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ABSTRACT

Query optimization must evolve with new workloads. As analytic
and data warehouse workloads become more ubiquitous, optimiza-
tion techniques that reduce the amount of data processed during
query execution, enable shared computation and avoid expensive
data access and joins must be rigorously explored. In this paper,
we present aggregate-decomposition techniques as enhancements
to an existing query transformation that performs grouping be-
fore joins. Consequently, the transformation generates more query
rewrite candidates and can also be applied to a larger set of queries.
Further, we introduce two new query transformations, i) subsump-
tion of views and subqueries that explores opportunities for sharing
computation and ii) union-all duplicator transformation for queries
with disjunctive join predicates that removes the need for multiple
data access and joins. These techniques are applicable to commonly
noticed query patterns in customer workloads and provide signif-
icant performance benefit as indicated in our performance study.
They have been implemented in Oracle RDBMS.
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1 INTRODUCTION

Modern database workloads increasingly consist of analytics queries
that require processing large amount of data. Over time, as more
data is collected and uploaded to data warehouses and Hybrid Trans-
actional and Analytical Processing ( HTAP) systems, the queries
written to analyze the data and gain insights need to be processed
such that their performance remains optimal. Oracle query op-
timizer uses various query transformation techniques to rewrite
queries into their equivalent but more optimal forms. Some of the
common constructs that can be observed in such queries are sub-
queries, views and joins. Optimal forms of queries often require
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rewriting these constructs such that the new equivalent forms i)
prune data during query execution as early as possible so that the
overhead of subsequent computation is reduced, ii) avoid redun-
dant computation through sharing of common parts, iii) open up
access paths and operations that would otherwise not be possible,
etc. In this paper we present some techniques built into the Oracle
query optimizer that achieve the above stated objectives of query
optimization.

Grouping rows before joins is a well-known technique [5, 22]
used by query optimizers to improve the efficiency of joins by re-
ducing the number of data rows that need to be subsequently joined.
The reduction is achieved by placing a new group-by operation
before the join. In Oracle RDBMS, the corresponding query transfor-
mation is called group-by placement (GBP), which uses a cost-based
framework [2]. In prior work [5, 22] (and in Oracle RDBMS prior
to our proposal), when aggregate expressions in queries refer to
columns from multiple tables, there is lack of discussion on meth-
ods to split them further so that grouping can be done on joins of a
subset of those tables. In this paper, we propose techniques that al-
low subsets of join graph to be grouped together leading to optimal
plans that were hitherto not possible. When such grouping is done,
the aggregates present in the original query must be rewritten to
combine the partial aggregates (generated by grouping) to obtain
the desired result (examples are shown in Section 2.1). However,
when the aggregates contain complex arithmetic and/or conditional
expressions, decomposing them to facilitate the GBP transformation
is not straightforward. We show how this can achieved thus en-
abling additional combinations of grouping.Section 2 of this paper
describes our techniques in detail.

Queries containing multiple subqueries and views are common
in many benchmarks and customer workloads. Previous studies [17,
24] have suggested evaluating such common query sub-expressions
once, materializing the results and re-using them. We propose a
different method to rewrite queries that avoids materialization by
unifying the common computation into a containing inline view.
Section 3 discusses our technique that is applicable to specific forms
of queries.

In customer workloads, we observed a class of queries that con-
tain conjunctive join and disjunctive join predicates such that the
conjunctive join alone produces many rows relative to the size of
the input (i.e., it is an "expanding" join) but the disjunctive join
later eliminates many of them. Expanding joins cause significant
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degradation in performance when they generate huge number of
intermediate rows. In Section 4 of this paper, we propose a new
execution operator that facilitates simultaneous application of con-
junctive and certain disjunctive join predicates by generating copies
of rows on-the-fly, thus eliminating the expanding join in between.

The above-described transformation techniques have been im-
plemented and released in Oracle RDBMS. To our knowledge, our
work is the first that describes and utilizes these techniques driven
by query rewrites during optimization.

1.1 Cost-Based Query Transformation
Framework (CBQT) - Overview

A significant number of query transformations in Oracle are cost-
based where logical transformation (also known as query rewrite)
and physical optimization are combined to generate optimal exe-
cution plans. During cost-based transformation, a query is copied,
logically transformed and its cost is calculated using the cost-based
physical optimizer. This process is repeated multiple times applying
a new set of transformations; and at the end, one or more trans-
formations are selected and applied to the original query, if they
result in a lower cost. The cost-based query transformation (CBQT)
framework [2] provides a mechanism for the exploration of the
state space generated by each transformation thus enabling the
Oracle optimizer to select the optimal state in an efficient manner.

1.1.1  State Space Search Techniques. A fundamental question re-
lated to cost-based transformation is whether these transformations
lead to a combinatorial explosion of alternatives that need to be
evaluated and what the trade-off is between optimization cost and
execution cost. The sources of multiple alternatives are the vari-
ous transformations themselves as well as the set of objects (e.g.,
subquery blocks, view blocks, tables, table groups, join edges, pred-
icates, etc.) on which each transformation may apply. If there are N
independent objects on which a transformation T can apply, then
2N possible alternative combinations can potentially be generated
by the application of T. For simplicity, we denote a state as an array
of bits, where the n" bit represents whether the nth object (e.g.,
subquery, view or table group, etc.) is transformed (a value of 1) or
not transformed (a value of 0).

The complexity of a cost-based transformation is determined
by the number of alternative combinations, the state space, which
grows exponentially with the number of transformation objects. In
order to limit the potential increase in optimization time, we use
several techniques for searching the state space of various trans-
formations. Some examples of search techniques are exhaustive,
iterative, linear, two-pass, and perturbation walk. The CBQT frame-
work automatically decides which search technique to use based
on the number of elements to be transformed, the characteristics
of the transformation, and the overall complexity of the query.

2 GROUP-BY PLACEMENT FOR QUERIES
WITH COMPLEX AGGREGATES
In this section, we first give a brief overview of the existing group-

by placement (GBP) transformation in Oracle in which all the tables
inside aggregates are considered as one grouping unit, followed by
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describing novel decomposition techniques for complex aggregates
that allow us to split these table groups further.

2.1 Background: Forms of GBP Transformation

Depending upon the columns of the tables that appear in aggre-
gate expressions of a query and consequently the tables that early
grouping is applied on, there are mainly three forms of GBP.

The first variant is called “coalesced grouping” (CG) in which
early grouping is performed on the tables whose columns appear
inside the aggregates. For example, consider query Q1 (and its
variants) shown in Figure 1 in which tables T1 and T2 are joined on
column ‘x’, and the aggregate is on column ‘a’ of T1. The query can
be transformed using CG variant of GBP to obtain query Q1C. A new
view V is created that groups the table T1 before it is joined with
T2 in the outer query block. The group V generates all columns
required by its outer query block (T1.x and T1.g) as well as the
partial aggregate column ‘Sa’. The original aggregate in the outer
query block, SUM(T1.a), is modified to SUM(V.Sa) that adds the
partial aggregates across groups and obtains the desired result.

