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ABSTRACT

Competitive viral marketing considers the product competition of
multiple companies, where each user may adopt one product and
propagate the product to other users. Existing studies focus on a
traditional seeding strategy where a company only selects seeds
from the users with no adopted product to maximize its influence
(i.e., the number of users who will adopt its product). However,
influential users are often rare, and the gain from traditional seed-
ing will degrade as the number of seeds increases. Therefore, in
this paper, we study the promising countering strategy which is to
counter some users who initially use other products s.t. they will
turn to adopting the target product and recommending it to others.

We propose the problem of influence countering: given a graph,
a budget 𝑏, a target company 𝐶𝑡 , and a set 𝑆 of the seeds adopting
different companies (where each seed adopts one company), we
counter 𝑏 users in 𝑆 who do not adopt𝐶𝑡 to turn to adopt𝐶𝑡 s.t. the
expected number of users who eventually adopt𝐶𝑡 in the influence
diffusion is maximized. Following existing studies, we formalize the
diffusion process by the Multi-Campaigner Independent Cascade
model. We prove the influence countering problem is #P-complete
and its influence computation is #P-hard. Then, we propose two
novel algorithms MIC and MIC+ to address the problem. In general,
MIC estimates seed influence by its empirical average influence in
multiple graph samplings, while MIC+ improves MIC by reducing
the cost of influence estimation and the required number of samples.
Given pre-set 𝜀 and 𝑙 , both algorithms return a (1− 𝜀)-approximate
solution with at least 1 − 𝑛−𝑙 probability. We also design an index
for MIC+ to efficiently process graphs that are frequently updated.
The experiments on 8 real-world datasets show that our algorithms
are efficient in practice while offering strong result quality.
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1 INTRODUCTION

The word-of-mouth effect of social networks is important in vi-
ral marketing [7, 12, 16, 41, 42], where a company selects some
influential users as seeds to adopt and propagate the product of
the company through user interactions s.t. there will be a large
information cascade of the product. Kempe et al. are the first to for-
mulate the above process as a combinatorial optimization problem,
the influence maximization problem [21]: given a graph 𝐺 and a
budget 𝑏, the problem is to find 𝑏 seed users in𝐺 s.t. the number of
the users influenced by the information spread from the seeds (i.e.,
the users adopt the product selected by the seeds) is maximized.

Traditional viral marketing assumes that only a single company
is promoting its product. But in reality, the company must compete
with other competitors for market shares. Thus, competitive viral

marketing [5, 9, 10, 18, 32] allows multiple companies to compete
for influence spread, where each seed user adopts the product
of a company and each user will influence the choice of other
users through information cascade. A line of studies [5, 10, 33]
aims to maximize the influence spread of a target company (i.e., a
target product) in competitive viral marketing. They assume that
some users have already adopted the competing products, and the
company only selects new seeds from the remaining users who
have not adopted any product.

However, influential users are often rare, and the gain from tra-
ditional seeding will degrade as the number of seeds increases. For
instance, when a newcomer company plans to promote its product
on a social network, it may find that the majority of influential
users have already adopted other products and it is hard to find an
influential user in the remaining users. In comparison, if the com-
pany successfully counters some users who initially adopt other
products, then the company can have influential users to promote
its product and also suppress the spread of the competitors. There-
fore, in this paper, we focus on the strategy to counter some seed
users who initially use other products to start a cascade of adopting
the target product. The effectiveness of the countering strategy is
validated in Section 3.2 through detailed comparisons with other
seed selection methods.

In this paper, we propose the problem of influence countering:
given a graph, a budget 𝑏, a target company 𝐶𝑡 , and a set 𝑆 of
seeds that adopt different companies (where each seed adopts one
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company), we aim to counter 𝑏 users in 𝑆 not adopting 𝐶𝑡 to adopt
and recommend𝐶𝑡 s.t. the expected number of users who eventually
adopt 𝐶𝑡 in the influence diffusion is maximized, under the MCIC
model [22]. Besides, due to the dynamic nature of social networks
[23, 24] and the dynamic influence strength (activation probability)
between two users, we also study the efficient update of the solution
for graph dynamics. Apart from the applications of marketing,
influence maximization via vertex countering can also be used in
other domains, e.g., restraining the spread of misinformation and
disseminating positive information.

Challenges. To the best of our knowledge, we are the first to
study the problem of influence countering, and no existing works
consider the countering strategy in influence maximization. We
prove that the problem is #P-complete and the influence computa-
tion of the problem is #P-hard. Firstly, we design a baseline (BIM)
based on the influence maximization method under the IC diffu-
sion model [16]. However, BIM does not consider the influence
competition of multiple companies, and the selected seeds are less
influential in the competition. Then, we propose a greedy base-
line (BGA) with Monte-Carlo simulations that consider influence
competitions in seed selection.

The influence spread of BGA is larger than BIM by an average
of 17%, as shown in Exp. 2 of Section 7.2, but it still suffers from
a large time cost, e.g., it cannot finish in one day for a graph with
420K edges in our experiments. In short, conventional approaches
cannot solve our studied problem effectively within an acceptable
time cost. This motivates us to propose a novel solution from the
first principle.

Our Solution. We present MIC and MIC+, two algorithms for
Maximizing Influence via Countering using a new framework. We
first prove that the expected influence of the target company always
increases by a constant 𝜎 (𝑠) for countering a seed 𝑠 , regardless of
the countering of other seeds (Theorem 3). That is, for a given seed
set, the expected influence gain from countering a seed is a constant
irrelevant to the countering of any seed combination. Based on this
observation, MIC counters 𝑏 seeds with each seed 𝑠 having a top-
𝑏 gain 𝜎 (𝑠), which results in an optimal result if 𝜎 (𝑠) is exactly
computed for each candidate 𝑠 .

We also analyze the computation of𝜎 (𝑠) and the necessary condi-
tions of an approximate guarantee forMIC. Then,We proposeMIC+,
an algorithm that estimates 𝜎 (𝑠) by computing the probability that
a set of vertices will reach 𝑠 by reverse samplings, which reduces
the estimation cost. Furthermore, we propose a lower bound esti-
mation method to reduce the number of graph samples required in
the computation. The approximation guarantee is retained inMIC+

with the well-designed techniques. To efficiently process dynamic
graphs, we propose an index for MIC+ by storing and carefully up-
dating the reverse samplings of the graph. Then, we can efficiently
process various update cases such as edge insertion/removal and
seed addition/deletion.

On the theoretical side,MIC andMIC+ return a (1−𝜀)-approximate
solution with at least 1 − 𝑛−𝑙 probability, and both of them run in
𝑂 ((𝑙𝑛𝑚 log𝑛)/(𝑏𝜀2)) time, where 𝑏 is often set to a proportion of 𝑛,
e.g., 𝑏 = 0.001𝑛. On the practical side, our experiments demonstrate
that MIC+ outperforms the baseline BGA in runtime by up to 4
orders of magnitude, and outperforms MIC by up to 3 orders.

Contributions. Our principal contributions are as follows.

• Wemotivate and formulate the problem of influence countering,
proving it is #P-complete and influence estimation is #P-hard.
To our best knowledge, we are the first to study this problem.

• We propose MIC that returns a (1 − 𝜀)-approximate solution
for our problem with a high probability guarantee. Then, we
devise MIC+ that significantly improves the efficiency of MIC

and retains the approximation guarantee.
• We extend MIC+ to process dynamic graphs, using a well-

designed index that can efficiently handle the change of edges,
vertices, propagation probabilities, and seeds.

• The experiments on 8 real-world graphs show that our algo-
rithms are effective in result quality and efficient in time cost.

2 RELATEDWORKS

The problem of influence maximization is surveyed in [1, 3, 28].
Domingos et al. [13] first study the influence of social network users
in marketing. Kempe et al. [21] model this problem as influence
maximization, and propose a (1 − 1/𝑒)-approximate algorithm for
the influence maximization under independent cascade (IC) and
linear threshold (LT) diffusion models. Borgs et al. [7] propose a
novelmethod for influencemaximization based on reverse sampling.
After that, reverse sampling is widely adopted by subsequent works
[2, 4, 16, 19, 35–37, 40–42] to improve the scalability of influence
maximization. Some works consider influence maximization from
specific perspectives, e.g., topic-based [6, 11], learning-based [45],
location-aware [15, 26, 47], time-constrained [29–31, 50] and the
regret of seed users [51].

Competitive influence maximization considers the competition
between companies. Most existing works focus on minimizing the
influence of competitors [9, 18, 48, 49] or maximizing the influence
of a target company [5, 33]. Lu et al. [32] consider influence maxi-
mization from the perspective of the network host, i.e., maximizing
the gain of all the companies. Li et al. [27] study the best influence
maximization strategy of a target company using Nash Equilibrium.
Goyal et al. [14] propose a 2-phase influence model including the
switching phase being aware of the product and the selection phase
to choose products. He et al. [17] prove that Goyal et al.’s model
is an instance of a threshold model. Borodin et al. [8] extend the
threshold model to the OR model where the awareness of each
product is diffused independently. Tsaras et al. [43] propose the ATI
model that considers the similarity between user preferences and
product features. Lu et al. [33] study the complementary effect be-
tween products in influence propagation. Different from the above
studies, this paper aims to counter the seeds from the competitors
such that the influence of the target company is maximized. We
mainly focus on the multi-campaigner IC model as the diffusion
model, and we further extend our algorithms to triggering models.

As social networks are often evolving, some works study influ-
ence maximization on dynamic graphs. Ohsaka et al. [38] design
a (1 − 1/𝑒)-approximate algorithm for dynamic influence maxi-
mization based on reverse sampling. Wang et al. [46] propose a
streaming algorithm for influence maximization over social streams.
Peng et al. [39] design the SOTA algorithm for graphs with only
edge insertions. Bevilacqua et al. [4] alleviate the issue of large
memory usage in dynamic influence maximization.
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Table 1: Summary of notations

Notation Definition

𝐺 = (𝑉 , 𝐸 ) a directed graph with vertex set𝑉 and edge set 𝐸
𝑉 (𝐺 ) ; 𝐸 (𝐺 ) the vertex set of𝐺 ; the edge set of𝐺
𝑛; 𝑚 the number of vertices/edges in𝐺 (assume𝑚 > 𝑛)
𝑁 −
𝑢 ; 𝑁 +

𝑢 the set of in-neighbors/out-neighbors of vertex 𝑢
𝑑−𝑢 ; 𝑑

+
𝑢 the in-degree/out-degree of vertex 𝑢

𝑆 a fixed set of seeds in graph𝐺
𝑏 budget, i.e., the number of seeds to counter
𝐶𝑖 ; 𝐶𝑡 the 𝑖-th/target company (𝑖 ∈ {1, · · · , 𝐾 })
𝑆¬𝑡 the seeds that do not adopt𝐶𝑡 , i.e., {𝑠 | 𝑠 ∈ 𝑆 ∧ 𝑐𝑠 ≠ 𝐶𝑡 }

𝑐𝑢 the company that vertex 𝑢 adopts before countering
𝐴 the set of countered seeds, i.e., setting 𝑐𝐴 (𝑠 ) = 𝐶𝑡 if 𝑠 ∈ 𝐴

𝑐𝐴 (𝑠 ) 𝑐𝐴 (𝑠 ) = 𝐶𝑡 if 𝑠 ∈ 𝐴; and 𝑐𝐴 (𝑠 ) = 𝑐𝑠 otherwise
𝐼 (𝐶𝑡 , 𝐴) the influence spread of𝐶𝑡 when propagating with 𝑐𝐴

𝑔 a graph sample, it removes (𝑢, 𝑣) ∈ 𝐺 with 1 − 𝑝𝑢,𝑣 probability
𝛿𝑔 (𝑢, 𝑣) the shortest distance from a vertex 𝑢 to a vertex 𝑣 in 𝑔
𝑔𝑟 ; 𝛿𝑟𝑔 (𝑢, 𝑣) the reverse of 𝑔, and the shortest distance 𝑢 to 𝑣 in 𝑔𝑟

𝜎 (𝑠 ) the spread of a vertex 𝑠 (see Theorem 3)
𝑝 (𝑠 ) the probability that 𝑠 activates a random vertex in the diffusion
�̂�𝑖 (𝑠 ) ; �̂�𝑖 (𝑠 ) an estimation of 𝜎 (𝑠 )/𝑝 (𝑠 ) on the 𝑖-th graph sample
E[𝑥 ] the expected value of 𝑥
𝑂𝑃𝑇 the maximum E

[
𝐼 (𝐶𝑡 , 𝐴)

]
− E

[
𝐼 (𝐶𝑡 )

]
for any 𝐴 with size-𝑏

However, the sampling for our problem requires the activation
probability assignment of each vertex according to its distance
from the seeds, which is not considered in the sampling of IM
problems (as illustrated in Sections 3.2 and 4). So, the methods
of influence maximization cannot be used to efficiently solve the
influence countering problem.

