
HocoPG: A Database System with Homomorphic Compression for
Text Processing

Jiawei Guan∗
guanjw@ruc.edu.cn

Renmin University of China

Feng Zhang∗
fengzhang@ruc.edu.cn

Renmin University of China

Yuxin Tang∗
2020201596@ruc.edu.cn

Renmin University of China

Weitang Ye∗
2021201613@ruc.edu.cn

Renmin University of China

Xiaoyong Du∗
duyong@ruc.edu.cn

Renmin University of China

ABSTRACT
Databases employ out-of-line storage and compression strategies
to manage extensive text data. However, the growth in both the size
of individual data items and overall data volume has significantly
increased the burden of decompression, adversely affecting query
performance. To address this challenge, we develop HocoPG, an
innovative system that incorporates homomorphic compression
theory within RDBMS, enabling direct computation on compressed
data to enhance query efficiency and system usability. HocoPG
performs homomorphic evaluations across a suite of basic text
operations, enabling the execution of intricate text queries by com-
bining these operations flexibly. In this demonstration, we showcase
the deployment and usage of HocoPG through a database terminal.
Additionally, we introduce the HocoPG Admin, a tool that pro-
vides insights to DBAs and general users for choosing the optimal
compression scheme based on their individual needs.

PVLDB Reference Format:
Jiawei Guan, Feng Zhang, Yuxin Tang, Weitang Ye, and Xiaoyong Du.
HocoPG: A Database System with Homomorphic Compression for Text
Processing. PVLDB, 17(12): 4477 - 4480, 2024.
doi:10.14778/3685800.3685904

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Guan-JW/HocoPG-Demo.

1 INTRODUCTION
Databases are crucial for managing, storing, and analyzing exten-
sive text data, providing scalable solutions for data access and
organization [6]. The adoption of out-of-line disk storage [5] is sig-
nificant for handling large objects without embedding them directly
in table structures. Instead, databases store references to the data,
with actual contents located in distinct disk storage areas. For exam-
ple, PostgreSQL employs TOAST (The Oversized-Attribute Storage

∗Key laboratory of Data Engineering and Knowledge Engineering (MOE), and School
of Information, Renmin University of China.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685904

On-disk
TOAST
Storage

TABLE TOAST

In-Mem.
HC-plugin
Layer

Compression Module
RLE

Symbol
Length

TADOC
Evaluation Module

extract

comparedelete

insert

String functions
on compression

Ba
si

c
O

Ps

TOAST De-TOAST

Full-text search
on compression

HocoPG
Compression

Query Execution Engine
Insert Operator Mapping

to_tsvector

to_tsquery
…

Interface

Fu
ll-

te
xt

Se

ar
ch

 O
Ps

Figure 1: The HocoPG Architecture.

Technique) to manage large values in a specialized tablespace ef-
ficiently. This strategy effectively mitigates main table bloat and
maintains query performance.

Databases commonly employ compression techniques alongside
out-of-line storage to optimize storage and performance [1, 2]. Prior
to the persistence of text data on disk, they utilize general-purpose
compression algorithms such as Gzip, LZ4, or Zstd to minimize
data volume. This compression significantly reduces disk space re-
quirements, thus speeding up I/O operations and improving overall
database performance.

Despite achieving significant compression ratios, general-purpose
compression algorithms come with notable drawbacks. Specifically,
these algorithms are known to incur considerable computational
overheads during (de)compression cycles. These inefficiencies can
slow down data processing and potentially delay result retrieval,
as compressed data must first be decompressed.

In this paper, we present HocoPG (shown in Figure 1), a database
system leveraging homomorphic compression theory [4] for the
efficient management of large-scale text objects within RDBMS.
HocoPG significantly enhances processing efficiency, surpassing
traditional text query performance by 2.86× and achieving up to
2.48× storage savings. It streamlines the execution of a wide range
of text operations by translating standard operations into homo-
morphic equivalents, facilitating computation on compressed data.