The second variant is called “factored grouping” (FG) in which
early grouping is performed on the tables whose columns do not
appear in the aggregates. Such groups generate multiplicative “fac-
tors” that are used to scale the aggregates of the other tables. For
query Q1, the transformed version is shown in Q1F of Figure 1.
As grouping is now performed on table T2, the factors denoting
the size of each group are gathered by the COUNT(*) aggregate of
the view V. The original aggregate in the outer query is modified -
SUM(T1.a * V.CNT) - to obtain the scaled sum for each group that
matches on the join column ‘x’.

The third variant combines the above ideas and creates both
coalesced and factored grouping views in the outer query as shown
in Q1CF of Figure 1.

Similar variants can be easily derived for other types of aggre-
gates like MIN, MAX, COUNT in the original query and are not
shown for brevity. It can be noted that the techniques are applicable
even in the absence of a group-by clause or aggregate function in
the original query (e.g., GROUP BY T1.g in Q1) and are trivially
applicable to queries that contain a single table. Additionally, there
are other specialized variants of GBP that are not discussed in this
paper.

We introduce terminology that helps in formalizing the tech-
niques later. The tables that appear in the aggregate expressions
of a query (e.g., T1 in Q1) are called “Aggregating Tables” repre-
sented by set AT, and the rest of the tables (e.g., T2 in Q1) are called
“Non-Aggregating Tables” represented by set NAT.

2.1.1 State Space of GBP Transformation. During cost-based GBP
transformation, for each qualifying query block, multiple states are
generated, costed and the cheapest among them is chosen to be
applied on the query block. A join graph is constructed in which
each table (or view) is a vertex and there is an edge between two
tables if they appear in a join condition. For example, if the join
condition is T1.x = T2.y, the join graph would carry an edge between
vertices T1 and T2. The state space is defined over the set of tables
present in a query block, the type (e.g., chain, star, cycle, clique,
etc.) of the join graph and the applicability of one or more variants
described earlier. For GBP, the join graph must be connected. The



Ql:

SELECT SUM(T1l.a)

FROM T1, T2

WHERE Tl.x = T2.x and T2.k > 4
GROUP BY Tl.g;

QlcC:

SELECT SUM(V.Sa)

FROM T2, (SELECT Tl.x, Tl.g, SUM(Tl.a) Sa
FROM T1
GROUP BY Tl.x, Tl.g) V

WHERE V.x = T2.x and T2.k > 4

GROUP BY V.g;

Q1lF:
SELECT SUM(Tl.a * V.CNT)

FROM T1, (SELECT T2.x, COUNT(*) CNT
FROM T2
WHERE T2.k > 4
GROUP BY T2.x) V

WHERE Tl.x = V.x

GROUP BY Tl.g;

QI1CF:

SELECT SUM(Vc.Sa * Vf.CNT)

FROM (SELECT Tl.x, Tl.g, SUM(Tl.a) Sa
FROM T1
GROUP BY Tl.x, Tl.g) Vg,
(SELECT T2.x, COUNT(*) CNT
FROM T2
WHERE T2.k > 4
GROUP BY T2.x) Vf

WHERE Vc.x = Vf.x

GROUP BY Vc.g;

Figure 1: Query Q1 and its three variants generated by GBP
transformation.

Q2:

SELECT T2.B2, T3.C3, SUM(T1.Al), COUNT(T1.D1l)
FROM T1, T2, T3, T4

WHERE T1.Bl T2.B2 and T2.D2
GROUP BY T2.B2, T3.C3;

T3.D3 and T3.C3 T4.C4

Figure 2: Query Q2 with table T1 in the aggregating table set
AT.

variants form the substates of each state. If there are N tables in a
query block and the join graph is a clique (i.e., strongly connected),
there will be 3 2V combinations generated (3 variants and 2V
states). Heuristics are used to limit the combinatorial explosion of
the space; sometimes linear exploration strategy is used.

The set of states of the state space is generated by partitioning
the tables into two sets C and F such that C necessarily includes all
aggregating tables (set AT) i.e., C is a superset of AT and F contains
the rest of the tables. Further, tables in each of the sets C and F
must be connected to avoid introducing cartesian joins, if a view
is to be generated for that set. The three variants (substates) of a
state correspond to generating views only on C (coalesced view),
only on F (factored view) and both C, F.
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Q3:

SELECT SUM(Tl.a * T2.b)
FROM T1, T2

WHERE Tl.x = T2.x
GROUP BY T2.g;

Q3C:

SELECT SUM(Tl.a * V.Sb)

FROM T1, (SELECT T2.x,
FROM T2
GROUP BY T2.x,

V.x

T2.g, SUM(T2.b) Sb

T2.9) V

WHERE T1l.x
GROUP BY V.g;

Q3F:
SELECT SUM(Tl.a * V.b * V.CNT)

FROM T1, (SELECT T2.x, T2.g, T2.b, COUNT (*) CNT
FROM T2
GROUP BY T2.x, T2.g, T2.b) V

WHERE Tl.x = V.x

GROUP BY V.g;

Figure 3: Coalesced and Factored grouping on table T2 of
query Q3 that has a simple arithmetic expression in its ag-
gregate.

Consider query Q2 shown in Figure 2. It has four tables one
of which (T1) appears in the aggregates; so, AT = {T1}. The corre-
sponding state space generated is shown in Table 1. Each state is
represented by a set of bits; one bit for each table. A bit value “1”
indicates the corresponding table will be included in C. Note that ta-
ble T1 appears in C in all states as it belongs to AT. Hence, the state
space is generated over the rest of the tables. Some states may have
disconnected join graphs induced by either C or F; consequently,
they have fewer substates.

2.2 Aggregates with Complex Arithmetic
Expressions

When aggregate expressions contain columns from a subset of
tables in the query, coalescing the aggregates involves placing
the entire aggregate into the GBP view as shown in Q1C where
SUM(T1.a) along with the table T1 is moved into the view V. Con-
sider query Q3 (Figure 3) whose aggregate expression contains
columns from both the tables. Coalesced grouping is not straight-
forward because the entire aggregate SUM(T1.a * T2.b) cannot be
moved into a view along with any one table (and both tables cannot
be moved as the outer query block must retain at least one table
for the join to be valid). However, observing that the multiplication
operation distributes over SUM, one of the tables (e.g., T2) can be
moved to the coalesced view and the aggregate in the outer query
block can be modified as shown in Q3C in Figure 3. Similarly, fac-
tored grouping can be applied to get the variant Q3F. (Q3C however,
is likely to be more optimal than Q3F and is pruned.)

In the rest of this section, we describe an algorithm to use the
idea of decomposition of expressions that contain a combination of
arithmetic operators *, +, - and / to perform GBP transformation.
The process consists of three steps.