3 PRELIMINARIES

In this section, we introduce the MCIC diffusion model, different
seed selection methods, the influence countering problem, and the
baseline algorithms. Table 1 summarizes the notations.

3.1 MCIC Diffusion Model

Consider a social network 𝐺 = (𝑉 , 𝐸) in which each directed edge
(𝑢, 𝑣) is associated with a propagation probability 𝑝𝑢,𝑣 ∈ [0, 1].
The Multi-Campaigner Independent Cascade (MCIC) model [22]
formalizes a diffusion process where 𝐾 companies 𝐶1, · · · ,𝐶𝐾 are
competing for influence propagation as follows:

(1) At timestamp 1, we activate a set 𝑆 of seed vertices, and set
the remaining vertices as inactive. Each 𝑠 ∈ 𝑆 is activated
with a pre-assigned company 𝑐𝑠 ∈ {𝐶1, · · · ,𝐶𝐾 }.

(2) If a vertex 𝑢 is activated with company 𝑐𝑢 at timestamp 𝑖 ,
then for each edge that points from 𝑢 to an inactive vertex
𝑣 , 𝑢 has 𝑝𝑢,𝑣 probability to activate 𝑣 with company 𝑐𝑢 at
timestamp 𝑖 + 1. After that, 𝑢 cannot activate any vertex.

(3) If a vertex𝑢 is successfully activated by vertices𝑤1, · · · ,𝑤𝑥
at the same timestamp, then the company of 𝑢 is uniformly
selected from 𝑐𝑤1 , · · · , 𝑐𝑤𝑥 with probability 1/𝑥 .

(4) Once a vertex is activated, it remains active, i.e. it will not
be inactivated.

The above process mimics the spread of𝐾 competing products in
a social network: people may choose a product bought and recom-
mended by friends. The influence spread of 𝐶𝑡 , denoted by 𝐼 (𝐶𝑡 ), is

𝑣
𝑣
𝑣 𝑣

𝑣𝑣1 0.9
1

1 0.1

Figure 1: Spread Figure 2: Seed seletion

the number of vertices that are activated with company𝐶𝑡 when the
MCIC diffusion converges, i.e., no more vertices can be activated.

3.2 Seed Selection Methods

We first illustrate the differences in seed selection methods and then
show the effectiveness of countering by a case study. The graph
depicted in Figure 1 has three seed vertices, in which seed 𝑣1 adopts
the target company𝐶1 (marked in red), while seeds 𝑣2 and 𝑣3 adopt
the competing company 𝐶2 (marked in yellow). After selecting the
seeds by each method, we compute the influence of countering the
seeds for each company by the MCIC model [22].

(1) If we use the traditional seeding approach under the IC model
[21] (the one-campaigner model), i.e., iteratively selecting a user
with no adopted company with the largest influence gain (de-
noted by Seeding), as both 𝑣5 and 𝑣6 will certainly be activated
by 𝑣1, we will select 𝑣4 as the next seed. According to MCIC,
in the influence computation (different from seed selections as
we have multi-campaigners), 𝑣6 is first activated by 𝑣3 with 0.9
probability and the influence spread of seeding {𝑣1, 𝑣4} becomes
1(𝑣1) + 1(𝑣4) + 0.5(𝑣5) + 0.1 × 0.5(𝑣6 by 𝑣1 through 𝑣5) = 2.55;

(2) If we use the countering approach under the IC model, i.e.,
iteratively selecting a user who adopted a non-target company with
the largest influence gain (denoted by Countering(IC)), as 𝑣5 and
𝑣6 are activated by 𝑣1 under IC, we will select 𝑣2 as the next seed.
After selecting the seeds, in the influence computation by MCIC,
𝑣6 is first activated by 𝑣3 with 0.9 probability, the influence spread
becomes 1(𝑣1) + 1(𝑣2) + 0.1(𝑣4) + 1(𝑣5) + 0.1(𝑣6) = 3.2;

(3) If we use the countering approach under the MCIC model, i.e.,
iteratively selecting a user who adopted a non-target company with
the largest influence gain (denoted by Countering(MCIC)), 𝑣4 will
be activated by 𝑣2 with 0.1 probability, 𝑣5 will be activated by either
𝑣1 or 𝑣2, while 𝑣6 will first be activated by 𝑣3 with 0.9 probability
and then be activated by 𝑣5 with 0.1 probability. So, the next seed
is 𝑣3 and the influence spread is 1(𝑣1) + 1(𝑣3) + 0.5(𝑣5) + 0.9(𝑣6 by
𝑣3)+0.1 × 0.5(𝑣6 by 𝑣1 through 𝑣5)= 3.45, which is higher than 3.2
by counteringthe IC model 𝑣2 in case (2).

Then, we evaluate the effect of different seed selections by a case
study on Orkut [25]. We select the influential users in the network
(top 1% of all the users) to form the initial seed set 𝑆 , in which
1/5 users adopt our target company and the others adopt other
companies. The influential users are iteratively selected according
to the influence gain under the IC model. For each selection method,
we continue to select more seeds for the target company from 1%
to 10% of the vertices in 𝑆 and report the influence of the target
company by the MCIC model. Figure 2 shows that the influence by
Countering(IC) is much higher than Seeding, because the vertices in
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seed set 𝑆 are more influential than others. Countering(MCIC) fur-
ther outperforms Countering(IC) because it considers the influence
competition of multiple companies and the selected seeds are more
influential in the competition.

3.3 Problem Definition

Assume 𝐶𝑡 is the target company we are interested in. We aim to
counter a set 𝐴 of seeds that initially adopt other companies, to
adopt 𝐶𝑡 , s.t. the expected influence spread of 𝐶𝑡 is maximized, i.e.,
activating the largest number of vertices to adopt𝐶𝑡 in expectation.

Definition 1 (Influence Countering Problem).

• Given: a graph 𝐺 , a budget 𝑏, a target company 𝐶𝑡 , and a seed
set 𝑆 with a company assignment 𝑐 : 𝑆 → {𝐶1, · · · ,𝐶𝐾 };

• Find: a size-𝑏 countered set 𝐴 chosen from the set of all seeds
that are not with the target company, i.e., from 𝑆¬𝑡 = {𝑠 | 𝑠 ∈
𝑆 ∧ 𝑐𝑠 ≠ 𝐶𝑡 } where 𝑐𝑠 is the company that vertex 𝑠 adopts;

• to Maximize: E
[
𝐼 (𝐶𝑡 , 𝐴)

]
, the expected spread of 𝐶𝑡 when

propagating the diffusion with a countered company assign-
ment, i.e., if 𝑠 ∈ 𝐴, 𝑐𝐴 (𝑠) = 𝐶𝑡 and 𝑐𝐴 (𝑠) = 𝑐𝑠 if 𝑠 ∈ 𝑆 \𝐴.

3.4 Hardness of Problems

Lemma 1. Let 𝑓 (𝑠, 𝑡) be the number of subgraphs of 𝐺 in which

there is a path from 𝑠 to 𝑡 . Deciding if 𝑓 (𝑠, 𝑡) ≥ 𝑘 is #P-complete.

Proof. We prove this by a reduction from the problem of count-
ing 𝑓 (𝑠, 𝑡). Given an instance of the counting problem, we repeat-
edly binary search on the number of subgraphs 𝑓 (𝑠, 𝑡), and decide
if 𝑓 (𝑠, 𝑡) ≥ 𝑘 . The binary search ends in 𝑂 ( |𝐸 (𝐺) |) rounds, as the
number of subgraphs is at most 2 |𝐸 (𝐺 ) | . Since counting 𝑓 (𝑠, 𝑡) is
#P-complete [44], deciding if 𝑓 (𝑠, 𝑡) ≥ 𝑘 is also #P-complete. �

Theorem 1. The problem of influence countering is #P-complete.

Proof. We prove this by a reduction from Lemma 1. Consider
an instance: given a graph 𝐺 , a constant 𝑘 , and two vertices 𝑠, 𝑡 ,
we decide if 𝑓 (𝑠, 𝑡) ≥ 𝑘 . This problem is equivalent to computing
𝑝 (𝑠, 𝑡), the probability that 𝑠 is connected to 𝑡 , when every edge in
𝐺 has probability 1/2, because we have 𝑓 (𝑠, 𝑡) = 2 |𝐸 (𝐺 ) | · 𝑝 (𝑠, 𝑡).

We build two graphs𝐺 ′,𝐺 ′′ to help decide if 𝑝 (𝑠, 𝑡) ≥ 𝑘/2 |𝐸 (𝐺 ) | .
We first set the probability of every edge as 1/2 in 𝐺 . Let 𝐼0 be the
spread of 𝑠 in 𝐺 , i.e., the expected number of vertices that 𝑠 can
reach in 𝐺 . Then, we copy 𝐺 into a new graph 𝐺 ′, and insert into
𝐺 ′ a vertex 𝑡 ′ and an edge (𝑡, 𝑡 ′) with probability 1. Let 𝐼1 be the
spread of 𝑠 in𝐺 ′, we have 𝐼1 = 𝐼0 + 𝑝 (𝑠, 𝑡) · 𝑝𝑡,𝑡 ′ = 𝐼0 + 𝑝 (𝑠, 𝑡). Note
that 𝑠 activates 𝑡 iff 𝑠 is connected to 𝑡 through sampled edges, i.e.,
𝑝 (𝑠, 𝑡) is equivalent to the probability of 𝑠 activating 𝑡 . Next, we
copy 𝐺 into another graph 𝐺 ′′, and insert into 𝐺 ′′ a vertex 𝑡 ′′ and
an edge (𝑠, 𝑡 ′′) with probability 𝑘/2 |𝐸 (𝐺 ) | . Let 𝐼2 be the spread of 𝑠
in 𝐺 ′′, then it is clear that 𝐼2 = 𝐼0 + 𝑘/2 |𝐸 (𝐺 ) | .

