RALF: Accuracy-Aware Scheduling for Feature Store Maintenance

Sarah Wooders Xiangxi Mo
UC Berkeley UC Berkeley
wooders@berkeley.edu xmo@berkeley.edu
Ion Stoica Joseph M. Hellerstein
UC Berkeley UC Berkeley
istoica@berkeley.edu hellerstein@berkeley.edu
ABSTRACT

Feature stores (also sometimes referred to as embedding stores)
are becoming ubiquitous in model serving systems: downstream
applications query these stores for auxiliary inputs at inference-
time. Stored features are derived by featurizing rapidly changing
base data sources. Featurization can be costly prohibitively expen-
sive to trigger on every data update, particularly for features that
are vector embeddings computed by a model. Yet, existing sys-
tems naively apply a one-size-fits-all policy as to when/how to
update these features, and do not consider query access patterns
or impacts on prediction accuracy. This paper introduces RALF,
which orchestrates feature updates by leveraging downstream error
feedback to minimize feature store regret, a metric for how much
featurization degrades downstream accuracy. We evaluate with
representative feature store workloads, anomaly detection and rec-
ommendation, using real-world datasets. We run system experi-
ments with a 275,077 key anomaly detection workload on 800 cores
to show up to a 32.7% reduction in prediction error or up to 1.6X
compute cost reduction with accuracy-aware scheduling.

PVLDB Reference Format:

Sarah Wooders, Xiangxi Mo, Amit Narang, Kevin Lin, Ion Stoica, Joseph M.
Hellerstein, Natacha Crooks, and Joseph E. Gonzalez. RALF:
Accuracy-Aware Scheduling for Feature Store Maintenance . PVLDB, 17(3):
563-576, 2023.

doi:10.14778/3632093.3632116

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/feature- store/ralf.

1 INTRODUCTION

Most real-world applications of machine learning rely heavily on
pre-computed features to improve model accuracy and reduce pre-
diction latency. Features are raw and derived data that are passed
as input to machine learning models to capture the context around
a prediction. For example, fraud detection and content recommen-
dation models rely on features describing merchants, users, and
content to make accurate predictions. More recently, large language

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 3 ISSN 2150-8097.
doi:10.14778/3632093.3632116

563

Amit Narang Kevin Lin
UC Berkeley UC Berkeley
narang@berkeley.edu k-lin@berkeley.edu
Natacha Crooks Joseph E. Gonzalez
UC Berkeley UC Berkeley
ncrooks@berkeley.edu jegonzal@berkeley.edu
Feature Maintenance Feature Store
[ettt N /Ty
: Key Value : N~ __—
1 1 Key Feature
i A —»{ Transform > Model
HIE ()-I_ : 1 Serving
_ !
4 O KeyB
g g Cumulative Error Feedback
§ g Regret -

Timestep Timestep

Figure 1: Feature stores serve materialized feature values
to downstream models. RALF leverage downstream model
feedback to prioritize expensive feature updates (§3.3.3).

models increasingly depend on features of relevant context (eg. em-
beddings of past conversational history) to provide more grounded
and personalized responses [25, 35, 36, 44].

Consider for example an online news recommendation service
that predicts the probability that a specific user will click on specific
article. Standard models for this task [31, 43] rely on sophisticated
features (such as model based embedding) that summarize the user’s
click history, the text in the article, and the click histories of other
users that have clicked on that article. These features are critical
to making good predictions, but are expensive to compute and
sensitive to the continuously changing news cycle.

Real-time model serving applications, such as online news recom-
mendation services, require low latency predictions, and therefore
rely heavily on pre-materialized feature tables stored and main-
tained by a feature store to hide the latency associated with deriving
features. In order to provide low-latency access to important con-
texual information, feature tables At prediction time, the model
serving system queries the pre-computed features from the feature
store by specifying a feature key (e.g. a user ID), as shown in Fig. 1.
However, because the features are often derived from data that
is constantly changing (e.g., click streams and purchase history),
the pre-materialized features also need to be continuously updated
with the arrival of new data. Unfortunately, updating features with
every data change can be wasteful and expensive for high-velocity
data streams if the features are not read between updates or cannot
be updated incrementally. Beyond computation cost, featurization
via third party services also may impost hard rate limits on model-
based embedding computations [6, 8].

https://doi.org/10.14778/3632093.3632116
https://github.com/feature-store/ralf
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3632093.3632116
https://www.acm.org/publications/policies/artifact-review-and-badging-current

As a consequence, existing feature stores are faced with a choice
between (1) greedily processing new updates as they arrive, and
(2) allowing features to become arbitrarily stale. The former is of-
ten prohibitively resource intensive while the latter significantly
degrades downstream model accuracy, as shown in Fig. 2. This
trade-off is not unusual in this space: weakly consistent data stores
are faced with similar issues. In general, relaxing consistency and al-
lowing for stale data can break correctness in ways that are difficult
to quantify [18, 46].

