Self-
den. for the acyclic class in the isAcyclic and isAcyclic-n* datasets
for both GCN and GIN. The reason is that typical acyclic patterns
are usually subgraphs of cyclic patterns, e.g. star-like structures v.s.
wheel-like structures (see Figure 3). Meanwhile, data-awareness
of the explanations also turns out not so well on the Highschool
dataset. It is because the epidemic spread is simulated on observed
social networks, only node and edge labels are affected while pat-
terns of student’s activity remain the same. Thus, the two classes
do not differ in topology distribution, but in node and edge labels
only. Moreover, social networks are generally complicated, where
small substructures tend to be frequent. In summary, we believe
the data-awareness level of DAG-Explainer is decent.

The main problem with Glocal is the high Self-𝑑𝑒𝑛., which indi-
cates that its output is barely discriminative between classes. XGNN
suffers from the Out-Of-Distribution (OOD) problem, meaning that
its outputs do not exist in the data, thus they are meaningless due
to zero support. More details are given in Section 3.5.2.
Running time. We report the candidate generation cost (gSpan
mining time) on the isAcyclic-n* in Table 3 and all the other datasets

in Table 2. DAG-Explainer outperforms XGNN even with candidate
generation time included. Glocal is obviously much more costly
than our method considering only the explainer running time. Al-
though Glocal adopts pruning strategy so that the substructure
mining time is shorter than the candidate generation time in DAG-
Explainer, it needs to be rerun every time it explains a new GNN.
While candidate generation for DAG-Explainer on a dataset can be
used to explain any GNN trained on the dataset. This is extremely
helpful in a situation where different GNNs need to be compared
on the same dataset. For instance, if one intends to facilitate neural
architecture search (NAS) for GNNs [22] with explainability, once
the candidates are prepared, DAG-Explainer can fully enjoy its high
efficiency in repeating explaining searched GNN architectures.

In Table 3 presents running time on the isAcyclic-n*, the multiple
values relative to the OPT baseline are also reported in brackets for
DAG-Explainer and Glocal. Glocal is too computationally expensive
compared to the other two methods. DAG-Explainer takes much
less time than OPT when 𝑛 ≥ 6. In other cases, the time differences
are rather small, we run the two methods 10,000 times and conduct
Student’s t-test [41] with a significance level of 0.05 to validate
if the efficiency improvement is significant, and the p-values are
presented in the Supplementary Materials [1]. The null hypothesis
(the means of the two populations are equal) is not rejected for GCN
and GIN when 𝑛 ≤ 6 in the cyclic class and 𝑛 ≤ 5 in the acyclic
class. This is because the underlying candidate spaces are very
small (≤ 10) in these cases. Otherwise, the performance gain of
DAG-Explainer is shown to be significant though the differences
are small. When the candidate space is large (𝑛 = 7), the efficiency
gap between the two methods becomes obvious.

3.5.2 Qualitative Analysis. We further evaluate the explanations
qualitatively via visualization and discuss the findings.
isAcyclic dataset. Explanations on isAcyclic are shown in Figure 4.
DAG-Explainer and OPT output the same results, i.e., a ladder struc-
ture for GIN and a ring-like structure for GCN as cyclic explanation;
meanwhile, the two methods both output a star-like structure as
acyclic explanation for the two GNNs, which concisely summarizes
the synthesizing rule of the dataset. Glocal finds circle structures
for the cyclic class explaining GIN and GCN, yet it misses ladder-
shaped structures. Though Glocal’s outputs explaining the acyclic
class for both models fit the rule of the dataset, its measurements
in all quantitative metrics are outperformed by DAG-Explainer.
isAcyclic-n

* dataset. The results are shown in Figure 3. Outputs
of OPT are, again, the same as DAG-Explainer’s, thus not shown
separately. For the cyclic class, both DAG-Explainer and Glocal
capture circle- and ladder- structures for the two GNNs (Figure 3
(a)&(b), Row 1-2, Column 1-4), which is consistent with the ground
truth of the synthetic dataset, yet DAG-Explainer has higher model
recognition. In contrast, most of XGNN’s outputs (Figure 3(b), Row
3, Column 2-4) are OOD, meaning that they do not exist in the data,
hence one cannot argue these explanations are valid. For the acyclic
class, the three methods find explanations with similar structures.
However, DAG-Explainer successfully identifies the star-like struc-
ture (Figure 3(a)&(b), Row 1, Column 8) while other baselines fail.
Moreover, Glocal (Figure 3(b), Row 2, Column 5, 7-9) and XGNN
(Figure 3(b), Row 3, Column 5, 8-9) prefers path structures, which
are not discriminative between classes. The results in Self-den. are
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(b) Results of explaining GCN model on isAcyclic-n* dataset.