(1) Normalization, in which the aggregate expressions of the
query block are converted to a standard normal form.



Table 1: State Space of GBP for query Q2 (AT = {T1}, Join Graph = T1-T2-T3-T4).

T2 T3 T4 C F Connected Join Graph  No. of GBP substates
111 {T1,T2, T3, T4 ) C 1
110 {T1, T2, T3} (T4} C,F 3
101 {T1, T2, T4} (T3} F 1
100 {T1, T2} (T3, T4} C,F 3
011 {T1, T3, T4} (T2} F 1
010 {T1, T3} (T2, T4} - 0
001 {T1, T4} (T2, T3} F 1
000 {T1} {T2, T3, T4} CF 3
Q4: 2.2.2  Generation of Additional GBP States. Normalization facil-
iigECTTiUM;‘;Tl -a t T2.b)*(T2.c - T1.d)) itates generation of additional valid GBP states that expand the
! scope of GBP transformation. As described in Section 2.1.1 (and
WHERE Tl.x = T2.x

GROUP BY T2.g;

Figure 4: Query Q4 with a complex aggregate.

(2) Generation of GBP states conforming to the proposed new
rules that identify tables that can be moved into the GBP
view(s).

(3) Transformation of the normalized aggregates in the outer
query block and generation of corresponding aggregates
inside the view query block(s) using a set of new proposed
rules (based on the context of each state of GBP).

2.2.1 Aggregate Expression Normalization. Consider query Q4 from
Figure 4 that contains the following complex arithmetic expression
in its aggregate.

SUM((T1.a+T2.b) * (T2.c — T1.d))

Applying coalesced grouping on such a query is not straightfor-
ward as the aggregate needs to be correctly decomposed in order to
move one of the tables into a coalesced view. However, considering
that the distributive property can be used in expressions of the form
shown in Q3, if the above expression is converted into such form, a
similar technique could be applied.

Given an arbitrary arithmetic expression inside an aggregate
(using the arithmetic operators *, +, - and /), the GBP transformation
first converts it into a “sum of products (SOP)” normal form. The
normalized expression consists of “product” terms that are com-
bined using the addition or subtraction operator. Each product term,
in turn, consists of base terms that are combined using multiplica-
tion and/or division operators. Base terms can either be columns of
a table or other constants (including bind variables etc.). For exam-
ple, the following normalized expression consists of three product
terms combined using “+” and “-“ operators (multiplications are
implicitly shown).

xyz + ab — pq/r

The normalized form of the SUM expression in query Q4 is as
follows.

SUM(Tl.a*T2.c—Tl.a*T1.d+T2.b«T2.c —T2.b*T1.d)
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shown in Table 1), regular valid GBP states all have the property C
2 AT. However, no such state is possible for Q4 as it requires mov-
ing all tables from the outer block into the view. So, we introduce
the following new rules.

e In a GBP state, C must contain at least one table from AT,
ie., CNAT # 0.

o If the aggregation operator is SUM, for any table Tx € C,
if a column reference of Tx appears in the denominator of
a division (“/”) operator in any product term of the SOP
expression, the state is invalid.

The first rule relaxes the condition C 2 AT so that new GBP states
can be generated. The second rule is necessary because division is
not distributive over addition for denominators (i.e., x/(y + z) #
x/y + x/z). An example showing the application of these rules to
generate additional states is given in Section 2.2.4.

We use other heuristics to limit the number of states that need to
be costed, like checking if a state introduces grouping key columns
contain high NDVs (number of distinct values) and discarding non-
promising states etc. The details of all such heuristics are outside
the scope of this paper.

2.2.3  Transformation of Aggregates. When views are created ac-
cording to a GBP state and appropriate tables are moved into them,
the aggregate expressions in the outer query block must be trans-
formed accordingly to retain the correct semantics. The transfor-
mation depends on i) the GBP state generated (i.e., a specific parti-
tioning of tables into C and F) and ii) the associated aggregation
operation (SUM, MIN etc.) along with the SOP expression inside it.
It is done as follows.

Each product term “P” in the SOP expression is examined and
transformed independently based on the aggregation operator. (For
brevity, we write “a table of P” to mean “a table whose columns
appear in the term P”.)

Aggregate function SUM():

e Ifno table of P is in C, the product P must be scaled by the
cardinality of each group formed by the GBP view. Hence,
a “count(*) CNT” aggregate is added to the GBP view (V)
and P is replaced by “P * V.CNT”.
E.g., P = T1.a*T2.b is modified to T1.a*T2.b*V.CNT when
T1, T2 ¢ C.



Original Query:
SELECT SUM(Tl.a * T2.b - T3.x * T4.y * T5.z)
FROM T1, T2, T3, T4, T5

GBP State C = {T3, T4}:

SELECT SUM(Tl.a * T2.b * V.CNT - V.S * T5.z)

FROM T1, T2, TS5, (SELECT COUNT(*) CNT, SUM(T3.x * T4.y)
FROM T3, T4
L)V

S

Figure 5: Transformation of SUM aggregate for GBP state C
={T3, T4}. (Query shown partially)

e If at least one table of P is in C, P is split into two terms P1
and P2 such that P1 € C and P2 ¢ C. Using the distributive
property, an aggregate “SUM(P1) S” is created inside the
GBP view and P1 in P is replaced by the column S from the
GBP view.

E.g., P = T3.x*T4.y*T5.z is modified to V.S*T5.z where V.S =
SUM(T3.x*T4.y), when T3, T4 € C and T5 ¢ C.

The complete aggregate transformation using both the rules is
shown in Figure 5.
Aggregate function MIN() (similar for MAX()):

e Ifall tables of P are in C, an aggregate “MIN(P) M” is created
inside the GBP view and P is replaced by column M from
the view.

E.g., T3.x*T4.y (T3, T4 € C) is replaced by V.M where M =
MIN(T3.x*T4.y).

If at least one table of P is not in C, column references in
P that belong to C are added to grouping keys of the GBP
view.

E.g., T3.x*T2.b (T3 € C, T2 ¢ C) is modified to V.x*T2.b
where V.x = T3.x.

It is possible to introduce MIN/MAX aggregates inside the GBP
view (instead of grouping keys) when additional constraints are
present on columns (e.g., T2.b above is known to be always pos-
itive). We don’t describe them further. The complete aggregate
transformation using both the rules is shown in Figure 6.

Aggregate function COUNT(): The aggregate COUNT in the
outer query block is transformed into SUM as it needs to add
the counts for each group that are produced by the GBP view.
However, the aggregate COUNT added to the GBP view can com-
pute the arithmetic expression using an addition operator because
the computed value is not relevant for the result. For example
COUNT(T1.a%T2.D) is the same as COUNT (T1.a+T2.b). We skip
giving a specific example as it can be derived similar to the other
aggregate functions.