In the specific context of feature stores, however, “breaking cor-
rectness” has a measurable metric: downstream model accuracy.
This is a clean metric that quantifies the prediction accuracy of a
deployed model serving predictions. We can use downstream model
accuracy as a guide for when and how to compute features and
reframe the problem of building a resource-efficient feature store;
rather than treating featurization as a task-agnostic data processing
problem, we focus on maximizing downstream model accuracy.

We find that the appropriate feature maintenance policy for opti-
mizing downstream accuracy can be key-dependent (within a single
feature table) and vary across time. Keys that are rarely queried are
unlikely to have significant impacts on overall downstream accu-
racy. Furthermore, even if keys are queried and updated at similar
rates, the impact of staleness on accuracy varies dramatically by
key. For example, some keys can be updated much less frequently
than others without significantly impacting downstream accuracy,
as show in Fig. 9. Prioritizing updates across keys can enable better
resource efficiency in optimizing for downstream model accuracy.

In this paper, we introduce RALF (real-time, accuracy and lineage-
aware featurization) a feature store for real-time, high-density
feature updates that explicitly leverages downstream feedback to
reduce costs with minimal downstream accuracy degradation. We
define a metric, feature store regret, to estimate accuracy degrada-
tion caused by featurization, and present feature update scheduling
policies to minimize feature store regret.

Metrics. We argue the metric for evaluating a featurization pipeline
should be based on downstream task performance. The ability to
capture correctness numerically is a unique opportunity in striking
the optimal balance between staleness, computation cost, and accu-
racy. Specifically, we define feature store regret, to measure the drift
between the predictions made with optimal, high-cost features and
predictions made with existing values in the feature store.

Propagating & Adapting to Feedback. RALF leverages knowl-
edge of error feedback from downstream applications to estimate
and minimize feature store regret in real-time. RALF achieves this
by tracking the lineage between feature values and downstream
predictions, and allowing downstream models to provide error feed-
back to RALF. This feedback allows RALF to prioritise recomputing
the features that have the greatest impact on downstream accuracy.

To summarize, we make the following contributions:

(1) We formalize the feature maintenance problem and define
a feature store regret metric to evaluate feature store state
in terms of downstream accuracy.

(2) We introduce accuracy-aware feature maintenance policies
to reduce the cost of maintaining features while also mini-
mizing the feature store regret. We evaluate these policies

564

Staleness (s)

20 30
Updates

Feature Updates in Time Interval

40 0 10 20 30

Updates

0 10

Figure 2: The prediction loss (measured by MASE) on the
left is correlated with the feature staleness (time since last
update), show on the right.

with common feature store workloads, anomaly detection
and recommendation.

We implement a system, RALF, as real-time featurization
pipeline that instantiates these policies. We evaluate RALF
at scale with 257,077 keys for the anomaly detection work-
load to show up to 32.7% reduction in loss or 1.6X (i.e. 61%)
compute reduction.

®)

2 BACKGROUND

Most machine learning applications rely on features to summarize
relevant aspects of the training data and provide the necessary
context to make informed predictions. To illustrate, we return to
our online news recommendation service example (§1).

In this setup, the model m must predict the probability i that
user u will click on article a given a search query x. Most papers in
the area will denote this seemingly simple prediction task as

1)

After all, most papers in the machine learning and systems com-
munity are about how to design, train, and efficiently compute the
model m. In this paper, we focus on how to compute the features, u
and a, to optimize accuracy.

Hidden in this notation is the need to transform historical data
associated with the user u and article a into their respective features,
which can encode everything from the user’s entire click history, to
the contents of the article, and even the histories of other users that
clicked on that article. As a consequence, a more accurate notation
for this task would be:

y=m (X, Jusers (D&) , farticles (Dctz)) > @

where the functions fisers and fyicles are featurization functions and
D! and D are all the data up until the present (t) that is associated
with the user and article. Each of the feature functions returns a
vector that is combined with the query text x and processed by
the model m. m makes a prediction, calculating the probability that
user u will click the article a.