We construct a corresponding problem of influence countering.
Assume that 𝐶1 (target) and 𝐶2 are competing in𝐺 ′ +𝐺 ′′, the seed
set contains {𝑠 in 𝐺 ′, 𝑠 in 𝐺 ′′}, and both seeds adopt 𝐶2 initially.
Given this influence countering problem with 𝑏 = 1, deciding the
better seed is equivalent to deciding 𝐼1 ≥ 𝐼2, i.e., deciding 𝑝 (𝑠, 𝑡) ≥
𝑘/2 |𝐸 (𝐺 ) | . If there is a polynomial time solution for the influence
countering problem, then we can decide if 𝑝 (𝑠, 𝑡) ≥ 𝑘/2 |𝐸 (𝐺 ) | in
polynomial time, and then derive whether 𝑓 (𝑠, 𝑡) ≥ 𝑘 . �

From Theorem 1, we know the problem of influence countering
is at least as hard as NP-complete problems [44].

Theorem 2. For any 𝐴 ⊆ 𝑆¬𝑡 , computing E[𝐼 (𝐶𝑡 , 𝐴)] is #P-hard.

Proof. We prove the theorem by a reduction from the influence
spread computation under the independent cascade (IC) model [21],
which is #P-hard [12]. The IC model is the single-company version
of the MCIC model. Initially, we activate a set 𝑆 ′ ⊆ 𝑉 . If a vertex 𝑢
is activated, then for each edge from 𝑢 to an inactive vertex 𝑣 , 𝑢 has
𝑝𝑢,𝑣 probability to activate 𝑣 . The influence spread of 𝑆 ′ asks the
number of vertices that are activated when this process converges.

Given any instance of the above problem, we define a corre-
sponding problem of computing E

[
𝐼 (𝐶𝑡 , 𝐴)

]
: assume 𝑆 = 𝑆 ′ and

all seeds follow the target company, then, E
[
𝐼 (𝐶𝑡 ,∅)

]
equals the

influence spread of 𝑆 ′ under the IC model. �

3.5 Baseline 1: Influence Max Approach (BIM)

As discussed in Section 3.2, we can apply the method of influence
maximization under the IC model [16] for seed selection, which
iteratively selects a user who adopted a non-target company with
the largest influence gain, i.e., the Countering(IC) algorithm. Then,
we compute the influence spread under MCIC for the selected seeds.
The time complexity of BIM is𝑂 ( |R| · E), where |R | is the number
of RR sets in the sampling and E is the expected running time
required to generate an RR set for a random graph sample.

However, BIM does not consider the competition of multiple
campaigners in seed selection, as the method is designed for one
campaigner. In seed selection, the influence spread from the target
company is executed before the cascades of all other companies,
which is not fair. So, we design a new baseline in the next subsection.

3.6 Baseline 2: Greedy Approach (BGA)

We propose another baseline that avoids the limitation of the first
baseline. It is inspired by Kempe et al. [21], a greedy approach for
influence maximization. In particular, we start from an empty set
𝐴 = ∅, and then iteratively inserts into𝐴 a seed𝑢 ∈ 𝑆¬𝑡 that results
in the largest increase of E

[
𝐼 (𝐶𝑡 , 𝐴)

]
, until |𝐴| = 𝑏, i.e.,

𝑢 = argmax
𝑠∈𝑆¬𝑡

(
E
[
𝐼 (𝐶𝑡 , 𝐴 ∪ {𝑠})

]
− E

[
𝐼 (𝐶𝑡 , 𝐴)

] )
.

The baseline is simple in concept but hard to implement, since
the computation of E

[
𝐼 (𝐶𝑡 , 𝐴)

]
is #P-hard by Theorem 2. To address

this issue, we estimate E
[
𝐼 (𝐶𝑡 , 𝐴)

]
by a Monte Carlo method, that

is, repeatedly propagating the MCIC diffusion on the graph. Let
𝜎 (𝐶𝑡 , 𝐴) be the number of vertices in 𝐺 that are activated with 𝐶𝑡
after a converged diffusion process of MCIC with the countered
assignment 𝑐𝐴 (·). We can prove that E

[
𝜎 (𝐶𝑡 , 𝐴)

]
= E

[
𝐼 (𝐶𝑡 , 𝐴)

]
by the law of big numbers. Therefore, we first simulate the MCIC
diffusion for 𝑟 times, retrieve 𝜎 (𝐶𝑡 , 𝐴) on each simulation, and take
the average of 𝜎 (𝐶𝑡 , 𝐴) as an estimator of E

[
𝐼 (𝐶𝑡 , 𝐴)

]
.

Although the baseline is concise, it suffers from its prohibitive
time complexity 𝑂 ( |𝑆 | · 𝑏𝑟𝑚). Specifically, it has 𝑏 iterations, each
requires to estimate the expected spread of 𝑂 ( |𝑆¬𝑡 |) vertex sets.
Besides, each estimation simulates the MCIC diffusion for 𝑂 (𝑟 )
times, and each diffusion runs in 𝑂 (𝑚) time. Totally, the baseline
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needs 𝑂 ( |𝑆 | · 𝑏𝑟𝑚) time as |𝑆¬𝑡 | ≤ |𝑆 |. We adopt the setting 𝑟 =
10000 that is suggested by the previous works [21, 32].

4 BASIC APPROACH:MIC

This section presents MIC, a method that returns a high-quality
solution with a small time cost.MIC relies on graph samples, where
a sample is obtained by removing each edge (𝑢, 𝑣) in𝐺 with 1−𝑝𝑢,𝑣
probability. At a high level, MIC consists of three phases as follows:

(1) Sampling: This phase iteratively generates 𝑟 graph samples
and puts them into G. The parameter 𝑟 is pre-decided.

(2) Spread Estimation: This phase estimates the spread of
each seed 𝑠 ∈ 𝑆 by the empirical average spread of 𝑠 in G.

(3) Seed Selection: This phase returns a size-𝑏 set 𝐴 of seeds
with the largest estimated spread.

In a graph sample, for influence maximization under the IC diffu-
sion model, the vertices reachable from existing seeds are activated
and they are irreverent to the spread of new seeds. However, for the
influence countering problem, the vertices that can be reached from
existing seeds may still contribute to the marginal gain of a newly
countered seed. For instance, if a vertex 𝑥 is already reached (i.e.,
activated) by seed 𝑠1 and a newly countered seed 𝑠2 also reaches
𝑥 with the same distance, the expected probability of activating 𝑥
by the target company will be increased, which contributes to the
spread of 𝑠2. An example is given in Section 3.2.

As analyzed above, the spread computation of influence coun-
tering becomes harder, while we prove that the marginal gain of
countering a seed is a constant irreverent to the companies of the
seeds (Theorem 3). This is because we have an unchanged seed
set (only the companies of the seeds may change by the counter-
ing), and then the marginal gain of countering a seed is decided
by its expected influence ratio of activating every vertex, which
is irreverent to the companies of the seeds. Then, the selection of
seeds will be easier because we can compute the true combined
contributions given the influence gain of countering each seed, i.e.,
we can find the optimal set of seeds to counter given an accurate
sampling, which goes beyond the traditional greedy method.

Theorem 3. Let 𝑠 ∈ 𝑆¬𝑡 be a fixed seed and 𝜎 (𝑠) be a constant

associated with 𝑠 . Then, for any countered set 𝐴 that does not contain

𝑠 , i.e., 𝐴 ⊆ 𝑆¬𝑡 \ {𝑠}, the following equation holds:

E
[
𝐼 (𝐶𝑡 , 𝐴 ∪ {𝑠})

]
− E

[
𝐼 (𝐶𝑡 , 𝐴)

]
= 𝜎 (𝑠). (1)

That is, whenever we insert 𝑠 into a valid𝐴, the spread of countering
𝐴 (i.e., E

[
𝐼 (𝐶𝑡 , 𝐴)

]
) is always increased by a constant 𝜎 (𝑠).

Proof. Given a graph sample 𝑔, a seed set 𝑆 , a seed 𝑠 ∈ 𝑆 ,
and a node 𝑢 ∉ 𝑆 , we let 𝑝𝑔 (𝑠,𝑢) be the probability that 𝑠 can
activate 𝑢 (with its company), when we start a diffusion from 𝑆 on
𝑔. Then, the expected number of vertices that 𝑠 can activate on 𝑔
equals 𝜎𝑔 (𝑠) =

∑
𝑢∈𝑉 (𝑔) 𝑝𝑔 (𝑠,𝑢). In a graph sample 𝑔, a vertex can

be activated by one seed. Thus we have the expected number of
vertices that 𝑆 can activate equals

∑
𝑠∈𝑆 𝜎𝑔 (𝑠). Let 𝑋 (𝐺) be the set

of all possible graph samples from𝐺 and 𝑃 [𝑔] be the probability of
sampling 𝑔 from𝑋 (𝐺). By definition of E

[
𝐼 (𝐶𝑡 , 𝐴)

]
, we can rewrite

Algorithm 1: MIC (𝐺, 𝑆,𝐶𝑡 , 𝑏)

𝑟 ← decide the number of graph samples ; // Sec 4.21

Generate 𝑟 graph samples G = {𝑔1, · · ·𝑔𝑟 };2

�̂� (·) ← SpreadEst(G, 𝑟 , 𝑆); // Sec 4.13

𝑆¬𝑡 ← {𝑠 | 𝑠 ∈ 𝑆 ∧ 𝑐𝑠 ≠ 𝐶𝑡 };4

sort 𝑠 ∈𝑆¬𝑡 in descending order of �̂� (𝑠);5

return 𝐴 ← the first 𝑏 vertices of 𝑆¬𝑡 ;6

it with the definitions above:

E[𝐼 (𝐶𝑡 , 𝐴)] =
∑

𝑔∈𝑋 (𝐺 )

𝑃 [𝑔] ·

(∑
𝑠∈𝑆

𝜎𝑔 (𝑠) · [𝑐𝐴 (𝑠) = 𝐶𝑡 ]

)
,

where [·] equals 1 if and only if the condition inside is true, and
equals 0 otherwise. That is, [𝑐𝐴 (𝑠) = 𝐶𝑡 ] equals 1 if and only if
the company of 𝑠 is 𝐶𝑡 or 𝑠 is countered (i.e., 𝑠 ∈ 𝐴). Then, we can
rewrite the l.h.s. of Equation 1 as the follows:

E[𝐼 (𝐶𝑡 , 𝐴 ∪ {𝑠})] − E[𝐼 (𝐶𝑡 , 𝐴)]

=
∑

𝑔∈𝑋 (𝐺 )

𝑃 [𝑔] ·

(∑
𝑠′ ∈𝑆

𝜎𝑔 (𝑠
′) ·

(
[𝑐𝐴∪{𝑠 } (𝑠

′) = 𝐶𝑡 ] − [𝑐𝐴 (𝑠
′) = 𝐶𝑡 ]

))

=
∑

𝑔∈𝑋 (𝐺 )

𝑃 [𝑔] ·

(∑
𝑠′ ∈𝑆

𝜎𝑔 (𝑠
′) · [𝑠′ = 𝑠]

)

=
∑

𝑔∈𝑋 (𝐺 )

𝑃 [𝑔] · 𝜎𝑔 (𝑠) . (2)

Given 𝑔, both 𝑃 [𝑔] and 𝜎𝑔 (𝑠) are constant numbers by defini-
tions, as 𝑃 [𝑔] is a probability and 𝜎𝑔 (𝑠) is the sum of a series of
probabilities. Therefore, the l.h.s of Equation 1 (or equivalently,
Equation 2) gives a constant number. �

By Theorem 3, 𝜎 (𝑠) is a constant and thus it is optimal to counter
the seeds with the largest 𝜎 (𝑠).MIC selects 𝑏 seeds with the largest
𝜎 (𝑠), which leads to the largest increase in E

[
𝐼 (𝐶𝑡 , 𝐴)

]
. MIC esti-

mates 𝜎 (𝑠) by sampling. Specifically, we first generate some graph
samples, then estimate the spread on each sample, and finally take
the average spread �̂� (𝑠) as an estimation of 𝜎 (𝑠). By the law of big
number, the estimation is unbiased, i.e., E

[
�̂� (𝑠)

]
= 𝜎 (𝑠).