2.24 New State Space of GBP Transformation. To illustrate the new
state space of GBP, we take a query Q5 obtained by adding another
table T3 to query Q4 (Figure 4). The query and its normalized
aggregate expression are shown in Figure 7. Table 2 depicts the
new state space generated. States {1 1 1} and {0 0 0} are not shown
as they are not valid. Without decomposition, only state {1 1 0} is
possible (due to the rule C 2 AT). The states shown in bold are the
new states generated that conform to the relaxed rule C N AT # 0.
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Original Query:
SELECT MIN(T3.x * T2.b + T3.x * T4.y)
FROM T1, T2, T3, T4, T5

GBP State C = {T3, T4}:

SELECT MIN(V.x * T2.b + V.M)

FROM T1, T2, T5, (SELECT T3.x Xx,
FROM T3, T4

MIN(T3.x * T4.y) M

GROUP BY T3.x..) V

Figure 6: Transformation of MIN aggregate for GBP state C
={T3, T4}. (Query shown partially)

Q5:
SELECT SUM((Tl.a + T2.b)*(T2.c - Tl.d))
FROM T1, T2, T3
WHERE T1.x T2.x
AND T2.y = T3.y
GROUP BY T2.g;

Normalized Aggregate:
SELECT SUM(Tl.a*T2.c + T2.b*T2.c - Tl.a*Tl.d - T2.b*T1l.d)

Figure 7: Query Q5 and its normalized aggregate expression.

Table 3 shows how the product terms in the aggregate of the
outer query block are transformed for each state, according to the
rules in Section 2.2.3. Factored views (not shown) are generated
in the same way. In the third and the fourth columns of the table,
each modified product term (P) in the outer query block and its
corresponding aggregate term in the view are shown in the same
line. For instance, in state {1 0 0}, the product term V.Sa * T2.c
derives its value V.Sa, from the aggregate “SUM(T1.a) Sa” of the
view V.

2.3 Aggregates with Conditional Expressions

In this section, we address another category of aggregate expres-
sions that include conditional logic. These are commonly seen in
customer workloads and benchmarks. Consider query QC1 from
Figure 8 that has a CASE expression inside the aggregate. Originally,
as both tables appear inside the aggregate, they are considered as
aggregating tables. Thus, the set AT = {T1, T2}. This prevents GBP
transformation from happening. However, it can be observed that
the columns of table T1 only appear in conditional checks and are
not aggregated. Hence, it is possible to perform the transformation
and obtain query QC2. (Another variant can also be generated with
a factored view on T1).

The proposed enhancement consists of 1) identifying tables in
aggregate expressions that appear in conditions and 2) generating
new GBP states and transforming the aggregates accordingly.

2.3.1 Pre-processing Conditional Expressions. The tables in an ex-
pression are partitioned into a set CT (for “Condition Tables”) con-
taining those that participate in conditional checks and another set
AT containing those that participate in aggregation. In query QC1,
CT ={T1} and AT = {T2}. Figure 9 indicates how the sets CT and AT
are derived for a nested conditional aggregate. If a table appears in



Table 2: New State Space of GBP for Query Q5 (AT = {T1, T2}, Join Graph = T1-T2-T3). New states are in bold.

T1T2T3 C F Connected Join Graph  No. of GBP Substates
110 {T1, T2}  {T3} C,F 3
101 {T1,T3} (T2} F 1
100 {T1}  {T2, T3} C,F 3
011 {T2, T3} {T1} C,F 3
010 (T2}  {T1, T3} C 1
001 {13}  {T1, T2} CF 0(CNAT=0)

Table 3: Aggregate (SUM) Transformation for Coalesced View (V) in New GBP States of Table 2.

T1T2T3 TablesinV Transformed Terms in Outer Query Block Corresponding Aggregate Terms in V
V.Sa* T2.c + SUM(T1.a) Sa
100 T1 T2.b *T2.c * VCNT - COUNT(*) CNT
V.Sad - SUM(T1.a * T1.d) Sad
T2.b *V.Sd SUM(T1.d) Sd
Tl.a* V.Sc + SUM(T2.c) Sc
V.Sbe - SUM(T2.b * T2.c) Sbe
011 T2, 13 Tla*T1.d* VONT - COUNT(*) CNT
V.Sb * T1.d SUM(T2.b) Sb
Tl.a™V.Sc+ SUM(T2.c) Sc
010 T2 V.Sbc - SUM(T2.b * T2.c) Sbe
Tl.a*T1.d * V.CNT - COUNT(*) CNT
V.Sb * T1d SUM(T2.b) Sb
QC1: SUM (CASE
SELECT SUM(CASE WHEN Tl.a = 2 THEN T2.b ELSE T2.c END) WHEN
FROM T1, T2 (CASE WHEN T1.b > 5 <== Condition column
WHERE Tl.x = T2.x AND T2.y > 2 THEN Tl.c <== Condition column
GROUP BY Tl.g; ELSE Tl.a <== Condition column
END) = 5
ocz: THEN
SELECT SUM(CASE WHEN Tl.a = 2 THEN V.Sb ELSE V.Sc END)
FROM T1, (SELECT SUM(T2.b) Sb, SUM(T2.c) Sc (CASE WHEN T2.b < 5 <== Condition column
FROM T2 THEN T3.x <== Aggregate column
GROUP BY T2.x) V ELSE T3.y <== Aggregate column
WHERE Tl.x = V.x AND V.y > 2 END)
GROUP BY Tl.g; ELSE
T3.y <== Aggregate column
END)

Figure 8: Query QC1 transformed into QC2 using a coalesced
GBP view.

both the sets CT and AT, the decomposition is not performed as it
adds more complexity to splitting the expression.

2.3.2  Generation of New GBP States. We introduce the following
rule to expand the scope of GBP based on the identified sets, CT
and AT. For every partitioning C, F generated (such that C 2 AT),

e If C contains all tables of CT (i.e., C 2 CT U AT) or C
contains no tables of CT (i.e., C N CT = 0), GBP substates
are generated with group-by views on C, on F, and both C,
F.

e If C contains some (but not all) tables of CT (i.e., (C N CT) C
CT), GBP state is generated with group-by view on F only.
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Figure 9: Condition Table and Aggregating Table sets for

nested conditional aggregate.

The first rule opens the possibility of splitting the conditional
expression and moving all tables of CT together. The second rule en-
sures coalesced views are not generated that would require complex
splitting of the aggregate because a subset of tables in CT would
need to be moved. So, we either move all the tables in CT into a
coalesced view or move none of them. As stated in Section 2.2.2,
there are other heuristics we use to discard non-promising states.

2.3.3  New State Space. Table 4 gives an illustration of the new
state space produced by partitioning the tables in the conditional
aggregate of an example query QC3 shown in Figure 10.



Table 4: New State Space of GBP for Query QC3 (AT = {T3}, CT = {T1}, Join Graph = T2-T1-T3). New states are in bold.