While the aforementioned example described only a couple of
features, in practice, there may be dozens of features from different
data sources computed for a single prediction. Automated feature
generation tools make is easy to generate hundreds of unique fea-
tures from data [3]. For notational simplicity, in this paper we will
focus on a single featurization function f and key k:

b=l (o)

7 =m(x,u,a).

®)

Feature Maintenance

Feature Store

[ol hl
1 1
N?WS_ 1 raw_data H
1
Application Click Stream ‘ o] user_ia . i
: click e |featureftable
event: { user_id: 84, 1 id
click_id: 5329} bmmmmmmmmmmmmmme o mmm o ? usert
embedding
Model Serving
K
1 1 I
H 1
I query: ("sporting events” , user_id) 1 model(embedding, ———=——3
! "sporting events") ! -
prediction: [6, 3943, 1] : I embedding

Figure 3: A ML serving pipeline with a feature store.

where x is the query and Dli is the historical data for key k.

Querying available historical data Z)]tC and computing the featur-
ization function f for each prediction request may be prohibitive
in low-latency prediction serving settings where recommendations
must be generated in real-time a users are scrolling through their
news feed. Each query may need to access large amounts of his-
torical data and run a computationally expensive feature function
f. For example, many recent content recommendation models em-
ploy deep learning techniques to encode click streams and article
contents and run online gradient descent [43].

Furthermore, many predictions may query the same keys, result-
ing in redundant computation. Often the same user features will be
used to rank multiple articles and the same article will be ranked
for many users. Executing the query on the entire history of users
and articles for each new prediction is redundant, expensive, and
infeasible for latency constrained settings.

To guarantee low-latency feature queries and avoid redundant
computation, features are often pre-computed and stored in low-
latency data store, referred to as feature stores.

2.1 Feature Stores

The feature store is a nascent class of systems which target the prob-
lem of storing and maintaining feature tables. We show an overview
of a how feature stores, model serving, and applications interact in
Fig. 3. There are several major open-source and commercial feature
store systems [1, 2, 4, 9]. Feature stores can be used to fulfill a va-
riety of requirements, such as enabling sharing of features across
different multiple downstream applications, improving latency and
cost by pre-computing features, and managing metadata about fea-
tures (e.g. version control), which we discuss further in Section 7. In
this paper, we focus specifically on maintaining feature table over
streaming data updates in the context of online prediction serving.

As the underlying, raw data is updated over time, pre-computed
features need to be maintained to prevent feature staleness, which
may degrade prediction quality of dependent downstream models.
For example, a feature encoding a user’s interests in news topics can
change rapidly with each new action by that users. If the feature is
not updated over time, the stale encoding may degrade the quality
of recommendations made by a model for that user.

565

Existing feature store typically rely on external data processing
systems (e.g. Spark, Flink) to compute feature updates from new
data. These systems then process new data in either a streaming or
batch fashion to update current feature values.

2.2 Feature Maintenance

Maintaining features with new data can be computationally ex-
pensive, depending on the rate of new data arrival, the cost of the
featurization function, and the required feature freshness. While
some feature functions can be incrementally applied to new data,
many require significant re-computation over a large window of
historical data with the arrival of each new record. For example,
an attention-based text document embedding model will need to
re-compute the embedding of the entire document to reflect a single
word change. Even when feature functions can be applied incre-
mentally, running them in a streaming fashion on high velocity
data streams can require expensive computational resources (e.g.,
GPUs) and be less efficient than large batch updates [20, 21].

Updating features with every data change can be expensive and
unnecessary, depending on how quickly the true feature value is
changing and how much impact staleness has on model predictions.
In cases where models are robust to stale features, running a daily
batch job to process new data is sufficient. In other cases where
models are sensitive to feature staleness, features may need to be
continuously updated with new data. For example, Splunk uses
Flink for streaming maintenance of time-series features for real-
time anomaly detection [41], and has developed application-specific
solutions for maintaining fresh features for high cardinality data
streams [41]. Feature values are typically eventually consistent with
respect to the underlying raw data.

To provide a specific example, we implement a workload similar
to Splunk’s in Flink where we maintain a time-series decomposition
for a set of cloud virtual machines, each streaming CPU utilization
data. Updating a feature for a given virtual machine (i.e. the key)
takes about 0.3 seconds, so a single Flink process can only update
about 3-4 features per second. Existing systems do not natively
have application awareness to prioritize updates, so will use a
FIFO queue to process new data in incoming order. As a result,
increasing the cardinality of the dataset eventually results in the

Average Staleness Over Time (1-Minute Windows)

@ 400
@ —— Total Keys 90
2 300 Total Keys 80
% —— Total Keys 70
& 200 —— Total Keys 50
%’100 —— Total Keys 20
§ —— Total Keys 5
< 0

N O

N N

N D

Timestamp (s)

Figure 4: Average staleness in a 1-minute time window across
all keys as a function as the cardinality.

per-key staleness linearly increasing with time as updates lag new
data, as shown in Fig. 4. These increases in feature staleness are
correlated to decreased prediction accuracy, as shown in Fig. 2.

