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ABSTRACT

The database architecture and workhorse algorithms have
been designed to compensate for hard disk properties. The
I/O characteristics of Flash memories have significant im-
pact on database systems and many algorithms and ap-
proaches taking advantage of those have been proposed re-
cently. Nonetheless on system level Flash storage devices
are still treated as HDD compatible block devices, black
boxes and fast HDD replacements. This backwards compat-
ibility (both software and hardware) masks the native be-
haviour, incurs significant complexity and decreases I/O per-
formance, making it non-robust and unpredictable. Database
systems have a long tradition of operating directly on RAW
storage natively, utilising the physical characteristics of stor-
age media to improve performance.

In this paper we demonstrate an approach called NoFTL
that goes a step further. We show that allowing for native
Flash access and integrating parts of the FTL functional-
ity into the database system yields significant performance
increase and simplification of the I/O stack. We created a
real-time data-driven Flash emulator and integrated it ac-
cordingly into Shore-MT. We demonstrate a performance
improvement of up to 3.7x compared to Shore-MT on RAW
block-device Flash storage under various TPC workloads.

1. INTRODUCTION

Many key database architectural principles and workhorse
algorithms have been designed to leverage the properties
of HDD. Flash memories are a new technology crucial to
database systems, which comes with a set of different I/0O
characteristics. A large body of algorithmic approaches has
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been proposed over the last years to natively address Flash
properties. Nonetheless on system level, Flash devices still
support the same block level interface as HDD. On the one
hand, the block device compatibility favours adoption by
making replacement seamless. On the other hand, as a
legacy interface, it is a major source of unpredictability, non-
robustness. The negative performance impact ultimately
precludes any Flash relevant optimisations.

The Flash Translation Layer (FTL) is an on-device layer
that ensures low-level block interface compatibility, masking
physical characteristics, and making a Flash device behave
like a hard drive [6, 4]. Some of the negative FTL aspects
are: (i) Unpredictable and state-dependent performance due
to background processes [6, 5]; (ii) adverse performance im-
pact due to limited on-device computational resources [5,
12]; (iii) redundant functionality also present at different
layers along the critical I/O path [5, 12].
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Figure 1: DBMS storage alternatives: (a) Tradi-
tional ’cooked’ DBMS storage; (b) RAW DBMS

storage; (c) NoFTL

Database systems have a long history of simplifying the
1/0 stack to increase performance. Traditional setups would
employ a file system based (”cooked”) storage on traditional



block devices (Figure 1.a). Database systems on raw stor-
age (Figure 1.b) eliminate file system overhead, enable raw
storage access and direct physical data placement, achieving
better performance [17]. Newer approaches propose depart-
ing from block device interfaces, achieving: atomic writes,
computational efficiency and parallelism [19], stripped down
FTL and a native interface to host [5, 12]. With NoFTL
(Figure 1.c) we stop treating Flash devices as a closed sys-
tem, consider native Flash access, and explore FTL integra-
tion in the DBMS.

Contributions and Demo. In this paper we demon-
strate an approach called NoFTL. We argue for a significant
simplification of the I/O stack; integrating Flash manage-
ment in the database and using DBMS knowledge to control
storage; direct access and exposure of a native Flash inter-
face; utilisation of database server’s computational resources
instead of on-device resources. The contributions of this pa-
per are: (i) we implemented a real-time data-driven Flash
emulator as a character device driver; (ii) we incorporated a
DFTL implementation; (iii) we extended Shore-MT with a
page mapping FTL and integrated the real-time simulator;
(iv) live TPC-C, TPC-B and TPC-H tests under Shore-MT
indicate a NoF'TL performance improvement of 1.5x to 3.7x
over the DFTL configuration.

2. RELATED WORK

In the past numerous designs of FTLs have been proposed
(e.g. [20], [10], [14], [13], [15], [16] etc.). Such approaches can
be classified as Page-, Block- or Hybrid-/Log-Block- Map-
ping FTLs. An evaluation and comparison of different FTLs
is provided in [6] and [7]. DFTL is a page-mapping FTL
and is introduced in [10]. There are multiple Flash simula-
tion frameworks such as FlashSim [11] or DiskSim. There
is further research on omitting certain on-device FTL func-
tionalities, e.g. an approach that is not using the block
I/0O interface is presented in [19], [5] presents a hybrid ap-
proach which can bypass the on-device FTL. Specialized
Flash Server Storage moves the FTL from a device into the
driver, such as FusionIO [1]. NoFTL completely removes the
on-device FTL, enabling the application to take full control
of the Flash storage device.