T1T2 C F Cvs CT Connected Sets  No. of GBP Substates
10 {T1,T3} {T2} C has all tables of CT C,F 3
01 {T2,T3} {T1} C has no tables of CT F 1
00 {T3} {T1, T2} C has no tables of CT C,F 3
oc3: ovl:
SELECT SUM(CASE WHEN T1.b=4 THEN T3.b+l ELSE T3.a END) SELECT *
FROM T1, T2, T3 FROM (SELECT AVG(F.x) AV
WHERE Tl.x = T2.x FROM F, D1
AND Tl.y = T3.y WHERE F.a = Dl.a AND F.c = 5
AND T2.b > 2 AND F.g = 69) VI,
GROUP BY T1.g; (SELECT SUM(F.y) SM
FROM F, D1
Figure 10: Query QC3 with conditional expression in its ag- WHERE F.a = Dl.a AND F.c = 5
gregate. AND F.g = 40) V2,
(SELECT COUNT (F.z) CN
FROM F, D1
WHERE F.a = Dl.a AND F.c = 5
The transformation of aggregates in the outer query block is AND F.g = 2
relatively straightforward. AND Dl.m > 8) V3;
e When C has all tables of CT, the entire conditional aggre- ov2:
gate is moved into the GBP view. SELﬁCT N
e When C has no tables of CT, simple aggregates are placed FROM (SELECT AVG(CASE WHEN F.g = 69
in the GBP view and the conditional aggregate is retained THEN F.x ELSE NULL END) AV,
in the outer query block while replacing the appropriate SUM(CASE WHEN F.g = 40
columns with references to the view as shown in Figure 8. THEN F.y ELSE NULL END) SM,
COUNT (CASE WHEN F.g = 2 and Dl.m > 8
To conclude, we proposed novel methods of "aggregate decom- THEN F.z ELSE NULL END) CN
position” and "state generation" that ensure more efficient grouping FROM F, D1
can be performed in queries. WHERE F.a = Dl.a
AND F.c = 5 /* Factorization */
3 SUBSUMPTION OF VIEWS AND SUBQUERIES | gD Feg TN(69, 50, 2) /* Unitication =/

In Oracle terminology, a query block that appears in the FROM
clause of another query block is called a ‘view’, whereas a query
block that appears in the WHERE, SELECT, or HAVING clauses is
called a ‘subquery’. This section describes a technique for subsum-
ing multiple views or subqueries into a single view that replaces
them. Subsumption thus reduces multiple table accesses and joins
thereby improving query performance. It is a heuristic query trans-
formation that is used in the presence of the qualifying conditions.

Query blocks with the following patterns are commonly found in
customer workloads (esp. app-generated queries) and benchmarks.

o All views/subqueries appear in the same outer query block.

e Each view/subquery has aggregation with no group-by
clause, i.e., it produces exactly one row.

o All views/subqueries have identical tables and join predi-
cates.

Consider query QV1 in Figure 11 that satisfies the above con-
ditions. The views have the same join predicate "F.a = D1.a" and
contain different filter predicates. The subsumption algorithm per-
forms the following after creating a new subsuming view based on
the given views.

e For every SELECT item of each subsumed view, a CASE
statement is formed encapsulating its WHERE clause filter
predicates and arguments of its aggregate function.
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Figure 11: Query QV1 transformed into QV2 using subsump-
tion.

o The filter predicates that appear in the views are factored
and unified into the subsuming view.

Factorization: The common filter predicates are removed from
subsumed views and added to the WHERE clause of the subsuming
view.

Unification: Different filter predicates originating from sub-
sumed views are combined into a disjunctive or a range filter pred-
icate and added to the subsuming view.

The objective of factorization and unification is to make joins
and aggregations more efficient in the subsuming view. QV2 in
Figure 11 is the corresponding transformed query obtained using
the above techniques. The views V1, V2 and V3 have been subsumed
into a single view SV. The filter predicate “F.c = 5” common to all
three views has been factored out and placed in the subsuming
view SV. The three predicates, “F.g = 69”, “F.g = 40”, and “F.g = 2,
are unified as “F.g IN (69, 40, 2)” and placed in the subsuming view,
but the individual filter predicates (e.g., “F.g = 40”) appear in the



QS1:

SELECT (SELECT SUM(F.x)
FROM F
WHERE F.c between 1 and 5) sSMi1,
(SELECT AVG (F.x)
FROM F
WHERE F.c between 6 and 10) AV,
(SELECT COUNT (F.x)
FROM F
WHERE F.c between 11 and 15) CN,
(SELECT SUM(F.x)
FROM F
WHERE F.c between 16 and 20) SM2
FROM T
WHERE T.k = 1;
Qs2:
SELECT *
FROM (SELECT SUM(CASE WHEN F.c between 1 and 5
THEN F.x ELSE NULL END) SM1,
AVG (CASE WHEN F.c between 6 and 10
THEN F.x ELSE NULL END) AV,
COUNT (CASE WHEN F.c between 11 and 15
THEN F.x ELSE NULL END) CN,
SUM (CASE WHEN F.c between 16 and 20
THEN F.x ELSE NULL END) SM2

FROM F
WHERE F.c between 1 and 20
/* Range Unification */
) sv, T
WHERE T.k

1;
Figure 12: Query QS1 transformed into QS2 using subsump-
tion.

corresponding CASE statement. Further, the non-factored and non-
unified predicates (e.g., “D1.m > 8”) also appear in the corresponding
CASE statements. Note that SV returns a single row (same as QV1).

Figure 12 shows an example of subsuming subqueries where the
filter predicates of the four SELECT-clause subqueries have been
unified as a single range filter predicate into one view SV. Based on
the similarities among various aggregate functions and filter predi-
cates in the subsumed views, the efficiency can be further improved
by introducing a group-by view that pre-computes aggregates, as
shown in Figure 13, ensuring that the conditional aggregates which
tend to be more expensive are performed on fewer rows (after
grouping).

Grouping and pre-computation is applied when the following
heuristic criteria are met. A configurable target value (typically
ranging between 5 and 10) called “Grouping Reduction Factor”
(GRF) is used to determine if grouping is likely to be beneficial (i.e.,
too many groups are not generated).

o The subsuming view refers to a single table (e.g., T).

The number of aggregate functions in the group-by view
is less than or equal to half of the number of aggregates in
the subsuming view (i.e., at least 2X reduction).

There are unified filter predicates in the WHERE clause of
the subsuming view.