In this paper, we show that scheduling feature updates according
to each key’s impact on downstream accuracy allows us to pre-
serve overall accuracy at lower cost. Feature stores typically lack
awareness of downstream query patterns and performance of the
predictions made using queried features. As a result, systems for
maintaining features treat all data updates and keys symmetrically
and fail to leverage important information about which updates are
critical and which keys are likely to be accessed in the downstream
prediction workload.

2.3 A Feature Store Reference Model

For simplicity, we first describe the standard formulation of a feature
store. In Section 7, we discuss the full variety of feature stores
presently being used, and how our work applies.

We assume that raw historical data is loaded into a data ware-
house, capturing the basic entities (users, movies) and actions (users
seeing ads, users viewing movies, etc) we use in prediction. We
then consider a derived feature table that memoizes featurization
functions over that data. This table can also be stored in the data
warehouse, or it can be maintained in an external cache database
like Redis or Memcached; our design does not depend on that de-
cision. A SQL query that populates the feature table exhaustively
would have a template that looks like this:

SELECT key, uda(data)
FROM historical_data
GROUP BY key

where uda is a user-defined aggregate function. If the feature store
is kept in the warehouse, feature tables can be viewed as traditional
materialized views. Materialized views, however, are typically kept
consistent with underlying data, and must be recomputed on every
new update. Systems that support incremental view maintenance
incur similar costs when the supplied feature function cannot be
recomputed incrementally. In contrast, RALF focuses on carefully
choosing when and what keys to recompute to minimize resource
costs while preserving accuracy:

SELECT key, uda(data)
FROM historical_data

566

WHERE key IN <PolicyQuery>
GROUP BY key

The fundamental policy decision addressed in this paper is: given
the above query can only be run on a small subset of all possible keys
at a time , which keys do we select to ensure maximum downstream
prediction accuracy. We focus on making scheduling decisions
across keys (rather than between updates pertaining to a single
key), as large key cardinality is a common attribute in feature store
applications. We use SQL here to illustrate our ideas, but of course
this logic could be implemented in a number of scalable data-centric
APIs, including Spark, Flink, and so on.

As we discuss in Section 7, there are many options for materi-
alizing and storing features. Our simple model here is designed
to be sufficient to illustrate the key policy issues at hand; further
architectural complexity is discussed in Section 7.

3 EFFICIENT FEATURE MAINTENANCE

In this section, we formalize the feature maintenance problem
addressed in this paper, that is, selecting the keys for §2.3. In a
resource-constrained setting, only a subset of features can be up-
dated at any given time, resulting in feature staleness which may
degrade prediction accuracy. The focus of this paper is precisely to
optimize this issue: deciding which keys to update in response to
new data, with the objective of maximizing downstream prediction
accuracy. As previously highlighted, the core enabling factor is the
differentiated impact that feature staleness has on overall accuracy:
stale features may lead to low query errors, while some features
may simply rarely be queried at all.

3.1 Feature Approximation

Featurization cost can be reduced by computing features using
approximated featurization (e.g. sampling) or using stale features,
which is the focus of this paper. Reducing the frequency of updating
feature values by tolerating staleness is a simple way to reduce
featurization cost, as the same update function can be used on the
same data: the only parameter to change is when the update is
triggered. For example, multiple edits to a document can be batched
together so the document only needs to be re-embedded once, or a
function over a window of data can be run less frequently to reduce
computational cost.

For feature derived from data D?, we denote the true feature

values at time t as v]tc =f (Z)]tc) and the stale feature values as

F(D7%). @)

where &y ; is the staleness of the current feature value. Delaying
update processing, and thereby increasing the staleness, reduces
how often f needs to be run on new data. However, reducing the
frequency of re-computation results in features that are more stale,
as entries in the feature table are more likely to be missing the most
recent updates.