Algorithm 1 presents the pseudo-code ofMIC. Lines 1-2 generate
a pre-decided number (i.e., 𝑟 ) of graph samples. The parameter 𝑟
must be larger than a certain threshold to guarantee the correctness
ofMIC (Section 4.2). Then, Line 3 estimates the spread �̂� (𝑠) for every
seed 𝑠 ∈ 𝑆 by the mean spread in G (Section 4.1). Finally, Lines 4-6
sort any seed 𝑠 ∈ 𝑆¬𝑡 in descending order of �̂� (𝑠) and return the
top-𝑏 seeds as the final result.

In what follows, we first detail the spread estimation phase,
and then analyze the selection of 𝑟 in the sampling phase. Unless
otherwise specified, all logarithms in this paper are to the base 𝑒 .

4.1 Spread Estimation Phase

This section estimates the spread 𝜎 (𝑠) of a seed 𝑠 in Theorem 3 by
the empirical average spread of 𝑠 in 𝑟 graph samples G. We first
discuss how to compute the spread on a graph sample 𝑔.

An MCIC diffusion on 𝑔 is equivalent to a BFS. Specifically, we
start a BFS from 𝑆 , if𝑢 is discovered (i.e., activated) for the first time
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Algorithm 2: SpreadEst(G, 𝑟 , 𝑆)

for each 𝑔𝑖 ∈ G do1

𝑑𝑎𝑔 ← the shortest path DAG starting from 𝑆 on 𝑔𝑖 ;2

for each 𝑢 in the reverse topological sorting of 𝑉 (𝑑𝑎𝑔) do3

�̂�𝑖 (𝑢) ← 1 +
∑
𝑣∈𝑁 +

𝑢 (𝑑𝑎𝑔)
�̂�𝑖 (𝑣)

|𝑁 −
𝑣 (𝑑𝑎𝑔) | ;4

for any 𝑠 ∈ 𝑆 do �̂� (𝑠) ← 1
𝑟

∑𝑟
𝑖=1 �̂�𝑖 (𝑠);5

return �̂� (·);6

by vertices𝑤1, · · · ,𝑤𝑥 , then𝑢 adopts a company from 𝑐𝑤1 , · · · , 𝑐𝑤𝑥

uniformly. Each time𝑢 activates 𝑣 in diffusion, it corresponds to the
final-hop edge (𝑢, 𝑣) on the shortest path from 𝑆 to 𝑣 . The sp-dag
captures those edges, and we compute the spread on this structure.

Definition 2 (Shortest Path DAG). Given a graph sample 𝑔 and
a vertex set 𝑆 , the shortest path DAG (aka. sp-dag) rooted at 𝑆 is a
subgraph of 𝑔 that includes any edge lies on at least one shortest
path from sourcing from 𝑆 .

Algorithm 2 presents the spread estimation of MIC. For each
𝑔𝑖 ∈ G, we build the sp-dag of 𝑔𝑖 (Line 2), then compute the spread
of any vertex 𝑢 (Line 3-4). Finally, we return the empirical average
spread �̂� (·) in graph samples (Lines 5-6). Line 2 builds the sp-dag.
Let 𝛿𝑔 (𝑆, 𝑣) be the shortest distance from 𝑆 to a vertex 𝑣 in 𝑔. We
first compute 𝛿𝑔 (𝑆, 𝑣) for any vertex 𝑣 ∈ 𝑉 (𝑔) by a BFS, then we put
an edge (𝑢, 𝑣) into 𝑑𝑎𝑔 if 𝛿𝑔 (𝑆,𝑢) + 1 = 𝛿𝑔 (𝑆, 𝑣), and return 𝑑𝑎𝑔 as
the sp-dag. Lines 3-4 compute the spread on 𝑑𝑎𝑔, where 𝑁 +

𝑢 (𝑑𝑎𝑔)
and 𝑁 −

𝑢 (𝑑𝑎𝑔) are the out-/in- neighbors of𝑢 in𝑑𝑎𝑔. Recall that each
edge (𝑢, 𝑣) in the sp-dag corresponds to𝑢 activates 𝑣 . If a vertex𝑢 is
activated, for any (𝑢, 𝑣) ∈ 𝑑𝑎𝑔, 𝑢 activates 𝑣 at the next timestamp
and 𝑢 competes with any vertex𝑤 that points to 𝑣 in 𝑑𝑎𝑔. Thus, 𝑢
influences itself and any 𝑣 ∈ 𝑁 +

𝑢 (𝑑𝑎𝑔) with probability 1/|𝑁
−
𝑣 (𝑑𝑎𝑔) |

(Line 4). The reverse topological sorting (Line 3) guarantees that
the �̂�𝑖 (·) computation of any out-neighbor of 𝑢 finishes before 𝑢.

Using the law of large numbers, we show that the empirical
mean spread �̂� (𝑠) in 𝑟 graph samples accurately approximates 𝜎 (𝑠).

Lemma 2. Let G = {𝑔1, · · · , 𝑔𝑟 } be 𝑟 graph samples obtained from

𝐺 , the mean spread of 𝑠 in 𝑟 samples, as 𝑟 approaches ∞, approaches

the spread of 𝑠 in 𝐺 , i.e., E
[
�̂� (𝑠)

]
= lim𝑟→∞

1
𝑟

∑𝑟
𝑖=1 �̂�𝑖 (𝑠) = 𝜎 (𝑠) .

Algorithm 2 runs in simply𝑂 (𝑟𝑚) time, as computing sp-dag and
reverse topological sorting both need 𝑂 ( |𝐸 (𝑔) |) time for a graph
sample 𝑔. Together with Lemma 2, we derive the following theorem.

Theorem 4. Algorithm 2 runs in 𝑂 (𝑟𝑚) time, and returns �̂� (𝑠)
that accurately estimates the spread 𝜎 (𝑠) in 𝐺 .

Example 1. Figure 4 shows a graph sample 𝑔 of Figure 3. The edge
(𝑣2, 𝑣3) ∉ 𝑔 with probability 1 − 0.1, (𝑣1, 𝑣4) and (𝑣2, 𝑣4) exist in 𝑔
with probability 0.5 and 0.3 respectively, while the rest two edges
must be in 𝑔. Among all possible graph samples, the probability of
sampling 𝑔 is 0.135 = 0.9 × 0.5 × 0.3.

The thick black edges in Figure 4 form the sp-dag of 𝑔, where the
edge (𝑣3, 𝑣4) is not included. This can be verified by 𝛿𝑔 (𝑆, 𝑣3) + 1 ≠
𝛿𝑔 (𝑆, 𝑣4) as we have 𝛿𝑔 (𝑆, 𝑣3) = 𝛿𝑔 (𝑆, 𝑣4) = 1. Consider a MCIC
diffusion on 𝑔. At timestamp 1, we activate 𝑣1 with 𝐶1 and 𝑣2 with
𝐶1. At timestamp 2, both 𝑣1 and 𝑣2 activate 𝑣4, and 𝑣1 also activates

Figure 3: Graph sample 𝑔

𝑣𝑣
𝑣 𝑣

Figure 4: Shortest pathDAG

𝑣3. The sp-dag in Figure 4 accurately describes the activation process
in the diffusion.

4.2 Select 𝑟 in Sampling Phase

This section analyzes how to select a parameter 𝑟 such that MIC re-
turns a high-quality solution with high probability. The subsequent
analysis frequently uses the Chernoff bounds [34].

Lemma 3. Let 𝑋 be the sum of 𝑐 i.i.d. random variables sampled

from a distribution on [0, 1] with a mean 𝜇. For any 𝛿 > 0, we have

𝑃𝑟
[
𝑋 − 𝑐𝜇 ≥ 𝛿 · 𝑐𝜇

]
≤ exp

(
−

𝛿2

2 + 𝛿
𝑐𝜇
)
.

Let𝐴∗ be the optimal solution to our problem, i.e., the countered
set that leads to the largest E

[
𝐼 (𝐶𝑡 , 𝐴

∗)
]
, and𝑂𝑃𝑇 = E

[
𝐼 (𝐶𝑡 , 𝐴

∗)
]
−

E
[
𝐼 (𝐶𝑡 )

]
be the maximum increase in the influence.We define 𝜎 (𝐴)

as
∑
𝑠∈𝐴 𝜎 (𝑠). By the Chernoff bounds, we confirm that �̂� (𝐴) is an

accurate estimator of 𝜎 (𝐴) when 𝑟 is sufficiently large:

Lemma 4. Assume that 𝑟 satisfies

𝑟 ≥ 2𝑛 · (𝜀 + 4) ·
𝑙 log𝑛

𝑂𝑃𝑇 · 𝜀2
. (3)

Then, for any countered set 𝐴 of at most 𝑏 seeds, the following

inequality holds with at least 1 − 𝑛−𝑙 probability:

|�̂� (𝐴) − 𝜎 (𝐴) | <
𝜀

2
·𝑂𝑃𝑇 .

Proof. We regard 𝑟 ·�̂� (𝐴)/𝑛 regard as the sum of 𝑟 i.i.d. Bernoulli
variables with a mean 𝜇 = 𝜎 (𝐴)/𝑛. By Lemma 2, 𝜇 = E

[
�̂� (𝐴)

]
/𝑛 =

𝜎 (𝐴)/𝑛. Then, we have

𝑃𝑟
[
|�̂� (𝐴) − 𝜎 (𝐴) | ≥

𝜀

2
·𝑂𝑃𝑇

]
= 𝑃𝑟

[
|𝑟 · �̂� (𝐴)/𝑛 − 𝑟 𝜇 | ≥

𝜀𝑟

2𝑛
·𝑂𝑃𝑇

]
= 𝑃𝑟

[
|𝑟 · �̂� (𝐴)/𝑛 − 𝑟 𝜇 | ≥

𝜀 ·𝑂𝑃𝑇

2𝑛𝜇
· 𝑟 𝜇

]
. (4)

Let 𝛿 = 𝜀 ·𝑂𝑃𝑇 /(2𝑛𝜇). By the Chernoff bounds, Equation 3, and
the fact that 𝜇 = 𝜎 (𝐴)/𝑛 ≤ 𝑂𝑃𝑇 /𝑛, we have

r.h.s. of Eqn. 4 ≤ exp

(
−

𝛿2

2 + 𝛿
· 𝑟 𝜇

)
= exp

(
−

𝜀2 ·𝑂𝑃𝑇 2

2𝑛(4𝑛𝜇 + 𝜀𝑂𝑃𝑇 )
· 𝑟

)
≤ exp

(
−
𝜀2 ·𝑂𝑃𝑇

2𝑛(𝜀 + 4)
· 𝑟

)
≤

1

𝑛𝑙
.