At the algorithm level, HocoPG introduces two homomorphic
compression schemes (RLE and TADOC), each with different com-
pression ratios and processing capabilities. These schemes are adept

4477

https://doi.org/10.14778/3685800.3685904
https://github.com/Guan-JW/HocoPG-Demo
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685904
https://www.acm.org/publications/policies/artifact-review-and-badging-current

at performing a variety of operations on large compressed texts,
including basic string manipulations and full-text search function-
alities. At the system level, HocoPG enhances traditional RDBMS
by integrating a homomorphic compression plugin (HC-plugin)
and a Database Administrator (DBA) analysis tool. The HC-plugin
serves as an intermediate layer, interfacing between the database
execution engine and the disk storage units. The DBA tool aids
DBAs and developers in choosing compression schemes, facilitating
more efficient data management and maintenance within database
systems. Through modular design, HocoPG exhibits portability,
facilitating its adaptation to various database systems. Moreover, it
is inherently extensible, allowing users to incorporate additional
homomorphic compression schemes.

We demonstrate HocoPG via two approaches: 1) using the data-
base terminal, and 2) deploying an interactive DBA analysis plat-
form, HocoPG Admin, designed for managing large text objects.
In the database terminal, users engage HocoPG features by exe-
cuting standard SQL queries with default or additional HocoPG
compression options. HocoPG is then responsible for the entire
lifecycle of the data, including its compression, decompression, stor-
age, and processing. HocoPG Admin allows DBAs or general users
to interact with the database through a user-friendly interface. It
emphasizes the out-of-line storage format of tables, and it conducts
comparative analyses of various compression mechanisms using
data samples, demonstrating the efficiency and effectiveness of
different compression options. These analyses assist users in iden-
tifying the most suitable compression algorithm for their specific
needs, thus optimizing their data management strategy.

The demonstrations of HocoPG underscore the efficacy of ho-
momorphic compression technology in improving the efficiency of
storage and processing for extensive text data.

2 THEORETICAL BASIS
Homomorphic compression theory [4] provides a theoretical basis
for direct computation on compressed data. Specifically, homomor-
phic compression (HC) is defined as a mapping that follows:

𝜑
[︁
𝜎𝑢 (𝑢1, . . . , 𝑢𝑛)

]︁
= 𝜎𝑐

(︁
𝜑 (𝑢1), . . . , 𝜑 (𝑢𝑛)

)︁
,

where 𝑢1, . . . , 𝑢𝑛 ∈ U represent uncompressed texts, 𝜎𝑢 ∈ Π and
𝜎𝑐 ∈ Θ denote the basic operations for uncompressed and com-
pressed text, respectively.

Homomorphic compression theory distinguishes compression
algorithms through key properties like directness and strong homo-
morphism. These properties determine the scope and frequency of
operations an algorithm supports. Utilizing this theoretical foun-
dation, one can develop a homomorphic compression scheme (HC
scheme) that includes algorithms for compression, decompression,
and evaluation, enabling efficient operations on compressed data.
Empirical evidence suggests that deploying HC schemes in text
data management significantly enhances text processing efficiency.

3 HOCOPG OVERVIEW
HocoPG is a database system designed to enhance the management
and processing of large objects through the application of homo-
morphic compression techniques. This section presents its overall
architecture and key features.

3.1 Architecture
Figure 1 shows the architecture of HocoPG, highlighting the inte-
gration of the HC-plugin within RDBMS, employing PostgreSQL
as the base system.
In-Memory HC-Plugin Layer. The HC-plugin is constituted by
two principal components: the compression module (detailed in
Sec. 3.2) and the evaluation module (described in Sec. 3.3). The com-
pression module activates upon the insertion of text data, applying
designated compression algorithms to detect patterns and reduce
data size. For text query execution, HocoPG efficiently translates
operations for uncompressed text into those compatible with com-
pressed data, utilizing its operator mapping feature. The evaluation
module supports an extensive array of operations on text data
stored within the database, encompassing both string functions and
full-text search capabilities targeted on compressed data.
On-diskTOAST Storage (Sec. 3.4).HocoPG functions autonomou-
sly, without affecting the native out-of-line storage mechanisms of
the database. The compression process yields text data that is seam-
lessly integrated into TOAST tables through the existing TOAST
mechanism as if it were standard uncompressed data. This approach
significantly reduces the overhead typically associated with TOAST
operations, thereby improving the efficiency of queries. We next
introduce the key features and implementation details of HocoPG.