3. THE NOFTL APPROACH

At the core of the NoFTL evaluation and demonstration
(Figure. 2) is a real-time data-driven Flash emulator, simu-
lating a Flash device according to the ONFI standard, while
storing the data in a large RAM buffer. The emulated Flash
device is attached to Shore-MT [3], which is a recognised
storage engine supporting ACID transactions, ARIES-type
logging, Indices, Buffer management. Furthermore, Shore-
MT supports raw devices and standard TPC benchmark
implementations.

The NoFTL emulator exposes two interfaces: a native
Flash interface (Figure 2.a) and a block device interface
(Figure 2.b). In the former case (NoFTL) we also extended

Shore-MT with a Page-Mapping FTL, including a DatabasePage-

to-PhyiscalPage mapping, integrating Flash space manage-
ment and wear levelling in the Shore-MT storage manager.
The latter case required an FTL implementation to ensure
block device functionality. DFTL [10] was chosen since
it provides better results than most hybrid FTL schemes
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Figure 2: Architecture

proposed in the recent years. Both alternatives are imple-
mented as device drivers. We gather reliable device statis-
tics not interfering with the real-time simulator by using an
additional device driver, in both configurations.

The Flash device emulation is based on the observation
that typical Flash latencies (of 25us and 250us write of a

4KB page and 700pus for a block erase — Micron MT29F16GOSABABA)

provide enough CPU time to perform the emulation. The
device size and layout are configurable and designed accord-
ing to the ONFI specification: a Flash device contains a
number of chips comprising multiple planes (between 1 and
4), which in turn comprise multiple dies (typically 4). The
current NoFTL emulator architecture and implementation
allows for very accurate timings and robust performance.
We validated the NoFTL emulator under different work-
loads using I/O benchmarking tools(FIO) and against of-
fline Flash Simulators (FlashSim, DiskSim).

Coupling the emulator to Shore-MT is the second corner-
stone of the demonstrated approach. For NoFTL (Figure
2.a) to work, typical FTL functionality was integrated into
Shore-MT: (i) page-mapping, wear levelling, and garbage
collection; (ii) integration of the native Flash interface (na-
tive use of read, write and erase at the respective granular-
ity); (iii) eliminating redundant functionality.

The experimental analysis was performed on an Intel Xeon
server with two quad-core Intel Xeon 5630 2.5 GHz proces-
sors (256 KB L1 cache, 1 MB L2 cache and 12 MB L3 cache)
and 48 GB RAM and a QPI bus architecture. We instru-
mented Shore-MT for both TPC-C (scale factors: 5, 25 and
50), TPC-B (scale factors: 48, 200, 500) and TPC-H (scale
factor: 1) on different Flash volume sizes (1 GB, 5GB and
10GB) - Flash volume equals DB size. We compare the
NoFTL (Figure 2.a) against the RAW Flash with DFTL
(Figure 2.b). DFTL was configured with different mapping
cache sizes (2%, 15%, 35% of all mappings cached).

The experimental results are shown in Figure 3. NoFTL
is 1.5x to 3.7x faster than comparable DFTL configurations.
The speedup increases with the database size. Three ma-
jor factors contribute to the speedup: (a) limited on-device
computational resources; (b) FTL restrictions; (c¢) redun-
dant functionality. These are discussed in detail in the para-
graphs below.

Limited on-device computational resources: DFTL and
the FTL in general is executed on slow on-device hardware.
In the emulator we account for the physical I/O required to
page in and page out the physical-to-logical address mapping
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TPC-C: SF=5 NoFTL DFTL 2% DFTL 15% DFTL 35%
Do eeaos | s s ™s |s Slow- | s s Slow- o |g Slow-
: Txis |STDEV[ Txs |STDEV| S| Tws |STDEV| Sov | Tws |STDEV| SO
TPC-C 43.34 | 0.34 |1 26.64 | 0.35 | 1.63 | 25.40 | 0.34 | 1.71 | 30.00 | 0.87 | 1.44
TPC-B 462 1.05 | 275.7 | 3.70 | 1.67 254 2.84 | 1822959 | 2.26 | 1.56