�
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Algorithm 3: MIC+ (𝐺, 𝑆,𝐶𝑡 , 𝑏)

𝜃 ← ThetaEst(𝐺, 𝑆,𝐶𝑡 , 𝑏); // Sec 5.21

Generate 𝜃 graph samples G = {𝑔1, · · ·𝑔𝜃 };2

�̂� (·) ← SpreadEst+(G, 𝜃, 𝑆) ; // Sec 5.13

𝑆¬𝑡 ← {𝑠 | 𝑠 ∈ 𝑆 ∧ 𝑐𝑠 ≠ 𝐶𝑡 };4

sort 𝑆¬𝑡 in descending order of �̂� (𝑠);5

return 𝐴 ← the first 𝑏 vertices of 𝑆¬𝑡 ;6

Let 𝐴 be the result of Algorithm 1, then �̂� (𝐴) ≥ �̂� (𝐴∗) as MIC

returns the seeds with the top-𝑏 �̂� (𝑠). By this fact and Lemma 4,

𝜎 (𝐴) ≥ �̂� (𝐴) −
𝜀

2
·𝑂𝑃𝑇 ≥ �̂� (𝐴∗) −

𝜀

2
·𝑂𝑃𝑇 ≥ (1 − 𝜀) ·𝑂𝑃𝑇 .

Therefore, Algorithm 1 returns a (1 − 𝜀)-approximate solution
with high probability when Equation 3 holds. By taking the bound
𝑂𝑃𝑇 ≥ 𝑏 into Equation 3, we set 𝑟 ≥ 2𝑛 · (𝜀 + 4) · (𝑙 log𝑛)/(𝑏𝜀2),
then, MIC runs in time

𝑂 (𝑟𝑚) = 𝑂

(
(𝜀 + 4) ·

2𝑙𝑛𝑚 log𝑛

𝑏 · 𝜀2

)
= 𝑂

(
𝑙𝑛𝑚 log𝑛

𝑏𝜀2

)
.

Thus, we have the following theorem:

Theorem 5. Given a 𝑟 that satisfies 𝑟 ≥ 2𝑛 · (𝜀+4) · (𝑙 log𝑛)/(𝑏𝜀2),
MIC runs in 𝑂 ((𝑙𝑛𝑚 log𝑛)/(𝑏𝜀2)) time, and returns a (1 − 𝜀)-

approximate solution with at least 1 − 𝑛−𝑙 probability.

4.3 Put It Together

Given 𝐺 , 𝑆 , 𝑐 , 𝐶𝑡 , 𝑏, and two parameters 𝜀 and 𝑙 , MIC first decides
the number of graph samples by Equation 3 and puts it into 𝑟 . After
that, MIC generates 𝑟 graph samples and estimates the spread �̂� (𝑠)
for any 𝑠 ∈ 𝑆¬𝑡 by Algorithm 2. Finally,MIC sorts 𝑆¬𝑡 by decreasing
order of �̂� (𝑠) and returns the first 𝑏 seeds as the final result.

By Theorem 3 and 5,MIC eliminates two loops in the baseline and
reduces the time from 𝑂 (𝑏𝑟𝑚 · |𝑆 |) to 𝑂 (𝑟𝑚). Lemma 4 establishes
the minimum 𝑟 required for the approximate guarantee of MIC. By
Theorem 5, MIC runs in 𝑂 ((𝑙𝑛𝑚 log𝑛)/(𝑏𝜀2)) time, and returns a
(1 − 𝜀)-approximate solution with at least 1 − 𝑛−𝑙 probability.

5 IMPROVED APPROACH:MIC
+

This section proposesMIC+, a method that improvesMIC by reduc-
ing the cost of spread estimation and the required number of graph
samples. MIC+ consists of three phases:

(1) Sampling: This phase generates 𝜃 graph samples and put
them into G. The parameter 𝜃 is far less than 𝑟 (of MIC)
while offering the same guarantee.

(2) Spread Estimation: This phase estimates the spread of a
seed 𝑠 by the probability that 𝑠 activates a random vertex
in G. The cost is largely reduced compared with MIC.

(3) Seed Selection: This phase is the same as MIC.

Algorithm 3 presents the pseudo-code of MIC+. MIC+ aims to
select (and counter) 𝑏 seeds with the largest spread 𝜎 (𝑠), like MIC.
By Theorem 3, this leads to the largest increase in the resulting
influence E

[
𝐼 (𝐶𝑡 , 𝐴)

]
.

In the following, we detail the differences to MIC. We first detail
the spread estimation phase ofMIC+, and then analyze the selection
of 𝜃 in the sampling phase.

Algorithm 4: SpreadEst+(G, 𝜃, 𝑆)

for each 𝑔𝑖 ∈ G do1

𝑥𝑖 ← select a vertex from 𝑉 uniform at random;2

𝑔𝑟𝑖 ← the reverse of 𝑔𝑖 ;3

𝑟𝑑𝑎𝑔 ← reverse shortest path DAG rooted at 𝑥 in 𝑔𝑟𝑖 ;4

�̂�𝑖 (𝑥𝑖 ) ← 1;5

for each 𝑢 in the topological sorting of 𝑉 (𝑟𝑑𝑎𝑔) do6

�̂�𝑖 (𝑢) ←
∑
𝑁 −
𝑢 (𝑟𝑑𝑎𝑔)

�̂�𝑖 (𝑣)
|𝑁 +

𝑣 (𝑟𝑑𝑎𝑔) |
;7

for any 𝑠 ∈ 𝑆 do �̂� (𝑠) ← 1
𝜃

∑𝜃
𝑖=1 �̂�𝑖 (𝑠);8

for any 𝑠 ∈ 𝑆 do �̂� (𝑠) ← 𝑛 · �̂� (𝑠);9

return �̂� (·);10

5.1 Improved Spread Estimation

Let spread probability 𝑝 (𝑠) be the probability that a seed 𝑠 activates
a random vertex in 𝐺 . Recall that 𝜎 (𝑠) is the spread of 𝑠 , i.e., the
expected number of vertices that 𝑠 can activate. Then, based on
Theorem 3, we can prove that 𝑛 · 𝑝 (𝑠) equals 𝜎 (𝑠).

Lemma 5. 𝑛 · 𝑝 (𝑠) = 𝜎 (𝑠).

Proof. Following the definitions in the proof of Theorem 3,

𝜎 (𝑠) =
∑

𝑔∈𝑋 (𝐺 )

𝑃 [𝑔] ·
(
𝜎𝑔 (𝐶𝑡 , 𝐴 ∪ {𝑠}) − 𝜎𝑔 (𝐶𝑡 , 𝐴)

)
.

Observe that the r.h.s equals the expected number of vertices
that are activated by 𝑠 in the diffusion. By the definition of 𝑝 (𝑠), it
follows that 𝑛 · 𝑝 (𝑠) = 𝜎 (𝑠). �

Recall in Section 4.1, we define sp-dag as the activation of a
vertex 𝑥 in a diffusion corresponds to a shortest path from 𝑆 to 𝑥
in a BFS. The activation also corresponds to a shortest path from 𝑥
to 𝑆 in the reverse graph, i.e., edge direction is flipped. We refer to
such shortest paths in the reverse graph as a reverse shortest path.
Then, we can define a counterpart of sp-dag on the reverse of a
graph sample (aka. reverse graph sample).

Definition 3 (Reverse Shortest Path DAG). Given vertex 𝑥 and
vertex set 𝑆 , let 𝑔𝑟 be a reverse graph sample. The reverse shortest
path DAG (aka. rsp-dag) rooted at 𝑥 is a subgraph of𝑔𝑟 that contains
edges lying on a reverse shortest path from 𝑥 to 𝑆 ′ ⊆ 𝑆 , with the
distance from 𝑥 to any 𝑠′ ∈ 𝑆 ′ being the lowest from 𝑥 to 𝑆 .

For any vertex 𝑠′ ∈ 𝑆 ′, the distance from 𝑥 to 𝑠′ is the lowest in
𝑔𝑟 , so the distance from 𝑠′ to 𝑥 is also the lowest in the original 𝑔.
On the other hand, for any vertex 𝑠 ∈ 𝑆 \ 𝑆′, the distance from 𝑠
to 𝑥 is not the shortest. Therefore, any seed 𝑠′ ∈ 𝑆 ′ will activate
𝑥 at the same timestamp, while other seeds will not, i.e., only the
vertices in rsp-dag activate 𝑥 . By this intuition, we compute �̂� (𝑢) the
probability that 𝑢 activates 𝑥 over the rsp-dag. We can accurately
estimate 𝑝 (𝑠) by the average of �̂� (𝑠) in multiple graph samples.

Algorithm 4 presents the spread estimation of MIC+. For each
𝑔𝑖 ∈ G, we first select a random vertex 𝑥𝑖 (Line 2), then build the rsp-
dag rooted at 𝑥𝑖 (Lines 3-4), and next compute the spread probability
in𝑔𝑖 (Lines 5-7). After that, we obtain the average spread probability
�̂� (·) (Line 8). By Lemma 5, we multiply it by 𝑛 and return it as the
empirical average spread �̂� (·) (Lines 9-10).
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Figure 5: Reverse graph

sample 𝑔′ (rooted at 𝑣4)
Figure 6: Reverse shortest

path DAG (rooted at 𝑣4)

Lines 3-4 build the rsp-dag using a BFS with stop. Let 𝛿𝑟𝑔 (𝑥, 𝑠) be
the distance from 𝑥 to 𝑠 in 𝑔𝑟 . We start a BFS from 𝑥 in 𝑔𝑟 . Once
reaching a seed 𝑠 in 𝑆 , we continue to search on any other seed 𝑠′ on
the current BFS level, i.e., any seed 𝑠′ ∈ 𝑆 with 𝛿𝑟𝑔 (𝑥, 𝑠) = 𝛿𝑟𝑔 (𝑥, 𝑠

′).
We put 𝑠 and all 𝑠′ into a set 𝑆 ′ and then terminate the BFS. Finally,
we insert into 𝑟𝑑𝑎𝑔 any reverse edge lying on a reverse shortest
path from 𝑥 to a seed 𝑠′ ∈ 𝑆 ′, and return 𝑟𝑑𝑎𝑔 as the rsp-dag.

Lines 5-7 compute the probability of activating 𝑥 . Recall that each
edge (𝑣,𝑢) in the rsp-dag corresponds to 𝑢 activates 𝑣 . Eventually
𝑥 is activated and the probability is 1 (Line 5). Before that, for any
(𝑣,𝑢) ∈ 𝑟𝑑𝑎𝑔,𝑢 activates 𝑣 at some timestamp, and𝑢 competes with
any vertex 𝑤 satisfying (𝑣,𝑤) ∈ 𝑟𝑑𝑎𝑔. Thus, 𝑢 has 1/|𝑁 +

𝑣 (𝑟𝑑𝑎𝑔) |
probability to influence any 𝑣 ∈ 𝑁 −

𝑢 (𝑟𝑑𝑎𝑔) (Line 4). The topological
sorting (Line 3) guarantees that the �̂�𝑖 (𝑢) computation of any in-
neighbor of 𝑢 finishes before 𝑢.

By the law of large numbers, we show that �̂� (𝑠) in 𝑟 graph
samples accurately approximates 𝑝 (𝑠).

Lemma 6. Let G = {𝑔1, · · ·𝑔𝜃 } be 𝜃 graph samples obtained from

𝐺 , the mean probability of 𝑠 activates a random vertex in 𝜃 graph

samples, as 𝑟 approaches ∞, approaches 𝑝 (𝑠) the probability that 𝑠
activates a random vertex in 𝐺 , i.e.,

E
[
�̂� (𝑠)

]
= lim
𝜃→∞

1

𝜃

𝜃∑
𝑖=1

�̂�𝑖 (𝑠) = 𝑝 (𝑠).