3.2 Compression Module
HC Schemes.Motivated by homomorphic compression, HocoPG
incorporates twoHC schemes, RLE [3] and TADOC [7], into its com-
pression module. The workflows of the two compression algorithms
are depicted in Figure 2. Specifically, RLE operates by detecting
and counting sequential repetitions of characters, whereas TADOC
employs a method of replacing recurrent character sequences with
dictionary references to form a directed acyclic graph (DAG).
Properties. Within the theoretical framework of homomorphic
compression [4], RLE is characterized as a fully homomorphic com-
pression scheme (FHC), allowing for both unrestricted direct access
to and updates on compressed data. In contrast, TADOC is identi-
fied as a partially homomorphic compression scheme (PHC), which
permits arbitrary direct access to compressed data, albeit with con-
straints on the updates that can be performed.
System Configurations. Within the configuration of HocoPG,
initial parameters for the HC-plugin are established as system vari-
ables, enabling homomorphic compression and evaluation by de-
fault. Following the activation of HocoPG, the system seamlessly
incorporates the two HC schemes as elective attributes for the TEXT
property during the processes of TABLE CREATE and UPDATE. This inte-
gration allows for the tailored application of compression strategies
in accordance with the specific operational requirements. To gain
insights into the effectiveness of different HC schemes, DBAs and
users are encouraged to utilize our HocoPG Admin (see Sec. 4.2).

3.3 Evaluation Module
Text Operations in RDBMS. Operations on large text objects
in RDBMS can be broadly classified into two categories: string
functions and full-text search.
• String Functions: This category encompasses a suite of oper-

ators dedicated to the examination and modification of string

4478

Merge
b 2 a 4 b 2 a 2

Compressed
DAG

b b a
b 2 a a a a b
b 2 a 4 b b a
b 2 a 4 b 2 a a

b b a a a a
A a a

b b A A b b
B b b

B A A B a a
C B A

B A A B A
C A C

A a a
C b b A

S
S
S
S
S

S:

C: b b A

A: a a

b b a a a a b b a a

(a) RLE (b) TADOC

Uncompressed text :

Dictionary
Compressed

C A C

Figure 2: Compression Algorithms in the HC-Plugin.

values. Key operations include string matching and replacement,
which are vital for precise text data manipulation and analysis.

• Full-text Search: This functionality offers advanced search
capabilities, such as stemming analysis, to identify word roots
and word occurrences. This enables users to conduct intricate
searches across large text collections.

EnhancingTextManipulationwithHocoPG.HocoPG systemat-
ically deconstructs text operations within databases into four main
functions: extract, insert, delete, and compare, supplemented by
tokenization functions to_tsvector and to_tsquery. This set of ba-
sic functions provides a foundation for conducting complex text
processing on compressed data.

HocoPG enables the direct execution of all basic operations on
RLE- and TADOC-compressed data, ensuring data integrity and
processing efficiency. To further boost query performance, HocoPG
incorporates several optimization strategies. These include aligning
offsets between uncompressed and compressed data and reusing
intermediate results in compressed patterns, such as dictionary
entries. These optimizations significantly reduce I/O overhead and
enhance processing speed.
Executing Operations on Compressed Text. During query pro-
cessing, the execution engine decomposes queries into their con-
stituent operations. HocoPG routes operations pertinent to large
text objects through its operator mapping layer. This layer trans-
lates operations into calls to specific APIs within the evaluation
module, thus allowing for the direct manipulation of compressed
data. This ensures a seamless and optimized user experience.