~t
Z)k—

3.1.1 Evaluating Approximation Quality. Standard ways to eval-
uate the quality of approximation is to evaluate the staleness of
the queried data, or the differences in the approximated and unap-
proximated value. However in the context of feature stores, these
metrics do not necessarily correlate to prediction quality. Feature

staleness or large divergence in feature values is not problematic if
the prediction quality is not impacted. Similarly, slight changes in
the feature values can dramatically change predictions. For exam-
ple, neural networks can be very sensitive to small perturbations
in input, and it is difficult to model how differences in feature val-
ues will correlate to differences in predictions, especially when the
input values to the model are unknown.

However, directly using downstream accuracy as a metric for
feature quality is problematic, as prediction quality depends on both
the features and the model. A model may perform poorly for an
out-of-distribution user regardless of feature approximation quality.
In order to disentangle model performance from feature quality, we
propose feature store regret in the next section.

3.2 Feature Store Regret

We propose a feature store metric, feature store regret, to evaluate
feature quality. The feature store regret is the difference in pre-

dictions made by the optimal feature values U’l; and approximated

features z?,tc

R(t) = L(m[d") - L(m|o") (5)
where £(m|3") and £L(m|o?) are the total loss of predictions made
with the approximated and unapproximated feature values, respec-
tively. For simplicity, we assume £ (m|3%) > L (m|o?). We can write
the total loss in terms of the sequence of prediction requests with
data {x;} at time ¢ which correspond to predictions §;(v;) and true
values y;:

Lmlo') =)" € (5;(0r), 1) (©)

i
where ¢ is the loss function used to evaluate the model.

3.3 Scheduling with Error Feedback:
Regret-Proportional Scheduling

We propose an online scheduling policy in cases where we can ob-
serve regret online, which we refer to as Regret-Proportional update
scheduling. In many model serving applications, the true prediction
label can eventually be observed. For example, a recommendation
model can serve recommendations to a user and eventually observe
which recommendations the user did or did not click through. Sim-
ilarly, a time series feature can be evaluated against future points
observed for the time-series. The observations of the true label can
be used to compute model prediction error, which can be used to
provide feedback on feature quality. While prediction error can-
not always be computed online, we constrain the problem to this
setting to consider how error feedback can be used to make better
scheduling decisions.

We formalize the online scheduling problem for feature stores
in terms of minimizing feature store regret under resource cost
constraints. At a high level, our proposed policy is to prioritize
keys with the highest cumulative regret. This allows us to prioritize
updating keys where feature staleness has the highest impact on the
overall loss rather than keys where the prediction loss is primarily
a result of model error. We describe how we estimate regret with
error feedback in §3.3.3.

3.3.1 Formulation. We consider a feature table with keys k € K
each mapping to values z?]tc At time ¢, the scheduler can update a

567

subset of keys U; C K. For each k € Uy, we recompute the feature
value on all data up to the current timestamp, while other feature
values remain the same. We can denote the approximate feature
values at time ¢ with Eq. (4) where the staleness &y ; = 0 if the key
k is updated at time ¢, and otherwise &y ; = 1+ 6 ;1.

Given a constraint C on the number of keys which can be updated
at each timestep ¢, our goal is to select updates U such that the
staleness matrix § minimizes the cumulative regret over time:

argmin) R(t)
2

|Us| < C,Vt

@)
®)

3.3.2 Error Feedback. We assume that we can observe the per-key
loss. Say that for the sequence of queries {xg,}, we eventually re-
cieve error feedback E; = {er} denoting the prediction error of
m(xXpy, 52). For simplicity, we assume that the error is received be-
fore we need to make scheduling decisions for the next timestep.
We can estimate the per-key loss at each timestep as the sum

LK) ~ Ty, ek, ek

3.3.3 Scheduling Policy. We propose an online algorithm which
selects keys to update based off the cumulative regret observed
since the last update:

5t,k

arg max Z Ri(t—s)
k s=0

)

To estimate R(t), we also need an estimate of the loss with the
ideal features L(m|viC). We assume that the expectation of error
over queries is temporally stable with respect to staleness for each
key. Thus we can calculate the average error immediately after the
feature was updated at time t;, = t — §; ;. and multiply with the
number of error observations at time ¢ to estimate .E(m|v,tc) and
subtract this from each error value observed at timestamp ¢ before
taking the sum of all errors observed at t. We can thus write out
the estimated regret at ¢ as:

D)

er€E; ex€Ey,

|Et] - e

Ri(t) = TE

(10)

Intuitively, we can think of this as computing how much additional
error per query there is in E; (the current timestep error) as com-
pared to E;, (the post-update timestep error). Expanding out Eq. (9)
and denoting the last update time as t,, = t — &, ., we select the key
to update as:

Stk
e
argmaxz Z ex — Z |Ek| (11)
s=0 ex€E;_s ex€Ey, by

We can prevent starvation by upper bounding the regret Ry (t) <
Rmax, and assuming Ry (t) > € for some € > 0. We find in practice,
since the errors in E;, are relatively small, we can remove the
second summation term and simply sum e to estimate regret.