(a) Results of explaining GIN model on isAcyclic-n* dataset.
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Figure 3: Results on isAcyclic-n
* dataset. Explanations with specified numbers of nodes together with GNN score and Self-sup. (SS.) are reported. For XGNN,

explanations for a GCN model from the official paper are presented3. On the left (right) shows the explanations for the cyclic (acyclic) class. For both GIN and GCN,
OPT and DAG-Explainer give exactly the same outputs, thus OPT’s visualization are not shown separately.

(b) Results of explaining GCN model on isAcyclic dataset.
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(a) Results of explaining GIN model on isAcyclic dataset.
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Figure 4: Results on the isAcyclic dataset. Visualization of the explanations
with GNN score and Self-sup. (SS.) are reported. For both GNNs, OPT and DAG-
Explainer give exactly the same outputs.

generally not decent due to the reason discussed earlier: acyclic
structures are often subgraphs of cyclic structures.
MUTAG dataset. The results for explaining GCN and GIN on
the mutagenic class are shown in Figure 5. We visualize outputs of
DAG-Explainer and Glocal using SMILES encoding [57], while the
chemical ball-and-stick model is used for XGNN due to its output
structures being illegal in chemical domain and SMILES encoding
is not feasible. DAG-Explainer outputs explanantions with per-
fect data-awareness (Self-sup.=1, Self-den.=0) with GNN scores all
equals 1. Interestingly, these explanations by DAG-Explainer for the
GIN model are very similar to some for the GCN model but smaller,
i.e. GIN-Exp. 1 to GCN-Exp. 2 and GIN-Exp. 2 to GCN-Exp. 1. We
suppose such results show the similarity and difference between
decision making mechanisms of GCN and GIN models on the MU-
TAG dataset, which can help human users understand both GNNs
better. Meanwhile, the outputs of XGNN are all OOD, meaning they
do not exist in the input data (compare them to instances in Figure
1(b)). This means the rationality of these explanations are doubtful,
and they confuse users in our user study (to be discussed later).
Glocal successfully finds high-score explanations for both GNNs,
yet they are not discriminative between classes (high Self-den.); in
fact, Glocal’s output for GCN exists in every instance in the MUTAG
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Figure 5: Visualization of results on the MUTAG dataset, corresponding out-
puts by XGNN are shown in shaded boxes. DAG-Explainer generates faithful
and data-aware explanations for the GNNs. Every output by XGNN receives a
GNN score of 1.0, yet they are all Out-Of-Distribution. Glocal produces expla-
nations with high GNN scores, yet they do not discriminate between classes.

dataset regardless of their labels .
Highschool dataset. The results are shown in Figure 6. We utilize
a visualization scheme specifically designed for this dataset to facil-
itate human understanding. Infected (w.r.t. non-infected) nodes are
plotted in red (w.r.t. green). Safe contact is shown using green edges
while risky contact is represented by the thin red edge; the darker
the color, the riskier the contact is (see Section 3.1.1). We thicken an
edge in a semi-transparent red color if it is a risky contact and both
its ends are infected, which means the infection between the two
students was very likely from this contact, hence it is part of the
epidemic propagation. With the aid of such visualization, one can
easily see the spreading patterns of the disease. DAG-Explainer cap-
tures no dissemination for the ordinary class as we expected. None
of the outputs contain any propagation path; moreover, two out of
four explanations contain red edge(s) that are not thickened, which
indicates that the epidemic did not successfully spread even when
risky contact happened. According to the explanation, GINE model
also recognizes structures with safe contacts only as “ordinary”.
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Figure 6: Results on the Highschool dataset. Explanations for the high-risk epidemic class are shown in the dotted box, the others are for the ordinary epidemic
class. Epidemic propagation is indicated by thickened edges in the semi-transparent red.