By Lemma 6 and the fact that E
[
𝑛 · �̂� (𝑠)

]
= 𝑛 · 𝑝 (𝑠) = 𝜎 (𝑠), we

prove the following theorem:

Theorem 6. Algorithm 4 runs in 𝑂 (𝑟𝑚) time, and returns �̂� (𝑠)
that accurately estimates the spread 𝜎 (𝑠) in 𝐺 .

Example 2. Figure 5 presents a reverse graph sample 𝑔𝑟 that is
the reverse of 𝑔 in Figure 4. Figure 6 shows the rsp-dag rooted at
𝑣4 in 𝑔𝑟 . Clearly, 𝑆 ′ = {𝑣1, 𝑣2} and (𝑣4, 𝑣1), (𝑣4, 𝑣2) form the reverse
shortest path from 𝑣4 to 𝑆 ′. The edges (𝑣3, 𝑣1), (𝑣4, 𝑣3) are excluded.
The sp-dag of Figure 4 contains 3 edges while rsp-dag here contains
2. The size of rsp-dag is smaller. We compute the probability of
activating 𝑣4 on rsp-dag as follows. Initially, �̂�𝑔 (𝑣4) = 1. As 𝑣4 has
two out-neighbors, �̂�𝑔 (𝑣1) = �̂�𝑔 (𝑣2) = 0.5 and �̂�𝑔 (𝑣3) = 0. This
matches the diffusion on 𝑔 (Figure 4), where 𝑣1, 𝑣2 activate 𝑣4 at
timestamp 2 and 𝑣3 never activates 𝑣4.

5.2 Select 𝜃 in Sampling Phase

By Theorem 6 and Lemma 4,MIC+ accurately estimates 𝜎 (𝐴) when
𝜃 is sufficiently large. Thus, the theoretical guarantees ofMIC (Theo-
rem 6) also holds forMIC+, i.e., given 𝜃 ≥ 2𝑛(𝜀 + 4) · (𝑙 log𝑛)/(𝑏𝜀2),

Algorithm 5: ThetaEst(𝐺, 𝑆,𝐶𝑡 , 𝑏)

𝑟 ← (𝜀 + 2)𝑛 ·
𝑙 log𝑛
|𝑆¬𝑡 | ·𝜀2

;1

Generate 𝑟 graph samples G = {𝑔1, · · ·𝑔𝑟 };2

�̂� (·) ← SpreadEst+(G, 𝑟 , 𝑆) for any 𝑔𝑖 ∈ G;3

𝐵𝑃𝑇 ← 𝑏
|𝑆¬𝑡 |

·
∑
𝑠∈𝑆¬𝑡 �̂� (𝑠);4

return 𝜃 ← 2𝑛 · (4 + 𝜀) ·
(1+𝜀 ) ·𝑙 log𝑛�𝐵𝑃𝑇 ·𝜀2 ;5

MIC+ runs in 𝑂 ((𝑙𝑛𝑚 log𝑛)/(𝑏𝜀2)) time, and returns a (1 − 𝜀)-
approximate solution with at least 1 − 𝑛−𝑙 probability.

Recall that 𝐴∗ is the optimal countered set of our problem and
𝑂𝑃𝑇 equals 𝜎 (𝐴∗). The guarantees above are obtained by a lower
bound 𝑂𝑃𝑇 ≥ 𝑏. But 𝑏 � 𝑂𝑃𝑇 in practice. To tighten the bound,
we devise a new lower bound 𝐵𝑃𝑇 for 𝑂𝑃𝑇 :

Definition 4. 𝐵𝑃𝑇 = 𝑏
|𝑆¬𝑡 |

𝜎 (𝑆¬𝑡 ) and 𝐵𝑃𝑇 = 𝑏
|𝑆¬𝑡 |

�̂� (𝑆¬𝑡 ).

𝐵𝑃𝑇 is the expected spread of a size-𝑏 countered set. We have
𝐵𝑃𝑇 ≤ 𝑂𝑃𝑇 , as 𝑂𝑃𝑇 is the size-𝑏 countered set with the largest
spread. By the definition of 𝐵𝑃𝑇 , MIC+ can accurately estimate
𝜎 (𝑆¬𝑡 ) and 𝐵𝑃𝑇 . This motivates the 𝜃 selection algorithm below.

Algorithm 5 presents the 𝜃 selection of MIC+ in the sampling
phase. We first estimate the spread 𝜎 (𝑆¬𝑡 ) by Algorithm 4 (Lines
1-3) then estimate 𝐵𝑃𝑇 (Line 4) and finally return a parameter
𝜃 . In what follows, we step by step show that the 𝜃 returned by
Algorithm 5 is sufficiently good.

We derive the following lemma by taking 2 · 𝜀 into 𝜀 in Lemma 4:

Lemma 7. Assume that 𝑟 satisfies 𝑟 ≥ (𝜀 + 2) · 𝑛 ·
𝑙 log𝑛
𝑂𝑃𝑇 ·𝜀2

. Then,
for any countered set 𝐴 of at most 𝑏 seeds, the inequality holds with

at least 1 − 𝑛−𝑙 probability: |�̂� (𝐴) − 𝜎 (𝐴) | < 𝜀 ·𝑂𝑃𝑇 .

By Lemma 7 and Definiton 4, we prove that 𝐵𝑃𝑇 accurately
estimates 𝐵𝑃𝑇 when 𝑟 is sufficiently large:

Lemma 8. Assume 𝑟 satisfies 𝑟 ≥ (𝜀+2)·𝑛·
𝑙 log𝑛

𝜎 (𝑆¬𝑡 ) ·𝜀2
, the inequality

holds with at least 1 − 𝑛−𝑙 probability: |𝐵𝑃𝑇 − 𝐵𝑃𝑇 | < 𝜀 · 𝐵𝑃𝑇 .

Proof. Suppose we set 𝑏 = |𝑆¬𝑡 | in our problem, then it is
optimal to counter all seeds, and we have 𝑂𝑃𝑇 equals 𝜎 (𝑆¬𝑡 ) and

𝐴 = 𝑆¬𝑡 . By this fact and Lemma 7, if 𝑟 ≥ (𝜀 + 2) ·𝑛 ·
𝑙 log𝑛

𝜎 (𝑆¬𝑡 ) ·𝜀2
, then

the inequality |�̂� (𝑆¬𝑡 ) − 𝜎 (𝑆¬𝑡 ) | < 𝜀 · 𝜎 (𝑆¬𝑡 ) holds with at least
1 − 𝑛−𝑙 probability. By Definition 4,���𝐵𝑃𝑇 − 𝐵𝑃𝑇

��� ≤ 𝜀 · 𝐵𝑃𝑇 .

⇔

���� |𝑆¬𝑡 |𝑏
𝐵𝑃𝑇 −

|𝑆¬𝑡 |

𝑏
𝐵𝑃𝑇

���� ≤ 𝜀 ·
|𝑆¬𝑡 |

𝑏
𝐵𝑃𝑇

⇔ |�̂� (𝑆¬𝑡 ) − 𝜎 (𝑆¬𝑡 ) | ≤ 𝜀 · 𝜎 (𝑆¬𝑡 )

then we can derive the lemma by the equivalence above. �

By taking the bound |𝑆¬𝑡 | ≤ 𝜎 (𝑆¬𝑡 ) into Lemma 7, we set 𝑟 ≥

(𝜀 + 2)𝑛 ·
𝑙 log𝑛
|𝑆¬𝑡 | ·𝜀2

(Line 1), and then the following inequality holds

with 1 − 𝑛−𝑙 probability (Lines 2-4):

(1 − 𝜀) · 𝐵𝑃𝑇 ≤ 𝐵𝑃𝑇 ≤ (1 + 𝜀) · 𝐵𝑃𝑇 ≤ (1 + 𝜀) ·𝑂𝑃𝑇 (5)
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After that, by taking the bound 𝐵𝑃𝑇 /(1 + 𝜀) ≤ 𝑂𝑃𝑇 into Lemma

4, we return 𝜃 = 2𝑛 · (4 + 𝜀) ·
(1+𝜀 ) ·𝑙 log𝑛�𝐵𝑃𝑇 ·𝜀2 (Line 5), and MIC+ return

a (1 − 𝜀)-approximate solution with at least 1 − 2 · 𝑛−𝑙 probability.
We can increase the probability to 1 − 𝑛−𝑙 by setting 𝑙 = 1 + log𝑛 2.

MIC+ reuses the graph samples and it requires max{𝑟, 𝜃 } graph
samples. By (1− 𝜀) ·𝑏 ≤ (1− 𝜀) · 𝐵𝑃𝑇 ≤ 𝐵𝑃𝑇 in Equation 5 and the
number 𝑟, 𝜃 selected above, the runtime of MIC+ is

𝑂 (max{𝑟, 𝜃 } ·𝑚) = 𝑂

(
(𝜀 + 4) ·

2𝑙𝑛𝑚 log𝑛

𝑏 · (1 − 𝜀) · 𝜀2

)
= 𝑂

(
𝑙𝑛𝑚 log𝑛

𝑏𝜀2

)
.

By the above, the following theorem holds:

Theorem 7. MIC+ runs in𝑂 ((𝑙𝑛𝑚 log𝑛)/(𝑏𝜀2)) time, and returns

a (1 − 𝜀)-approximate solution with at least 1 − 𝑛−𝑙 probability.

5.3 Put It Together

Given 𝐺 , 𝑆 , 𝑐 , 𝐶𝑡 , 𝑏, and two parameters 𝜀 and 𝑙 , MIC+ first decides
the number of graph samples by Algorithm 5 and put it into 𝜃 .
After that, MIC generates 𝜃 graph samples and uses Algorithm 4 to
estimate the spread �̂� (𝑠) for any 𝑠 ∈ 𝑆¬𝑡 . Finally, MIC sorts 𝑆¬𝑡 by
the decreasing order of �̂� (𝑠) and return the first 𝑏 seeds as result. By
Theorem 7, MIC+ runs in 𝑂 ((𝑙𝑛𝑚 log𝑛)/(𝑏𝜀2)) time, and returns a
(1 − 𝜀)-approximate solution with at least 1 − 𝑛−𝑙 probability.

5.4 Theoretical Comparisons ofMIC
+

Comparison with MIC. By Theorems 5 and 7, MIC and MIC+

return the solutions with the same approximate guarantee in the
same time complexity. But MIC+ outperforms MIC by orders of
magnitude in practice, due to the optimization in spread estimation
and sampling phases.

For the spread estimation phase, the size of rsp-dag in MIC+ is
far smaller than the size of sp-dag in MIC. Consider rsp-dag in the
original graph, it contains the shortest paths from 𝑆 ′ (defined in
rsp-dag) to 𝑥 . Recall that sp-dag in MIC contains all shortest paths
from 𝑆 to the rest of the graph, and it follows that rsp-dag has a
size far smaller than sp-dag.

For the sampling phase, the parameter 𝜃 of MIC+ is much lower
than the parameter 𝑟 of MIC in practice. MIC+ uses 𝐵𝑃𝑇 as a lower
bound of 𝑂𝑃𝑇 , while MIC uses 𝑏. By Definition 4, 𝐵𝑃𝑇 is an esti-
mation of expected spread of 𝑏 seeds, and it follows that 𝐵𝑃𝑇 � 𝑏
for most graphs. This leads to 𝜃 � 𝑟 by Lemma 4.