3.34 Default Regret. One potential issue with relying on cumula-
tive regret for key prioritization is that a key may become arbitrarily
stale if the key is never queried. Stale keys can be prioritized more
by setting a higher minimum regret value Ry (t) > €, so that keys
will incur regret over time.

Listing 1: Defining a maintained feature table of user embed-
dings with RALF.

Source table
source = ralf.tables.
Queryable feature table
embedding = source
.map (UserEmbeddingModel ,
.as_queryable ("user_features")
.set_replicas (4)
.set_default_error (0.01)

Listing 2: Example of a downstream application serving pre-
dictions using queried feature values and posting error feed-
back once the result is observed.

class CartAbandonmentModel:

client = ralf.client(table="user_features")
cache = {}
serve prediction requests

def predict(user_id, cart_id):
feature , fid = client.get(user_id)
cache[cart_id] = {

"pred": model. predict(feature, cart_id),
"feature_id": fid,
"feature_key": user_id
}
return cache[cart_id]
post feedback when label is received
def on_label(cart_id, checkout: bool):

error = MSE(cache[cart_id]["pred"],

client .feedback (
key=cache[cart_id]["feature_key"],
feature_id=cache[cart_id]["feature_id"],

error=e€error

4 SYSTEM DESIGN AND ARCHITECTURE

In this section, we describe RALF, which orchestrates updates to
feature tables with adaptation to feedback. Downstream clients
query the feature tables through the RALF client so that RALF can
track query access patterns and also post feedback to RALF once
prediction labels are observed.

4.1 RALF Server

RALF orchestrates data updates to maintain feature values. We
show an example of defining a maintained feature table with RALF
in Listing 1. RALF schedules and processes data updates to compute
new values for the feature table using the specified feature trans-
formation. In addition, RALF receives queries and error feedback
from the client in order to track feature access patterns and quality.
RALF requires a feedback loop: a downstream model that queries
feature values must post the observed error for the corresponding

model_file="model.pt")

kafka_source (topic="user_data")

checkout)

568

Algorithm 1: Choosing next key to update
Data: List of feedback F[k] for key k, pendingKeys,
processingKeys
Result: Selected key k to process updates for next.
chosenKey «— —1;

maxRegret «— —1;

for k € pendingKeys do

regret = F[k].sum(); /* Calculate regret */
if regret > maxRegret then
maxRegret « regret;
chosenKey « k; /* Update chosen key */
end
end
F[chosenKey] = []; /* Clear key feedback */
pendingKeys.remove(key);
processingKeys.append(key); /* Key is processing */

return chosenKey

key back to the server. This data is used by the scheduler to help
decide which key to update next.

4.1.1 Transformation. Feature transformations are defined by user
definted functions (UDFs) which can maintain state and define an
on_event function, which define how to transform a data update
from the raw data table to a data update to the feature table. We
show an example transformation in Listing 1. These transforma-
tions are implemented as Ray actors, so RALF relies on Ray for
concurrency and fault tolerance.

4.1.2 Scheduling. Pending updates are scheduled by RALF with
the scheduler, which chooses the next key to update. The scheduler
receives error feedback from downstream models, and uses this to
update a table tracking estimated cumulative regret per key. This
table is used to select the key with the highest estimated regret. The
chosen key and corresponding data passed to the transformation.

4.1.3 Scaling. RALF scales to large cardinality datasets by sharding
keys across multiple replicas, which each replica can run on separate
processing across a single or multiple machines. Each replica has a
separate scheduler and error table to avoid coordination.

4.2 RALF Client

The RALF client is used by downstream applications to query RALF
for features and to post feedback. We show an example of a down-
stream application in Listing 2, which queries the client for feature
values to predict the likelihood of cart abandonment. For applica-
tions where true labels are later provided, the application can also
post feedback to the client to inform future scheduling the deci-
sions. The feedback takes in the key of queries feature, the queried
feature version, and the error of the resulting prediction. Feedback
is posted to RALF, which tracks error feedback for current feature
versions on the feature view.