3.4 On-Disk TOAST Storage
TOAST is a critical feature in PostgreSQL designed for handling
large data objects via out-of-line storage. It works by breaking
down large objects into smaller chunks and compressing them for
optimized storage, thus reducing storage and transmission costs.
Secondary Compression with TOAST. To enhance the TOAST
mechanism with advanced compression capabilities, we develop
the HC-plugin in HocoPG as an in-memory layer that interfaces
with TOAST storage on disk. HocoPG applies sophisticated com-
pression techniques at the time of data insertion, leveraging pattern
recognition in data for initial compression. This pre-compressed
data is subsequently managed and stored by TOAST, which may
apply additional compression based on its configuration.

Empirical analyses reveal that HocoPG significantly improves
data loading efficiency and reduces storage demands, regardless
of TOAST’s secondary compression actions. Specifically, under
TOAST’s plain or external settings, which bypass additional com-
pression, HocoPG’s pre-compression can diminish data size, leading

to reduced bandwidth needs and faster disk writes. When TOAST is
configured to extended ormainmodes, which activate PGLZ or LZ4
compression, applying a secondary compression to HocoPG-pre-
compressed data further boosts efficiency in both space and time.
Moreover, the decreased data volume needed for reconstitution in
the De-TOAST process, combined with the ability to run queries
directly on compressed data, further enhances query efficiency.

By operating independently from the underlying storage mech-
anisms, HocoPG treats its data as standard input to TOAST for
possible secondary processing. This design enables HocoPG to sup-
port a wide array of compression algorithms and functionalities
without disrupting the database’s storage infrastructure.

4 DEMONSTRATION
The demonstration consists of two parts: 1) Executing text queries
using HocoPG within a database terminal; 2) Presenting text man-
agement results and insights using HocoPG Admin. We employ
Pizza&Chili Corpus, a benchmark commonly used for evaluating
compression algorithms and compressed data structures, for show-
casing HocoPG’s capabilities.

4.1 Scenario 1: Database Terminal
HocoPG extends the TEXT data type in RDBMS, integrating support
for RLE and TADOC schemes and enabling basic operations on
compressed data. To illustrate HocoPG’s ability to handle both sym-
bolic sequences and semantic data, we employ the DNA sequencing
dataset for demonstration. Users can manage their text data using
HocoPG through the following steps in a database terminal:
Step1: HocoPG Setup (Optional). HocoPG is activated by default via
environmental variables configured in the system, initially employ-
ing the lightweight RLE scheme for handling TEXT data types. Users,
however, retain the autonomy to tailor the management of their text
data according to specific needs. As shown in the subsequent code
snippet, it is feasible to incorporate HC scheme options for TEXT
fields when creating new database tables. In the provided dna_seq
table, the seq_data field is set up to use RLE for efficient processing
of repetitive sequence data, while the exp_log field is configured to
apply TADOC to exploit textual semantic redundancy.

-- Create table with HocoPG options.

CREATE TABLE dna_seq (seq_id SERIAL PRIMARY KEY,

exp_date DATE NOT NULL,

seq_data TEXT COMPRESSION RLE,

exp_log TEXT COMPRESSION TADOC);

Step2: Query Execution.We proceed with text processing on table
dna_seq. The code snippets below showcase data loading, substring
extraction and replacement within the seq_data field, and full-text
search on the exp_log field. Note that HocoPG allows unrestricted
text manipulations. Upon insertion into the table, HocoPG auto-
matically compresses text data using predefined HC schemes. All
subsequent query operations are performed directly on this com-
pressed data.

-- 1. Load data into table

INSERT INTO dna_seq VALUES ('2024-03-31',

'ACTGACTGACTG...', pg_read_file('log_0331.txt'));

4479

1

2
3

4

Figure 3: Out-of-Line Table Visualization.

Figure 4: Comparison of Compression Effect.

-- 2. Substring extraction

SELECT SUBSTRING(seq_data from 1 for 10) FROM dna_seq;

-- 3. Substring replacement

UPDATE dna_seq SET seq_data =

OVERLAY(seq_data placing 'new_str' from 1);

-- 4. Full-text search

SELECT to_tsvector(exp_log) FROM dna_seq WHERE seq_id=1;

4.2 Scenario 2: HocoPG Admin
Managing large text objects through a database terminal presents
several challenges: 1) The data scale is substantial, making it imprac-
tical to display effectively within a terminal; 2) Users are isolated
from the underlying data storage format; 3) Comparing and select-
ing compression methods demands the development of specialized
code to assess the compatibility of diverse storage solutions with
specific user workloads. Given these challenges, most DBAs and
users tend to select storage options based on intuition or default to
the database’s predetermined choices.