Comparison with baseline 1 (BIM). The efficiency of baseline
BIM depends on the number of RR sets generated. The time com-
plexity of the state-of-the-art algorithm to generate an RR set under
the IC model is 𝑂 (𝑛) [16], while MIC+ needs 𝑂 (𝑚). Because the
baseline BIM does not take into account the competition among
multiple campaigners in seed selection, it cannot provide a theoret-
ical guarantee for estimating the influence spread under the MCIC
model. Therefore, it lacks any theoretical guarantee for solving the
influence countering problem.

Comparison with baseline 2 (BGA). Recall that baseline 2 runs
in 𝑂 ( |𝑆 | · 𝑏𝑟𝑚) time, which is much larger than the cost of MIC+.
It trivially set 𝑟 = 10000 and this cannot achieve any approximate
guarantees. To fairly compare the two algorithms, we devise the
required number of simulations when the baseline has the same
theoretical guarantee as MIC+. The baseline needs a tighter error

bound, as it uses 𝑏 iterations to select the counter set and each
iteration selects one seed to counter. Assume that MIC+ has an
error 𝜀 then the baseline requires an error 𝜀/𝑏 to achieve the same
approximate guarantee. We derive the following lemma by taking
𝜀/𝑏 into 𝜀 in Lemma 4:

Lemma 9. Assume that 𝑟 satisfies 𝑟 ≥ (8𝑏2 + 2𝑏𝜀) ·𝑛 ·
𝑙 log𝑛+log𝑏
𝑂𝑃𝑇 ·𝜀2

.
Then, for any countered set 𝐴 of at most 𝑏 seeds, the inequality holds

with at least 1 − 𝑛−𝑙 probability: |�̂� (𝐴) − 𝜎 (𝐴) | < 𝜀
2𝑏 ·𝑂𝑃𝑇 .

By Lemma 9, the baseline returns a (1− 𝜀)-approximate solution

with at least 1−𝑛−𝑙 probability when 𝑟 ≥ (8𝑏2+2𝑏𝜀) ·𝑛 ·
𝑙 log𝑛+log𝑏

𝑏 ·𝜀2
.

Therefore, the baseline requires far more simulations than the num-
ber of graphs required by MIC+, when they achieve the same ap-
proximate guarantee.

6 EXTENSIONS OFMIC
+

In this section, we devise an index for MIC+ that supports seven
types of updates in dynamic graphs, and extend MIC+ to the trig-
gering model (a generalization of the MCIC model).

6.1 Updating MIC
+ on Dynamic Graphs

The index for MIC+ stores 𝜃 tuples I = {𝑇1, · · · ,𝑇𝜃 }, in which
𝑇𝑖 = {𝑔𝑖 , 𝑥𝑖 , 𝑅𝑖 , �̂�𝑖 } contains a graph sample𝑔𝑖 , a vertex 𝑥𝑖 uniformly
sampled from𝑉 (𝐺), a rsp-dag𝑅𝑖 rooted at𝑥𝑖 in𝑔𝑖 , and the estimated
spread �̂�𝑖 (·) in 𝑔𝑖 . To initialize the index, we first determine the size
𝜃 by Algorithm 4 and then generate 𝜃 tuples and put them into the
index. We implement it by executing Lines 1-3 of Algorithm 3 and
it requires 𝑂 ((𝑙𝑛𝑚 log𝑛)/(𝑏𝜀2)) time.

The index can support the graph updates on edges, vertices,
seeds, and propagation probability. After every graph update, we
recompute the index size 𝜃 , create tuples if 𝜃 increases or stash if 𝜃
decreases, and update �̂�𝑖 if 𝑅𝑖 is changed.

U1. Edge Insertion (+𝑒). Let 𝑒 = (𝑢, 𝑣) ∉ 𝐺 be a new edge asso-
ciated with probability 𝑝 . For each tuple 𝑇𝑖 = {𝑔𝑖 , 𝑥𝑖 , 𝑅𝑖 , �̂�𝑖 }, we
insert the edge 𝑒 into 𝑔𝑖 with probability 𝑝 , and update 𝑅𝑖 if 𝑒 is
successfully inserted into 𝑔𝑖 . The time complexity is𝑂 (𝜃 ·𝑚 · 𝑝𝑢,𝑣),
as the insertion scans 𝑂 (𝜃 · 𝑝𝑢,𝑣) indexes in expectation. Next, we
detail the update of 𝑅𝑖 (assume 𝑒 is not yet inserted).

(i) 𝑣 ∉ 𝑉 (𝑅𝑖 ). We update 𝑅𝑖 only if 𝑅𝑖 is empty. Otherwise, the
reverse path from 𝑥𝑖 to 𝑣 is not the shortest, thus 𝑒𝑟 = (𝑣,𝑢)
never forms a reverse shortest path from 𝑥𝑖 to 𝑣 then to 𝑢.

(ii) 𝑢 ∉ 𝑉 (𝑅𝑖 ) and 𝑣 ∈ 𝑉 (𝑅𝑖 ). Let 𝑜𝑙𝑑_𝑑 = 𝛿𝑟𝑔𝑖 (𝑥𝑖 , 𝑆) be the re-
verse distance from 𝑥𝑖 to 𝑆 , and 𝑑 = 𝛿𝑟𝑔𝑖 (𝑥𝑖 , 𝑣) + 1+𝛿

𝑟
𝑔𝑖 (𝑢, 𝑆)

be the reverse distance from 𝑥𝑖 to 𝑣 , then to 𝑢, and finally
reaching 𝑆 . (a) if 𝑑 < 𝑜𝑙𝑑_𝑑 , then we must rebuild 𝑅𝑖 be-
cause𝑑 reduces the distance. (b) if𝑑 = 𝑜𝑙𝑑_𝑑 , then we insert
into 𝑅𝑖 all reverse shortest paths from 𝑣 to 𝑢 then to 𝑆 . (c)
if 𝑑 > 𝑜𝑙𝑑_𝑑 then 𝑅𝑖 not changes.

(iii) 𝑢, 𝑣 ∈ 𝑉 (𝑅𝑖 ). Let 𝑑𝑢 = 𝛿𝑟𝑔𝑖 (𝑥𝑖 , 𝑢) and 𝑑𝑣 = 𝛿𝑟𝑔𝑖 (𝑥𝑖 , 𝑣) be the
reverse shortest distance from 𝑥𝑖 to 𝑢 and 𝑣 respectively. (a)
if 𝑑𝑢 ≤ 𝑑𝑣 , then 𝑅𝑖 is not changed. (b) if 𝑑𝑢 = 𝑑𝑣 + 1, then
we insert into 𝑅𝑖 all reverse shortest path from 𝑣 to 𝑢 then
to 𝑆 . (c) if 𝑑𝑢 > 𝑑𝑣 + 1, then we rebuild 𝑅𝑖 .

U2. Edge Removal (−𝑒). Let 𝑒 = (𝑢, 𝑣) ∈ 𝐺 denote an edge to re-
move. For each tuple𝑇𝑖 = {𝑔𝑖 , 𝑥𝑖 , 𝑅𝑖 , �̂�𝑖 }, we update 𝑅𝑖 if it contains
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(𝑢, 𝑣). Assume 𝑑−𝑢 (𝑅𝑖 ) is the number of vertices that points to 𝑢 in
the reverse shortest path DAG 𝑅𝑖 .

(i) 𝑑−𝑢 (𝑅𝑖 ) > 1. Not all reverse shortest paths from 𝑥𝑖 to 𝑢 con-

tains (𝑣,𝑢), and the removal of (𝑣,𝑢) cannot change the
distance. Therefore, we remove (𝑣,𝑢) from 𝑅𝑖 .

(ii) 𝑑−𝑢 (𝑅𝑖 ) = 1. Any reverse shortest path from 𝑥𝑖 to𝑢 contains

(𝑣,𝑢). If 𝑑 = 𝛿𝑔𝑟𝑖 (𝑥𝑖 , 𝑆) is not increased after removing the
edge, then we remove from 𝑅𝑖 all reverse shortest paths
from 𝑣 to 𝑢, then finally reaching 𝑆 . Otherwise, we have to
rebuild 𝑅𝑖 , as 𝛿𝑟𝑔𝑖 (𝑥𝑖 , 𝑆) changes.

U2 takes𝑂 (𝜃 ·𝑚) timewhich is the same asMIC+, but the running
time of U2 is much less than MIC+ in practice.

U3. Edge Probability Updates (Δ𝑝). To update the associated
probability of an edge from 𝑝1 to 𝑝2 in each tuple, we first remove
the edge by U2 and then insert it back with probability 𝑝2 by U1.

U4. Vertex Insertion (+𝑣).We insert a new vertex 𝑣 . For each tuple
𝑇𝑖 = {𝑔𝑖 , 𝑥𝑖 , 𝑅𝑖 , �̂�𝑖 }, we assign 𝑣 to 𝑥𝑖 with probability 1

|𝑉 (𝐺 )+1 | . If

𝑥𝑖 is successfully assigned to 𝑣 , then we rebuild 𝑅𝑖 accordingly. The
running time of vertex insertion is 𝑂 (𝜃 ·𝑚/𝑛).

U5. Vertex Removal (−𝑣). Let 𝑣 be a vertex to remove. We first
utilize U2 to remove all edges incident to 𝑣 . Then, for each tuple
𝑇𝑖 = {𝑔𝑖 , 𝑥𝑖 , 𝑅𝑖 , �̂�𝑖 }, if 𝑥𝑖 = 𝑣 then we re-sample 𝑥𝑖 and rebuild 𝑅𝑖
for 𝑥𝑖 . The running time is also 𝑂 (𝜃 ·𝑚/𝑛).

U6. Seed Additions (+𝑠). Let 𝑠 be a new seed (not yet added into
𝑆), and 𝑑 = 𝛿𝑟𝑔𝑖 (𝑥𝑖 , 𝑠) be the reverse shortest distance from 𝑥𝑖 to 𝑠 .
For each tuple 𝑇𝑖 = {𝑔𝑖 , 𝑥𝑖 , 𝑅𝑖 , �̂�𝑖 }, if 𝑑 < 𝛿𝑟𝑔𝑖 (𝑥𝑖 , 𝑆) then we rebuild
𝑅𝑖 , if 𝑑 = 𝛿𝑟𝑔𝑖 (𝑥𝑖 , 𝑆) then we insert into 𝑅𝑖 all reverse shortest paths
from 𝑥𝑖 to 𝑠 , otherwise, 𝑅𝑖 is not changed.

U7. Seed Deletions (−𝑠). Let 𝑠 be a seed to remove. For each tuple
𝑇𝑖 = {𝑔𝑖 , 𝑥𝑖 , 𝑅𝑖 , �̂�𝑖 }, if 𝑠 is the only seed in 𝑅𝑖 , then we must rebuild
𝑅𝑖 . Otherwise, 𝑅𝑖 contains seeds other than 𝑠 , and we can safely
remove all shortest paths from 𝑥𝑖 to 𝑠 . U6 and U7 both run in𝑂 (𝜃 ·𝑚)

time, but the running time of them is far less than MIC+ in practice.

6.2 Extension to the Triggering Model

The triggering model is an influence propagation model that gen-
eralizes the independent cascade (IC) model [21], and it can be ex-
tended to a multi-campaigner setting, e.g., the K-LT model [18, 32].
The triggering model assumes that each vertex 𝑣 is associated with
a triggering distribution T (𝑣) of a subset of 𝑣 ’s in-neighbors. Each
sample from T (𝑣) is referred to as the triggering set of 𝑣 . For a seed
set 𝑆 , the influence propagation from 𝑆 under the multi-campaigner
triggering model works as follows:

(1) For each 𝑣 ∈ 𝑉 (𝐺), we sample the triggering set of 𝑣 from
T (𝑣) and remove any incoming edge of 𝑣 that starts from
a vertex outside T (𝑣). Let 𝐺𝑡𝑟 be the resulting graph.