4.3 Scheduling Policy

RALF schedules feature updates with Regret-Proportional schedul-
ing, that is, prioritizing updates to keys with the largest cumulative

regret. The cumulative regret is calculated by tracking the reported
error for predictions made using the current feature version stored
in the table, and then selecting the key with the largest cumulative
regret (as shown in Algorithm 1). Once a key is chosen, the prior
feedback and queue for the key are both cleared, and the key is
marked as being processed and locked until the new feature value is
computed. The scheduler tracks a list of pendingKeys, the list of keys
with new data updates, and processingKeys, the list of keys where
new features are currently being computed. Keys are selected from
pendingKeys, and once selected, are removed from pendingKeys and
added to processingKeys. Keys in processingKeys cannot be chosen
again by the scheduler until they are removed once the featuriza-
tion update is complete - this is to prevent duplicate updates to
keys while they are still processing.

4.4 Implementation

We construct a full prototype of RALF in about 1,500 lines of Python
code. Our prototype is built atop Ray [42], because many popular
featurization and machine learning libraries (e.g., Tensorflow [11])
use Python, and Ray is designed to support machine learning work-
loads. We emphasize that RALF is a set of ideas for accuracy-aware
featurization, and can be implemented on several systems.

5 EVALUATION

In this section, we address two primary questions: (1) how does
Regret-Proportional scheduling impact downstream prediction ac-
curacy (2) how does RALF with Regret-Proportional scheduling
scale to processing high-cardinality, high-rate data streams? To
answer these questions, we structure our evaluation as following:

(1) We construct representative workloads for two common
feature store use-cases, recommendation and anomaly de-
tection, using real-world datasets. For both workloads, we
evaluate feature quality by evaluating model predictions
that rely on feature which are updated over time.

(2) We run an end-to-end evaluation with RALF on a large-
scale anomaly detection workload to evaluate prediction
accuracy improvements, system overhead, and scaleability.

(3) We run ablations comparing Regret-Proportional schedul-
ing with both baseline and application-specific policies.

5.1 Workloads

To evaluate feature maintenance policies, we construct workloads
using real-world data where model predictions rely on pre-computed
features that need to be updated as new events are streamed in.
For each workload, we use real-world data to generate an update
stream (incoming raw data), query stream (queries from downstream
models), and feedback stream (error feedback).

For each workload, we setup to following components to mimic
realistic prediction serving applications: A feature function (the
operator that transforms data streams into features cached in the
feature table), feature table (the key/value store contained feature
keys and values), and downstream model (the downstream pre-
diction serving application which queries feature table values that
are used to make predictions).

We describe the dataset, featurization, and downstream models
for recommendation and anomaly detection workloads. A summary

569

of workload attributes is show in §5, which also shows the best and
worst-case prediction loss depending on feature quality.

5.1.1 Anomaly Detection. Time series decomposition is a common
pre-processing step to many downstream tasks, such as anomaly
detection or forecasting. We construct an time-series anomaly detec-
tion workload based off a real-world application at Splunk [41, 48].
The anomaly detection task compares predicted points from time-
series features, calculated from windows of past data, with the
observed points to detect anomalies. Accurate anomaly detection
depends on estimating the residual of the point accurately, which
relies on the accuracy of the cached time-series features. The query
stream periodically queries all keys to detect anomalies in regular
time-intervals, so the distribution of queries over keys is uniform.
Features are maintained over an update stream of new time-series
points. Each new time-series point is compared to previously pre-
dicted points to provide a feedback stream.

Dataset. We use both the Yahoo Webscope S5 Dataset’s A1 class
[34] and Azure VM dataset [19].We use the Python statsmodels
library [45] to compute features from windows of data for each
time-series. For the Yahoo dataset, the rate of updates and start
time for each time-series is uniform across keys, so the distribution
of queries and feedback across keys is also uniform. However, the
variation in the time-series can vary dramatically across keys, open-
ing opportunity for optimizing resource allocation across keys. For
example, some time-series vary little over time, while others change
rapidly and have complex and variable seasonality components.

5.1.2 Recommendation. Recommendation is another applications
where machine learning models are used to make low-latency rec-
ommendations to users, often using user features derived from
historical data to personalize predictions. We construct a recom-
mendation workloads where a downstream models predicts what a
user’s rating for a movie will be user and movie features computed
from past rating data, where user features are updated online. Given
a stream of user ratings for movies, we simulate a query stream
over the users to predict what the rating should be. We return the
prediction error of the rating as the feedback stream, and treat the
rating itself as data update from the event stream. The incoming
event stream of ratings is used to update user embeddings over
time using partial ALS to update the corresponding feature vector.
Dataset. We use the MovieLens 1M [5], which has timestamped
ratings from roughly a million user/movie pairs. We use the first
half of the data to train a model using Alternating Least Squares.
We treat the resulting movie embeddings as the static model and
the user-ratings as features which are updated over time. We use
the second half of the data as query, event, and feedback streams.