In recognition of these obstacles, we develop HocoPG Admin to
facilitate both DBAs and general users in profiling the efficiency of
text processing. This tool aims to provide valuable insights into text
storage solutions, thereby reducing the complexity associated with
text management and enhancing overall efficiency. The primary
user interface of HocoPG Admin is shown in Figure 3. We next
introduce two of its key features.

Figure 5: Comparison of Query Execution.

Feature 1: Out-of-Line Table Visualization. Figure 3 illustrates Ho-
coPG Admin’s approach to display database tables, closely mirror-
ing the out-of-line storage format used by the underlying storage.
Users begin by choosing a database ① and the table ② they wish
to view, which then shows up in the “Result” panel on the right ③.
Columns in out-of-line storage are hyperlinked, allowing users to
click through and view stored text data on a separate web page ④.
Feature 2: Scheme Comparison. HocoPG Admin enhances the SQL
editing and execution process by enabling query input into a SQL
editor and result visualization in the “Result” panel. More signif-
icantly, its fundamental goal transcends simple query assistance;
it endeavors to equip DBAs and users with analytical insights for
the selection of optimal compression schemes. Upon selecting a
database table, the system commences a row sampling process to
prepare the data. It then applies various compression strategies to
this sample dataset to evaluate both compression efficiency and
query performance, as illustrated in Figures 4 and 5. The analysis
presents users with data on average performance and variability
over multiple iterations. By offering a framework for compara-
tive analysis, HocoPG Admin provides a foundation for DBAs and
general users to discern the most suitable compression algorithm
tailored to their unique requirements and application contexts.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China (No. 62322213 and 62172419), Beijing Nova Program (No.
20230484397 and 20220484137), and the Outstanding Innovative
Talents Cultivation Funded Programs 2023 of Renmin University
of China. Feng Zhang is the corresponding author of this paper.

REFERENCES
[1] Bishwaranjan Bhattacharjee, Lipyeow Lim, Timothy Malkemus, George Mihaila,

Kenneth Ross, Sherman Lau, Cathy McArthur, Zoltan Toth, and Reza Sherkat.
2009. Efficient index compression in DB2 LUW. PVLDB 2, 2 (2009), 1462–1473.

[2] Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: fast random access
string compression. PVLDB 13, 12 (2020), 2649–2661.

[3] Solomon Golomb. 1966. Run-length encodings (corresp.). IEEE transactions on
information theory 12, 3 (1966), 399–401.

[4] Jiawei Guan, Feng Zhang, Siqi Ma, Kuangyu Chen, Yihua Hu, Yuxing Chen, Anqun
Pan, and XiaoyongDu. 2023. Homomorphic Compression:Making Text Processing
on Compression Unlimited. SIGMOD 1, 4 (2023), 1–28.

[5] Sorin Stancu-Mara and Peter Baumann. 2008. A comparative benchmark of large
objects in relational databases. In Proceedings of the 2008 international symposium
on Database engineering & applications. 277–284.

[6] Jiajia Wang, Weizhong Zhao, Xinhui Tu, and Tingting He. 2023. A novel dense
retrieval framework for long document retrieval. FCS 17, 4 (2023).

[7] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Wenguang Chen. 2018.
Efficient document analytics on compressed data: Method, challenges, algorithms,
insights. PVLDB 11, 11 (2018), 1522–1535.

4480

	Abstract
	1 Introduction
	2 Theoretical Basis
	3 HocoPG Overview
	3.1 Architecture
	3.2 Compression Module
	3.3 Evaluation Module
	3.4 On-Disk TOAST Storage

	4 Demonstration
	4.1 Scenario 1: Database Terminal
	4.2 Scenario 2: HocoPG Admin

	Acknowledgments
	References