If there are N columns in the table (T), the product of their

scaled NDVs satisfy the following condition (assuming the
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QSG2:

SELECT *

FROM (SELECT SUM(CASE WHEN
THEN
WHEN
THEN
WHEN
THEN
WHEN
THEN

GV
GV
GV
GV
GV
GV
GV
GV

.c between 1 and 5

.Vsm ELSE NULL END) SM1,
.c between 6 and 10
.Vsm ELSE NULL END)
.c between 6 and 10
.Vcn ELSE NULL END) AV,
.c between 11 and 15
.Vcn ELSE NULL END) CN,
WHEN GV.C between 16 and 20
THEN GV.Vsm ELSE NULL END) SM2
(SELECT SUM(F.x) Vsm, COUNT(F.x) Vcn, F.c
FROM F

WHERE F.c between 1 and 20

/* Range Unification */
/* Grouping */

SUM (CASE
/
SUM (CASE

SUM (CASE
SUM (CASE

FROM

GROUP BY F.c) GV
) SV, T
WHERE T.k

1;

Figure 13: Query QS2 transformed into QSG2 after Grouping.

columns are independent).

N
1_[ NDV(C;) < Cardinality(T)/GRF
i=1

1)

i.e., the estimated cardinality of group-by is less than the
desired target.

For example, if we assume a uniform distribution, scaled NDV of
column T.b would be NDV(T.b) * ((B2 — B1)/(Max(T.b) - Min(T.b)))
where B1 and B2 are the minimum and maximum values in the
unified range of the filter predicates. If the unified predicate is an
IN -list, it is the count of elements in the list. In query QS2 from
Figure 12, the four aggregates in the CASE statements of SV are
defined over the same column and there is a unified predicate;
hence a group-by view GV has been created in SV (query QSG2 in
Figure 13).

TPC-DS queries Q9, Q28 and Q88 are candidates for the Sub-
sumption optimization.

4 UNION-ALL DUPLICATOR FOR
DISJUNCTIVE QUERIES

In this section, we describe a novel technique that uses a "union-all
duplicator” operator for optimizing query blocks containing ex-
panding joins and a specific pattern of disjunctive predicates. Many
customer queries contain the following type of join predicates:
T1x = T2.x and (T1.y IS NULL OR Tly = T2.y),

where T1 and T2 are large tables and the inner join on T1.x = T2.x
is expanding. In such cases, the transformation of such queries
using the union-all duplicator operator results in significant perfor-
mance gain. We introduce relevant terminology before describing
the transformation.

e Expanding join: When columns in a join predicate have
very low NDVs and the column values have significant
overlap, the cardinality of the join is much larger than the
cardinality of either of the input tables. Such joins cause
degradation in performance as the large intermediate result
must be processed and may even spill to disk. Parallel plans
may suffer even more as such intermediate rows tend to



QUEX:
SELECT prod, gtr, amount
FROM sales

UNION ALL DUPLICATOR

(amount FOR gtr IN (Q1l, Q2));
Table sales:
prod o1 Q2
Shoes 200 4000
Jeans 700 NULL
Result of QUEx:
prod qtr amount
Shoes Q1 200
Shoes Q2 4000
Jeans Q1 700

Figure 14: Result of a query with Union-All Duplicator (UAD)
operator.

exhibit large skew affecting the distribution of rows among
parallel threads.

Post-join filter predicate: This predicate must be applied to
the result of a join. Post-join filter predicates cannot be
used for forming join keys. For example, the disjunctive
predicate, (T1.y IS NULL OR T1.y = T2.y), shown earlier
must be applied as a post-join filter after the join between
T1 and T2 has been performed on the conjunct T1.x = T2.x.
SYS_OP_MAP_NONNULL: This is an operator in Oracle
which maps values of different data types and NULLs into
unique values of RAW data type. It allows matching on
NULL values. Henceforth, we will use its shortened form
OP_MAP_NN. OP_MAP_NN(NULL) is a fixed value FF.
NVL2: This operator takes three arguments and returns its
second argument if its first argument is non-NULL; other-
wise it returns its third argument.

4.1 The Union-All Duplicator Operator

The union-all duplicator (UAD) is an operator that is applied to a
table expression. This operator converts a portion of a row into
column data and duplicates the rest of the row. Data in a set of user-
specified column names are rotated as column values under a new
user-specified column name. For example, consider query QUEx on
table sales shown in Figure 14. For each row in sales the operator
generates two new rows, each containing the original row’s column
values (e.g., 200, 4000 in the first row) placed in a new user-specified
column, amount. However, new rows are not generated for NULL
values in the original row’s columns. Hence, there is only one row
output for the product "Jeans". During execution, the UAD operator
evaluates the query block, fetches one row, and produces multiple
rows without needing to access the table again (or perform joins
again if multiple tables are involved).
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QU1l:
SELECT Tl.a,
FROM T1, T2
WHERE Tl.n = T2.n

AND (Tl.u is NULL OR Tl.u

T2.b

T2.u) ;

QU2:

SELECT Tl.a,
FROM T1, T2
WHERE Tl.n =
UNION ALL
SELECT Tl.a,
FROM T1, T2
WHERE Tl.n =

T2.b

T2.n AND Tl.u is NULL

T2.b

T2.n AND Tl.u T2.u;

Figure 15: Query QU1 with an expanding join on n, and its
OR-expanded version QU2.

QU3:
SELECT Tl.a,
FROM T1,
(SELECT b, n, K
FROM (SELECT b, n
NVL2 (u, OP_MAP NN(u), NULL) P1,
OP_MAP NN (NULL) P2
FROM T2) V1
UNION ALL DUPLICATOR

T2.b

(K FOR KP IN (P1l, P2))) V2

WHERE Tl.n = V2.n AND OP_MAP NN(Tl.u) = V2.K;
QU4 :
SELECT Tl.a, V2.b
FROM T1,

(SELECT b, n, OP MAP NN(u) K

FROM T2

WHERE u IS NOT NULL

UNION ALL

SELECT b, n, OP_MAP NN(NULL) K

FROM T2) V2
WHERE Tl.n = V2.n AND OP_MAP NN(Tl.u) = V2.K;

Figure 16: QU1 transformed into QU3 using UAD. QU4 is a
simulation of QU3.

4.2 Alternate Strategies

Consider query QU1 in Figure 15 that has an expanding join on
n. There are three ways in which the query can be transformed: i)
OR-expansion ii) UAD transformation and iii) simulation of UAD
using table duplication in a union-all view.

The OR-expansion transformation first converts the predicates
in the where clause into a disjunctive normal form (DNF) and places
each conjunct of the DNF in a union-all branch where tables and
joins are duplicated. In QU1, the DNF predicate is "(T1.n = T2.n and
T1LuISNULL) OR (T1.n = T2.n and T1l.u = T2.u)". Each branch in the
expanded query joins T1 and T2 and applies one conjunct of the
DNF predicate as shown in QU2 of Figure 15.