Table 4: User study results on the isAcyclic and Highschool dataset.
isAcyclic - GCN isAcyclic - GIN Highschool - GINE
Glocal DAG Glocal DAG Glocal DAG

Acc. 0.898 0.910 0.880 0.881 0.818 0.850
Table 5: User study result on the MUTAG dataset.

GCN GIN
Acc. FPR FNR |Resp.| Acc. FPR FNR |Resp.|

DAG 0.623 0.163 0.650 5.133 0.607 0.067 0.813 2.533
XGNN 0.552 0.070 0.920 1.500 0.560 0.040 0.937 1.033
Glocal 0.462 0.913 0.193 17.20 0.588 0.097 0.817 2.800

Though such pattern does not necessarily lead to the idea of “not
risky” in human reasoning, considering that GNN is a black-box
model and its decision making criteria may differ from humans,
we suppose such a case can be regarded as an interesting finding
that tells the difference between human cognition and machine
recognition. As for Glocal’s outputs, though a pure-safe-contact
explanation is also identified, the other one does not provide any
insight as dissemination happens in only one out of its two risky
contacts. While in the high-risk class, we observe evident patterns
of propagation in DAG-Explainer’s output, every risky contact
commits to an infection; moreover, our method outperforms Glo-
cal in quantitative results. The observation precisely aligns with
the ground truth that high-risk epidemic is more infectious and
dangerous, hence it is demonstrated that DAG-Explainer produces
meaningful explanations that verify the trustworthiness of GNN.

3.5.3 User Study Evaluation. Accuracy of users (binary classifi-
cation) on the isAcyclic and Highschool datasets are reported in
Table 4, and the results on the MUTAG dataset (multiple choice)
are reported in Table 5. On the isAcyclic and Highschool datasets,
users are able to correctly predict the GNN’s decision on more than
85% of instances based on explanations by DAG-Explainer. On the
MUTAG dataset, the accuracy is generally lower than that on the
other two datasets, because the MUTAG dataset requires chemical
knowledge. Nonetheless, DAG-Explainer always retains the highest
accuracy. On the MUTAG dataset, XGNN has highest false negative
rate, because its outputs are all OOD, users can hardly find any in-
stances similar to the explanations. For the same reason, its average
number of selected instances is the smallest (< 2 out of 20). Glocal
has the highest false positive rate and number of selected instances,
because its outputs are not discriminative between classes and users
cannot tell the difference between them based on the explanation.
Overall, our method outperforms the other two baselines in helping
a user anticipate the model’s behavior on the three datasets.

4 RELATEDWORK
Graph Neural Networks. The research on GNN origins from
[20, 50]. These models can capture both node features and graph
topology, hence becoming a solid tool for handling graph-structure

data. Notable GNN variants include Graph Convolution Networks
(GCNs) [26], Graph Attention Networks (GATs) [53] and Graph
Isomorphism Network (GIN) [61]. The outstanding performance of
GNNs leads to a large scale of applications [9, 10, 30, 59, 70, 71].
Explainability ofGNNs.There are two groups ofmethods: instance-
levelmethods andmodel-levelmethods. Given the input data, instance-
level techniques [29, 31, 52, 54, 65, 68] have been present main
stream of GNN explanation, which aim to acquire explanations for
a target instance. On the contrary, model-level methods are still
under shallow exploration, which target producing general and
input-independent explanations that interpret the overall behavior
of the model. Such explanations can provide high-level and intrinsic
reasoning of the GNN’s prediction. The pioneering work of GNN
global explainability, XGNN [66], proposes to explain GNNs via
graph generation using a reinforcement learning framework. Glocal
[32] is a recent work that equips a subgraph mining technique with
pruning strategy for finding explanations that are both faithful to
the model and frequent in the explained class.
More related works discussed in Supplementary Materials [1].

5 CONCLUSION
Graph neural networks are widely employed and explanation tech-
niques for GNNs have been desired. In this paper, we propose a
model-level explanation technique, called DAG-Explainer. Specifi-
cally, we observe three properties of high-quality explanations, then
design metrics to quantify the degree of an explanation retaining
the three properties and an objective function to find explanations
that best explain the model. We prove that optimizing the objective
is NP-hard, and adopt a randomized greedy algorithm to find a near
optimal solution with an improved theoretical guarantee proved.
Experiments show that DAG-Explainer outputs meaningful and
trustworthy explanations with decent quantitative results.
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