(2) We activate the vertices in 𝑆 and propagate the diffusion
on 𝐺𝑡𝑟 , which is the same as under the MCIC model.

The MCIC model and the multi-campaigner triggering model are
different only in graph sampling. Therefore, when we extend MIC

and MIC+ to the multi-campaigner triggering model, we generate
graph samples by the triggering model and leave the rest parts
of the algorithms unchanged. Moreover, our algorithms may be
applied to other diffusion models that require influence countering.

Table 2: Statistics of datasets

Dataset 𝑛 𝑚 𝑑𝑎𝑣𝑔 Type

Facebook 4,039 88,234 43.7 Undirected
Wiki 7,115 103,689 29.1 Directed
EmailAll 265,214 420,045 3.2 Directed
DBLP 317,080 1,049,866 6.6 Undirected
Stanford 281,903 2,312,497 16.4 Directed
Youtube 1,134,890 2,987,624 5.3 Undirected
LiveJournal 4,847,571 68,993,773 28.5 Directed
Orkut 3,072,441 117,185,083 38.1 Undirected

7 EXPERIMENTS

7.1 Experiment Setup

Datasets. The experiments are conducted on 8 datasets from SNAP
[25]. Table 2 shows the statistics of the datasets, ordered by the
number of edges, where 𝑑𝑎𝑣𝑔 is the average vertex degree.

To evaluate the algorithms comprehensively, we also test on
undirected graphs. For undirected graphs, we convert each edge into
a bi-directional edge. We find there is no clear difference between
the performance on these graphs and the original directed graphs.

Algorithms. We evaluate baseline BIM (Section 3.5), baseline BGA
(Section 3.6), basic approach MIC (Algorithm 1), and the improved
approach MIC+ (Algorithm 3). Moreover, we test MIC-R which is
MIC+ without BPT estimation (Section 5.2), i.e., we set 𝑂𝑃𝑇 = 𝑏
when estimating the number of graph samples required.

Propagation Models. We consider two influence propagation
models, that is, the MCIC model (see Section 3.1) and the multi-
campaigner triggering model (see Section 6.2). We set the propaga-
tion probability by Weighted Cascade model: for each edge 𝑒 points
to a node 𝑣 , we set 𝑝𝑢,𝑣 = 1/𝑑−𝑣 where 𝑑−𝑣 is the in-degree of 𝑣 . This
setting is widely adopted in existing studies [12, 20, 21].

Parameter Settings. In each experiment, we repeat the method
five times and report the average result. We terminate an algorithm
if it cannot finish in 24 hours. Unless otherwise specified, we set
𝜀 = 0.6; set the number of seeds as 1% of the number of nodes,
i.e., #𝑠𝑒𝑒𝑑 = 0.01𝑛; and set the budget 𝑏 as 10% of the number of
seeds. To specify the seed set 𝑆 , we find the set 𝑆 of #𝑠𝑒𝑒𝑑 nodes
that maximize the influence [21], and then divide the seeds in 𝑆
into five groups (each group adopts a company).

We compute the average influence spread over 105 rounds of
MCIC diffusion as the ground truth of influence spread. We use this
method when comparing the influence spread of different methods,
which is widely used in prior works [42, 52].

Environments.We perform experiments on a CentOS Linux serve
(Release 7.5.1804) with Quad-Core Intel Xeon CPU (E5-2640 v4 @
2.20GHz) and 128G memory. All algorithms are implemented in
C++17. The code is compiled with g++ 10.2.1 under O3 optimization.

7.2 Experiment Results

Exp. 1: Varying 𝜀. We measure the efficiency of a method by
running time, and the effectiveness by the approximate ratio of
the result, i.e., the ratio between the influence increase led to by
the algorithm and 𝑂𝑃𝑇 which is the largest increase in influence
spread for any possible countered set 𝐴. We obtain 𝑂𝑃𝑇 as follows.
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(a) Wiki (b) Stanford

(c) Wiki (d) Stanford

Figure 7: Vary 𝜀 (Exp. 1)

(a) Running time on all datasets

(b) Influence spread (compare toMIC
+) on all datasets

(c) Number of sample graphs on all datasets

Figure 8: Overall performance (Exp. 2)

First, we feed 𝑙 = 1, 𝜀 = 0.01 to MIC+, and obtain a set 𝐴 in return.
After that, we compute the influence spread of 𝐴 by Monte Carlo
simulations, and assign the resulting spread to 𝑂𝑃𝑇 .

We vary 𝜀 from 0.2 to 1, and plot the performance of methods
in Figure 7. The approximate ratio for MIC-R and MIC+ are both
larger than 0.9 when 𝜀 ≤ 0.8, and the error is much smaller than 𝜀.
MIC slightly outperforms MIC+ in approximate ratio, while it is up
to 3 orders of magnitude slower (e.g., on Wiki dataset). Taking into
account the above, we set 𝜀 = 0.6 by default for the experiments.

(a) Wiki (b) Stanford

(c) Wiki (d) Stanford

Figure 9: Vary the countering budget (Exp. 3)

Exp. 2: Overall Performance. Figure 8 reports the performance
of different algorithms. According to Figure 8a, MIC outperforms
BGA in efficiency by 1 order of magnitude, and MIC+ can further
improve the efficiency by 3 orders compared with MIC. Besides,
MIC-R is slower than MIC+ by up to one order of magnitude, due
to the optimization technique of MIC+.

Figure 8b compares the influence spread of algorithms. Because
our MIC+ algorithm outperforms other algorithms in influence
spread, we report the result percentage compared with MIC+ for
each algorithm. Although BIM has a close time cost with MIC+, the
influence spread of BIM is much smaller, e.g., in the Livejournal
dataset, BIM returns only 48.57% of the influence spread achieved by
MIC+. Overall, BIM and BGA (i.e., the two baselines) have limitations
in either effectiveness or efficiency, while our MIC+ provides state-
of-the-art performance.

Figure 8c shows the number of graph samples 𝜃 required for
the methods. The parameter 𝜃 decides the running time, and a
small 𝜃 implies that the algorithm achieves the same approximate
guarantees with a less number of samples. Compared with MIC

and MIC-R, the number of samples required for MIC+ is about one
order of magnitude smaller. This shows that the technique of MIC+

effectively reduces 𝜃 and the running time.

Exp. 3: Varying the Budget. Figure 9 reports the performance
of algorithms, varying the budget 𝑏 from 5% to 50% of the number
of seeds. MIC+ outperforms MIC and MIC-R in running time by
2-3 orders of magnitude, meanwhile, the running time of each
method is stable across different budgets. The influence spread of
the three methods (i.e., MIC, MIC-R, and MIC+) is close, and the
spread increases with the increase of budget. The running time of
MIC and MIC+ both decrease as the budget increases. The reason
is that 𝐵𝑃𝑇 will become larger as the budget 𝑏 increases, and this
leads to a smaller number of graph samples 𝜃 as well as reduced
running time. Therefore, the budget will slightly affect the running
time of our methods, and it can largely affect the influence spread.

Exp. 4: Varying the Number of Seeds. Next, we vary the number
of seeds from 2% to 10% of the number of vertices, and report the
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(a) Wiki (b) Stanford

(c) Wiki (d) Stanford

Figure 10: Vary the number of seeds (Exp. 4)

Table 3: Performance on dynamic graphs (Exp. 5)

D
Index Update time (s)

Time (s) Size (G) +𝑒 −𝑒 Δ𝑝 +𝑣 −𝑣 +𝑠 −𝑠

F. 0.717 0.08 0.02 0.01 0.03 0.01 0.01 0.19 0.04
W. 1.452 0.07 0.07 0.01 0.09 0.01 0.01 0.56 0.02
E. 543.5 0.31 0.35 0.20 0.68 0.01 0.12 25.9 0.06
D. 270.5 0.31 0.49 0.02 0.07 0.01 0.01 5.50 0.13
S. 196.71 0.46 0.05 0.02 0.07 0.01 0.01 5.88 0.22
Y. 1232.8 0.81 0.04 0.02 0.06 0.01 0.01 26.8 0.10
L. 5733.7 9.88 0.09 0.06 0.14 0.05 0.05 450 0.25
O. 3635.3 14.9 0.27 0.16 0.52 0.02 0.01 194 0.18

results in Figure 10. Our MIC+ is consistently faster than MIC and
MIC-R, achieving a speedup of 2-3 orders of magnitude in running
time, despite they have the same theoretical time complexity. The
influence spread ofMIC,MIC-R, andMIC+ is close. Note that, when
the number of seeds becomes large, the budget 𝑏 also increases as
we have 𝑏 = 0.1#𝑠𝑒𝑒𝑑 . As a result, the influence spread of methods
increases and the running time decreases slightly, according to the
analysis in Section 5.2. In short, the number of seeds has a limited
effect on the running time of our methods, while this parameter
can largely affect the influence spread of the results.

Exp. 5: Performance of Dynamic Algorithm.We evaluate the
index construction of MIC+ and the seven update operations on
the index (see Section 6.1), then report the running time in Table 3.
Compared with the running time of MIC+ (Exp. 2), the index con-
struction time is within the same order of magnitude. Note that a
naive dynamic algorithm is to re-run MIC+ after each update. Com-
pared with this algorithm, our dynamic algorithm can speed up
the update by up to 4 orders of magnitude. Overall, the index con-
struction ofMIC+ incurs an overhead that is close to runningMIC+,
while the update cost over MIC+’s index is fairly small compared
with re-running MIC+.

To test edge insertion and removal (U1-U2), we remove 100
random edges from the graph, and then insert them back. We use a
similar testing method for vertex (resp. seed) insertion and removal
U4-U5 (resp. U6-U7). When testing edge probability change (U3),

(a) Influence spread (compare toMIC
+) on all datasets (Degree)

(b) Influence spread (compare toMIC
+) on all datasets (Random)

Figure 11: Different seed selection strategies (Exp. 6)

we select a random edge (𝑢, 𝑣) from the graph, and then convert its
associated propagation probability to either 𝑝 × 2 or 𝑝/2 at random.

Exp. 6: Seed Selection Strategies. By default, we adopt the Max
strategy for seed selection, i.e., we select the seeds by the greedy
influence maximization method. Here, we evaluate the performance
with other vertex selection methods: (i) Deg selects the vertices with
the highest degrees as the seeds for countering, and (ii) Random
randomly chooses the seeds for countering. Figure 11 shows that
the influence spread of MIC+ is larger than other algorithms by up
to 3.45 times for all the results returned within the time limit. We
find that BIM is more sensitive to different seed selection methods
because it does not consider the competition of multi-campaigners
in seed selection and the selected seeds have varied qualities.

8 CONCLUSION

To the best of our knowledge, we are the first to study the problem
of influence countering. We prove that the problem is #P-complete
and its influence computation is #P-hard. Despite the theoretical
hardness, we propose two novel algorithms MIC and MIC+ to solve
the problemwith approximation guarantees and practical efficiency.
Both MIC and MIC+ run in 𝑂 ((𝑙𝑛𝑚 log𝑛)/(𝑏𝜀2)) time and return a
(1 − 𝜀)-approximate solution with at least 1 − 𝑛−𝑙 probability. In
addition, we propose awell-designed index forMIC+ that can handle
graphs with frequent updates. The experimental results show that
our algorithms are effective and efficient. For future work, we plan
to study the problem under different influence strategies and design
a system to facilitate successful influence competitions.
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