Query QU1 can be transformed into a more efficient form QU3
using UAD operator as shown in Figure 16. It is easier to under-
stand QU3 by observing QU4 which simulates the UAD operator



of QU3 using a union-all branch. Consider three sample rows of
table T2. The corresponding rows produced by view V1 in QU3 are
shown in Table 5. In a row, if T2.u is NULL its P1 value is NULL,
otherwise it is OP_MAP_NN(T2.u). Every row of T2 produces a
fixed value OP_MAP_NN(NULL) (FF) in column P2. The rows are
then duplicated using UAD and the result is joined with T1 using
the join predicate "OP_MAP_NN(T1.u) = V2.K". When UAD is ap-
plied on V1, the output (view V2) consists of two sets of rows as
shown in Table 6. One set is used to match with T1’s rows that have
non-NULL values in T1.u and the other set is used to match with
T1’s rows that contain NULL values in T1.u.

(1) The rows shown in purple contain the mapping result
OP_MAP_NN(T2.u), when T2.u is not NULL (first branch
of union-all in QU4). They allow matching on the join pred-
icate "T1.u is NULL OR T1.u = T2.u" only when T1.u is not
NULL.

(2) The rows shown in blue contain mapping of NULL for
every row of T2 (second branch of union-all in QU4) and
therefore allow matching of T1.u when it is NULL; and
thereby simulating the disjunct, "T1.u is NULL".

Note that the values of K in the two parts/branches are mutually
exclusive for every row of T2.

Table 5: Sample rows in QU3’s view V1. (Columns b, n, u show
table T2’s data. T2 has 3 rows. OP_MAP_NN(NULL) = FF)

b n u P1 P2
3 2 1 C10200 FF
15 12 NULL NULL FF
2 14 5 C10600 FF

Table 6: Two sets of rows produced by view V2 in QU3 after
UAD is applied on V1. (Column u is shown only for refer-
ence.)

b n u K
3 2 1 C10200
3 2 1 FF
15 12 NULL FF
2 14 5 C10600
2 14 5 FF

Under the CBQT framework (Section 1.1), the above alternatives
can be costed and the cheapest among them selected. Generally, the
most optimal strategy is the one that uses the union-all duplicator
operator, as it does not require multiple table accesses and joins.
For instance, QU3 is generally more efficient that QU4, especially
when they contain complex nested views inside them instead of
simple tables.

The union-all duplicator transformation can be applied to any
general filter predicate on T1 as shown in Figure 17. The under-
lying idea remains the same, as the union-all duplicator operator
generates two mutually exclusive sets of T2 rows. Here, a CASE
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QU5:
SELECT Tl.a,
FROM T1, T2

T2.b

WHERE Tl.n = T2.n AND
(Tl.d > 313 OR Tl.u = T2.u);
QUGb:
SELECT Tl.a, T2.b
FROM T1,
(SELECT b, n, K
FROM (SELECT n,
NVL2 (u, OP_MAP NN (u), NULL) P1,
OP_MAP NN (NULL) P2
FROM G 4K T2) V1
UNION-ALL DUPLICATOR
(K FOR KP IN (V1.P1l, V1.P2))) V2
WHERE Tl.n = V2.n AND

(CASE WHEN Tl.d > 313

THEN OP_MAP NN (NULL)

ELSE NVL2(Tl.u, OP MAP NN(Tl.u), NULL)
END) = V2.K;

Figure 17: QU5 with a general filter predicate transformed
into QU6 using UAD.

statement in the WHERE clause produces FF (i.e., mapped NULL),
when the given filter predicate, "T1.d > 313", evaluates to TRUE. In
Oracle, the execution plan for this transformed query can build
hash-join or sort-merge-join keys on complex join predicates be-
tween T1 and V2 (including the CASE expression), since these join
predicates are considered well-formed.

To conclude, UAD transformation significantly benefits queries
which contain expanding joins and disjunctive predicates, a pattern
that is often found in customer workloads.

5 PERFORMANCE STUDY

In this section, we present data that show the effectiveness of the
optimization techniques described in this paper. We first discuss per-
formance improvement in various queries of TPC-DS benchmark.
Later, we present representative data from customer workloads.

5.1 TPC-DS Workload

The transformation techniques described each apply to different
queries in the TPC-DS benchmark. We present our observations
based on experiments performed on data set generated with 1TB
scale factor. We refer readers to the TPC-DS specification for full
query texts.

5.1.1 Queries with Conditional Aggregates. Conditional expres-
sions inside aggregates are found in TPC-DS queries Q2, Q40, Q43,
Q50, Q59, Q62, Q66 and Q99. Many of these queries use CASE ex-
pressions inside aggregates to check a column from the date_dim
table while joining it with other fact tables like store_sales. For ex-
ample, Q59 contains an aggregation, sum(case WHEN (d_day_name
= ‘Sunday’) THEN ss_sales_price ELSE null). Grouping can be per-
formed on the store_sales table by splitting the aggregate. Some-
times when group-by placement is chosen by the optimizer, it opens
up other downstream optimizations on top of it, like pushing the
grouping to the individual branches of union-all set (Q2), pushing
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Figure 18: Effect of GBP enhancements on elapsed times of
qualifying TPCDS queries.

grouping and aggregations to table scans on disk (in Oracle Exadata)
etc., leading to a large cumulative improvement in performance.
Figure 18 shows the improvement in elapsed time as a speed-up
ratio for each qualifying query when GBP is chosen in the final
plan vs the plan without GBP.

Q2, Q43 and Q59 show the most improvement as they benefit
from downstream optimizations in addition to grouping. In Q2 and
Q59, splitting and grouping reduces the data of the "fact" tables
by 1,000,000X and 4000X respectively which drives most of their
improvement. Q40 and Q66 do not benefit from the additional states
made possible by the enhancements. Q40 has relatively fewer condi-
tional aggregates and multiple tables in addition to the ones in the
aggregate and shows little improvement post-splitting. Although
the grouping reduction that can be obtained by splitting is 16X,
one of the joins in combination with old GBP states (prior to the
enhancement) has a higher reduction of 30X. Similarly, although
query Q66 has many conditional aggregates in it, the old GBP states
are sufficient to benefit from the high reduction factors on tables
web_sales and catalog_sales (65000X and 155,000X respectively).
Hence, new GBP states are not chosen by the optimizer.

TPC-DS queries Q50, Q62 and Q99 contain case expressions that
check columns from a single table and aggregate constant values.
Hence, there is no case for splitting the expressions and generating
additional GBP states. Therefore these queries are not affected by
the enhancements.

Generally, execution of conditional expressions like CASE inside
aggregates has more overhead and reducing the number of rows
(through grouping) on which the conditional logic is evaluated
improves performance significantly.

5.1.2  Subsumption of views and subqueries. TPC-DS queries Q9,
Q28 and Q88 are candidates for subsumption transformation. Fig-
ure 19 shows the improvement in elapsed time of the queries in
terms of the speed-up ratio before and after the transformation.

In Q88, there are eight views (each containing four tables) which
satisfy the preconditions for subsumption as specified in Section 3.
The views are subsumed into one view along with unifications and
factorizations. After subsumption the query’s performance (elapsed
time) improves by a factor of = 6X. The query doesn’t qualify for
pre-computation of aggregates via grouping as it contains more
than one table. However, even if forced, it doesn’t improve the
performance.
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Figure 19: Effect of Subsumption and Grouping Transforma-
tion on elapsed times of qualifying TPCDS queries.