TPC-C: SF=25 NoFTL DFTL 2% DFTL 15% DFTL 35%
TPC-B:SF:ZUU /s / Slow- J Slow- / Slow-
DB SIZE:5GB | Txis [STDEV| Txis |STDEV| Sov"| Txis |STOEV| qoi | Twis |sTDEV| S
TPC-C 414 | 022 | 227 | 015 | 1.82 | 215 | 009 | 1.92 | 19.0 | 0.17 | 2.18
TPC-B 449.7 | 7.87 | 267.2 | 6.70 | 1.68 | 233.0 | 2.46 | 1.93 | 149.4 | 104 | 3.01

TPC.C:SF=s0 | NOFTL DFTL 2% DFTL 15% DFTL 35%
TPC-B:SF=500 Slow- Slow- Slow-
DB SIZE: 1068| Tx/s [STDEV| Twis |sToEV| S0 [ Twis |sToEV| SO | Twis |STDEV| S
TPC-C 412 | 038 19.1 | 0.31 | 2.16 | 13.8 | 0.13 | 2.98 | 10.9 | 0.42 | 3.77
TPC-B 409.7 | 3.01 | 215.5| 0.94 | 1.90 | 163.3 | 15.0 | 2.51 | 113.7 | 9.97 | 3.60

NoFTL DFTL 2% DFTL 15% DFTL 35%

TPC-H: SF=1

DB SIZEL5GB| gec. |sTDEV| Sec. |STDEV ﬁg’v‘yn Sec. |STDEV gl‘fm"lvn Sec. |STDEV ﬁg’fn
Query 1 58.7 | 0.54 | 79.1 | 0.05 | 1.35 | 121.9 | 0.27 | 2.08 | 178.2 | 3.75 | 3.04
Query 6 584 | 042 | 752 | 0.05 | 1.29 | 986 | 0.11 | 1.69 | 149.5 | 3.77 | 2.56
Query 12 109.3 |11.36| 120.5 | 1.80 | 1.10 | 157.1 | 5.94 | 1.44 | 208.0 | 5.56 | 1.90
Query 14 98.4 | 272 | 1135 | 0.63 | 1.15 | 142.2 | 29 | 1.45|194.7 | 3.05 | 1.98

Figure 3: TPC-B, TPC-C and TPC-H results
NoFTL and DFTL

table as well as the computational overhead. On real devices
the less powerful on-device CPU will have an even more neg-
ative impact. In NoFTL scenarios the FTL fully benefits
from the DB server’s ample computational resources.

FTL restrictions: SSD vendors offer sparse details about
the implemented algorithms. Research findings converge to-
wards hybrid FTL schemes. We opted for DFTL (a page-
mapping approach), which represents an optimistic choice:
DFTL wastes less paging I/Os for the mapping tabs and has
more efficient garbage collection than Hybrid FTL schemes.
Nonetheless, for large mapping buffers the DFTL I/O sav-
ings do not compensate for the high computational overhead
incurred by the mapping table cache maintenance, clearly
visible for large data (5 or 10GB and 35% cached mappings)
— Figure 3.

Redundant functionality: in terms of address mapping,
space management, page and block placement database stor-
age managers, file systems and FTL schemes contain similar
functionality. Eliminating some layers of abstraction and
integrating functionality is where NoF'TL has most poten-
tial. Due to the Shore-MT integration we managed to: (i)
reduce the number of block erases and make them Flash-
friendly while avoiding TRIM; (ii) couple garbage collection
to Shore-MT space management and eliminate file system
space management functionality; (iii) simplify wear-levelling
with DB information about dirty block eviction; (iv) buffer-
ing and buffer management is consolidated and performed
only on DBMS level (not by the DBMS, File System, OS
Kernel and SSD); (v) address mapping is performed only
on DBMS level (not on DBMS (Tuple-Block), File System
(FileOffset-LBA) and SSD level (LBA-PBA)). Many possi-
ble further extensions result from integration with MVCC
and Log-based Storage Managers [8], access paths [9], buffer
management and eviction strategies [18], etc.

4. DEMONSTRATION DESCRIPTION

In this section we describe the demonstration of the main
features of NoF'TL. We also describe the main scenarios and
how the audience can interact with the system.

High-level Description. The main scenario involves
instrumentation and comparative testing of NoFTL versus
DFTL devices. We introduce the audience to the system and
explain what the expected influence of the different knobs is.
We than let the audience pick a test scenario configuration
and perform comparative benchmarking.