5.2 End-to-End Evaluation

We evaluate RALF on 800 cores for end-to-end with the Anomaly
Detection workload using the Azure VM dataset [19]. We run RALF
with both our Regret-Proportional policy and baseline policy of
Round-Robin scheduling to evaluate prediction accuracy, schedul-
ing overhead, and scaleability.

5.2.1 Experimental Setup. The Azure VM dataset includes of the
CPU readings taken every 5 minutes on a pool of 2 million VMs over
the span of one month. We send a subsample of 275,077 time-series

Table 1: Workload attributes. The Runtime column refers to the featurization update runtime for a single key. The Min Loss
and Max Loss columns show the overall loss given infinite budget and zero budget for featurization, respectively. The minimum

loss for the Azure dataset is shown in Fig. 5.

Workload Dataset Keys Runtime | Edits Min Loss | Max Loss
Recommendation | MovieLens 1M 6041 0.9s 85,297 1.12 6.29
Time-Series Yahoo Anomaly A1 | 68 0.25s 43,684 90.79 880.3
Decomposition Azure VM Dataset 275,077 | 0.4 5,683,390 | - -

MASE

1000

2000 3000 4000

5000 6000 7000 8000 9000

Timestep

Round-Robin

emm» Regret-Proportional

emm» Best-Case

Figure 5: Smoothed Average MASE per Timestep over 275,077 keys.

from Azure Dataset on a cluster of 11 m5d.24xlarge machines (800
cores) on AWS. We simulate higher data send rates by sending at
1000x speed (i.e. ingesting data once every 0.3 seconds, rather than
every 5 minutes as specific in the dataset). We use RALF to compute
an STL decomposition of the time series for each key, using a recent
observation window. We set the STL decomposition seasonality to
be 24 hours, and set the observation window size of data to be 3X
the seasonality length (so 72 hours of recent data points) to have a
sufficiently large window to compute the decomposition. We store
the resulting STL decomposition as a feature in the feature store for
each key (i.e. a time-series ID), which is updated over time by RALF
as new data arrives. Because of the high data rate, some features
will be out of date with the current observation window. RALF uses
either the Regret-proportional or Round-Robin scheduling policy
to choose which features to prioritize updating.

5.2.2 Policy Error. To evaluate feature quality, we compare the
MASE (Mean Absolute Squared Error) of time-series predictions
using the STL decomposition features using the Regret-Proportional
and Round-Robin scheduling policies in Fig. 5. We can calculate the
MASE by comparing the predicted points with the actual points
observed. We show a plot of average MASE across keys over time
for features computed with the Regret-Proportional and Round-
Robin scheduling policies in Fig. 5. Although overall MASE varies
over time, the Regret-Proportional policy consistently produces
lower MASE than the Round-Round policy features, with error
improvement ranging from 2-32.7% and averaging to 13%.

We additionally calculate the optimal version of the features
(described in §3.2) for each query by calculating what the feature
value would be with all data up to exactly the query time. The
optimal features correspond to the best case MASE (shown in grey
in Fig. 5) enabled by unlimited compute resources (i.e. processing
every possible update). We see that the MASE for optimal features

570

200000 " _ pound Robin

Regret Optimized -
150000 -

100000 -

Total Updates

50000 -

0
0 5 10 15 20 25 30
of Cores

Figure 6: System throughput versus number of cores.

and the Regret-Proportional policies are similar in Fig. 5. The Regret-
Proportional policy over the course of the experiment runs 61%
fewer updates (i.e. 1.6X less) than would be needed to achieve the
optimal features, however averages only 1% additional error as
compared to optimal features.

5.2.3 Scaling Evaluation. We evaluate how RALF’s throughput
scales in Fig. 6 by measuring the throughput per number of cores
for Round-Robin versus Regret-Proportional scheduling. For both
the Round-Robin and Regret-Proportional policies, the throughput
scales linearly with the number of cores. Because the workload is
embarrassingly parallel, we can shard keys across replicas, where
each replica corresponds to one core and has its own scheduling
and transformation operator. As a result, the number of updates
scales linearly with with the number of cores. We use randomized
hashing to place keys o