SELECT f.c2, dl.c2,
SUM(f.c3 * dl.c3), SUM(f.c4)
FROM fact £, dim dl
WHERE f.cl dl.cl
AND f.c4 < 120
AND dl.c2 < 1000
GROUP BY f.c2, dl.c2;

Figure 20: A simplified representative customer query.

Query Q28 has six views that are subsumed by one view. Various
unifications of filter predicates are applied but no factorization is
possible. The transformed query’s performance is ~ 2.4X better than
the original query. Grouping and aggregate pre-computation is not
valid for this query because of the presence of COUNT DISTINCT.

In Q9, the equality filter predicate on a unique column in the
outer query block ensures that the SELECT clause will be evaluated
at most once. In this query, there are 15 subqueries referencing
store_sales; they are subsumed by one query block and a group-by
view that enables pre-computations of common aggregate func-
tions is created in the final plan. The improvement is ~ 21X with
subsumption and a further ~ 2X speed-up due to grouping.

5.2 Customer Workloads

In this section, we present our observations regarding the effective-
ness of the described techniques in real-world workloads.

5.2.1 Queries with Arithmetic and Conditional Expressions in Aggre-
gates. We encountered queries in Oracle Application Server, large
enterprise ERP, finance, healthcare industry workloads, that per-
form joins between a large fact table and multiple dimension tables
with aggregate expressions covering the fact and some dimension
tables. The aggregates use arithmetic operations on columns from
fact and dimension tables. In such queries, early grouping on the fact
table alone (which is desirable) is infeasible without decomposing
the aggregates. A simplified query example that fits the pattern is
shown in Figure 20. Typically, around 10% of queries present such
constructs.

While performance improvements vary across such diverse work-
loads, specifically, in two large customer applications in ERP and
financial services domains using hundreds of terabytes of data, we
observed a median speed-up factor of ~5X across hundreds of eligi-
ble queries. The speed-up increases further when the base tables are
loaded in-memory or stored on Oracle Exadata storage cells because



if grouping is introduced on single tables, the grouping operation
is piggybacked on table scans, amplifying the benefit. Conditional
expressions inside aggregates are also commonly present in queries
of such workloads and we observed a median speed-up of ~7X in
them. This is because of the overhead of per-row evaluation of the
condition, without grouping. For confidentiality reasons, we are
not at liberty to publish the shape and nature of customer queries.

5.2.2 Disjunctive Queries with Union-all duplicator. In our expe-
rience, financial services workloads at large banks often contain
queries with disjunctive join predicates (QU1 in Figure 15) where
the non-disjunctive join is an expanding join. Moreover, the objects
in the join are complex views that contain both tables and other
nested views (nesting extending to many levels). A typical expand-
ing join in such queries produces tens of millions of rows; before
the disjunctive join predicate reduces their number to a few hun-
dreds. Workloads contain hundreds of such queries. The median
speed-up in elapsed time of the eligible queries, provided by union-
all duplicator transformation is between 7X and 8X, with some
queries improving by as much as 19X. The improvement comes
from removal of the expanding join in the intermediate step. When
joins return many rows on which the post-join filters need to be
applied, the temporary results may even spill to disk that involves
/0. But due to UAD, when all the join predicates are simultaneously
applied, the result is relatively small and is not materialized. This
leads to savings in I/O in addition to improved join performance.

Parallel queries often suffer from skew in the presence of ex-
panding joins because the large intermediate result tends to exhibit
skew. Application of UAD operator reduces skew significantly by
removing the intermediate step and hence parallel query plans tend
to benefit even more due to UAD.

We now present the specifics of a class of queries that we en-
countered in an application at a large financial market exchange
company. The representative class of queries have the following
pattern. They contains tens of tables and views nested to more than
five levels with many tables containing tens of terabytes of data.
Among all joins within them, one join contains a disjunctive join
predicate alongside an expanding join predicate. The expanding
join produces over 200 million rows and the disjunctive predicate
reduces them to 6 million. The queries run in parallel and use a
degree of parallelism ranging from 64 to 128.

Before UAD optimization (all median values),

e The percentage of total query time taken by the entire join
is 93.6%.

o The median start time of the join is 30 seconds after the
start of query execution and end time is 440 seconds in a
total query duration of 472 seconds.

After UAD transformation (all median values),

o The percentage of total query time taken by the entire join
is 73.3%.

e The join starts 8 seconds after the start of query execution
due to a different join order and takes about 21 seconds
ending at 29 seconds.

The median speed-up for the above class of queries is ~16.3X.
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Optimization Overhead: The techniques described in this pa-
per, especially the extensions to GBP, increase the time taken by the
optimizer as they explore new states. In order to limit the overhead,
linear exploration is used when there are many tables involved. In
practice, we noticed the overhead to be less than 5% of the com-
pilation time. The performance numbers presented in this section
include this overhead.

5.3 Conclusion

The optimization techniques proposed in this paper can be applied
to many queries in real-world customer workloads and benchmarks.
We evaluated them across a wide variety of workloads and observed
that query elapsed times improve by factors ranging from 3X to
40X, thus validating our ideas.

6 CITATIONS

The idea of grouping before joins was first introduced by [22].
Later [5] generalized it describing various grouping techniques that
could be placed at multiple positions commuting them with joins in
a join-tree. Our work on the other hand, focuses on techniques on
decomposing complex aggregate expressions opening up additional
options to placing group-by operations interspersed with joins on
subsets of tables that appear in the aggregate expressions.

Partial pre-aggregation of data on columns that functionally de-
termine the columns that are grouped and aggregated is discussed
in [13]. Papers [18-20] describe processing of joins and aggregates
in parallel database systems. [14] introduces the idea of merging
join and aggregation operations into one operator and establish-
ing equivalence to prove correctness. However, the papers do not
address the decomposition problem.

Sharing of common sub-expression computation within and
across queries was explored earlier in [17, 24]. The authors propose
materializing the result of common sub-expressions and rewriting
queries to re-use the result whenever feasible. While such tech-
niques are more general, our subsumption transformation is light-
weight and is targeted towards specific patterns - it doesn’t involve
materialization and retrieval as we create subsuming views in-situ
by combining other views. These subsumed views can further par-
ticipate in other transformations - e.g., they can be merged into
their respective outer query blocks etc. They do not create a physi-
cal boundary induced by the materialize operator.

To our knowledge, the usage of a new operator as a query rewrite
technique to perform disjunctive joins by replicating rows on-the-
fly hasn’t been discussed by prior body of work. It is possible to
implement hash joins that maintain multiple hash tables or other
similar structures to apply disjunctive join predicates on each of
them and combine the result. Our proposed operator is more general
as sort-merge joins can also be used.
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