Entry-level I/O scenario. We let the audience stress
the NoFTL emulator with a simple I/O benchmarking tool
- FIO. The audience will experience the different statistics
for different metrics e.g. reads, writes, overwrites, IOPS,
etc. and the influence of different system parameters on the
performance (see Figure 4).

O S ® root@timbuktu-Aspire: fhome/timbuktu/simulator/flashsim
fio > ./fio /home/timbuktu/simulator/flashsim/io_tests/random_write_raw_block.fio

random_write_raw_block: (g=8): rw=randwrite, bs=4K-4K/4K-4K, ioengine=sync, iodepth=1

fio-2.0.8
Starting 1 process
done] [OK/15916K /s] [0 /3979 iops] [eta 00m:00s]

.00th=[ , 5. 10.80th=[ 251], 20.00th=[ 251],
.e0th=[ 251 . se.eeth=[ 251], 6@.e0th=[ 251],

.eeth=[ 1], se. 90.80th=[ 251], 95.80th=[ 251],
.eeth=[ ) 99.90th=[ 282], 99.95th=[ 294],

avg=15913.64, stdev= 5.99
lat (usec) :
cpu
10 depths
submit
complete
issued

Run status group 8 (all jobs):
WRITE: 10=996.8MB, aggrb=15989KB/s, minb=15969KB/s, maxb=15909KB/s, mint=63721msec

Figure 4: Screenshot testrun FIO on DFTL

Shore-MT scenarios. We than let the audience to pick
a TPC benchmark (TPC-B, TPC-C or TPC-H) and dataset
size depending to the personal preference.

Phase I. A device layout is selected and the device is
being initialised (Figure 5). In addition, the benchmark data
set is loaded and the system is prepared for benchmarking.

@S @ root@timbuktu-Aspire: fhome/timbuktu/si
#1/bin/sh

insmod flashsim.ko \
\
block_device_major_number=0 \
block_device_sector_size=4896 \
_num_blocks=4896 )\
sectors_per_block=64 \
_delay_mode=1 \
block_device_request_statistics_mode=0 \
block_device_max_req_stat_entries=1000000 \
block device read sector_latency us=50 \
program_sector_latency_us=250 \
rase_block_latency_us=780 \
block_dewvice_oob_size=32 \
block device read oob latency us=8 \
block_device_program_oob_latency_us=8 \
_ftl_mode=1 \
block_device_cache_level

Figure 5: Device Layout Instrumentation
Phase II. Having loaded the data into Shore-MT, the
chosen TPC benchmark is run under the NoFTL and DFTL
setups for 10 min. The audience tracks the execution progress
both in terms of Shore-MT performance statistics (Figure 6)
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but also in terms of low-level device and request statistics
(Figure 7). A preview of this stage is provided in

M ™ root@timbuktu-Aspire: /home/timbuktu

./srcfutil/procstat.cpp:
.fsrcfutil/procstat.cpp:
.fsrcfutil/procstat.cpp:
./srcjutil/procstat.cpp:
x-mon: ./src/util/procstat.cpp: :print_interval:
x-mon: ./srcfutil/procstat.cpp: :print_interval: (-
root-thread: ./src/tests/shore_kits.cpp:442:_cmd_MEASURE_i

X-mon:
X-mon:
X-mon:
X-mon:

:print_interval: (
:print_interval: (
:print_interval: (-
:print_interval: (
, (
_ (

: ./src/workload/tpcc/shore_tpecc_xct.cpp:131:print_throughp

(5.0)
(No)

(1)
(1713)
(13)

(o)

(785)
(60.88)
(0.00M/s)
(-nan) (-nan%)
(28.33)
(785.80)

root@timbuktu-Aspire: /home/timbukku/simulator/flashsim

*% END of GENERAL S

REQUEST STATISTICS

| F.DURATION

Figure 7: Screenshot NoFTL Request Statistics

5.  CONCLUSIONS

In this paper we demonstrated an approach called NoFT'L.
We argue for a significant simplification of the I/O stack;
integrating Flash management in the database and using
DBMS knowledge to control storage; direct access to stor-
age and exposure of native Flash interface. We also argue
that the performance gain can be maximised by even closer
DBMS integration. NoFTL is implemented as a real-time
data-driven Flash emulator. We integrated it into Shore-
MT, which was also extended with a page mapping FTL. As
a comparative FTL-system, we incorporated a DFTL imple-
mentation. We demonstrate live TPC tests under Shore-MT
indicating a NoFTL performance improvement of up to 3.7x.
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