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ABSTRACT
AsterixDB is a new, full-function BDMS (Big Data Management
System) with a feature set that distinguishes it from other platforms
in today’s open source Big Data ecosystem. Its features make it
well-suited to applications like web data warehousing, social data
storage and analysis, and other use cases related to Big Data. Aster-
ixDB has a flexible NoSQL style data model; a query language that
supports a wide range of queries; a scalable runtime; partitioned,
LSM-based data storage and indexing (including B+-tree, R-tree,
and text indexes); support for external as well as natively stored
data; a rich set of built-in types; support for fuzzy, spatial, and tem-
poral types and queries; a built-in notion of data feeds for ingestion
of data; and transaction support akin to that of a NoSQL store.

Development of AsterixDB began in 2009 and led to a mid-
2013 initial open source release. This paper is the first complete
description of the resulting open source AsterixDB system. Cov-
ered herein are the system’s data model, its query language, and
its software architecture. Also included are a summary of the cur-
rent status of the project and a first glimpse into how AsterixDB
performs when compared to alternative technologies, including a
parallel relational DBMS, a popular NoSQL store, and a popular
Hadoop-based SQL data analytics platform, for things that both
technologies can do. Also included is a brief description of some
initial trials that the system has undergone and the lessons learned
(and plans laid) based on those early ”customer” engagements.

1. OVERVIEW
The Big Data era is upon us [1]. A wealth of digital informa-

tion is being generated daily through social networks, blogs, on-
line communities, news sources, and mobile applications as well
as from a variety of sources in our increasingly sensed surround-
ings. Organizations and researchers in most domains today recog-
nize that tremendous value and insight can be gained by capturing
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this data and making it available for querying and analysis, and do-
ing so is one of the major focuses of today’s Big Data movement.
Domains where the timely availability of information derived from
Big Data could be tremendously beneficial include public safety,
public health, national security, law enforcement, medicine, mar-
keting, political science, and governmental policy-making, to name
but a few. But at least one ”minor detail” remains: Where are we
going to put all of this information, and just how is it going to be
managed and accessed over time?

In 2009, the NSF-sponsored Asterix project set out to develop a
next-generation system to ingest, manage, index, query, and ana-
lyze mass quantities of semi-structured data [3]. The project drew
ideas from three areas – semi-structured data management, paral-
lel databases, and first-generation Big Data platforms – to create a
next-generation, open-source software platform that scales by run-
ning on large, shared-nothing commodity computing clusters. The
effort targeted a wide range of semi-structured use cases, ranging
from “data” use cases – whose data is well-typed and highly reg-
ular – to “content” use cases – whose data is irregular, involves
more text, and whose schema may be hard to anticipate a priori or
may never exist. The initial results were released as an AsterixDB
system beta release in June of 2013. This paper aims to introduce
AsterixDB to both the Big Data and database management system
communities by providing a technical overview of its user model
(data model and query language) and its software architecture.

To distinguish it from current Big Data analytics platforms, which
query but don’t store or manage data, we classify AsterixDB as a
Big Data Management System (BDMS). One of the project’s infor-
mal mottos is “one size fits a bunch”, and we hope AsterixDB will
prove useful for a wider range of use cases than are addressed by
any one of the current Big Data technologies (e.g., Hadoop-based
query platforms or key-value stores). We aim to reduce the need
for “bubble gum and baling wire” constructions involving multiple
narrower systems and corresponding data transfers and transforma-
tions. Our design decisions were influenced by what we believe are
the key BDMS desiderata, namely:

1. a flexible, semistructured data model for use cases ranging
from “schema first” to “schema never”;

2. a full query language with at least the power of SQL;
3. an efficient parallel query runtime;
4. support for data management and automatic indexing;
5. support for a wide range of query sizes, with processing cost

proportional to the task at hand;
6. support for continuous data ingestion;
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Figure 1: AsterixDB system overview

7. the ability to scale gracefully in order to manage and query
large volumes of data by using large clusters;

8. support for today’s common “Big Data data types”, e.g., tex-
tural, temporal, and spatial data values.

AsterixDB aims to cover all of these, distinguishing it from ex-
isting data management technologies like Big Data analytics plat-
forms [16] (e.g. Hadoop-based query platforms—missing 4 and
5), NoSQL stores [7] (missing 2), and parallel RDBMS [8] (do not
work well for 1).

Figure 1 provides a high-level overview of AsterixDB and its
logical architecture. Data enters through loading, continuous feeds,
and/or insertion queries. Data is accessed via queries and the return
(synchronously or asynchronously) of their results. The Cluster
Controller in Figure 1 is the logical entry point for user requests; the
Node Controllers and Metadata (MD) Node Controller provide ac-
cess to AsterixDB’s metadata and the aggregate processing power
of the underlying shared-nothing cluster. The figure’s dotted Data
publishing path indicates that we are working towards eventually
adding support for continuous queries and notifications.

The remainder of this paper is organized as follows: Section 2
covers the data definition side of AsterixDB, including its flexible
JSON-based data model (ADM). Section 3 covers data manipula-
tion via AsterixDB’s declarative query language (AQL). Section 4
describes the architecture of the system at the next level of detail,
including its (openly) layered structure, its ingestion-targeted ap-
proach to data storage and indexing, its transactional support, and
its data feed facility. Section 5 discusses the current status of the
AsterixDB code base and the open source R&D effort, mentions
some early use cases and their impact on the system, and shares a
set of initial performance numbers to show how AsterixDB com-
pares today to other available technologies in that regard. Section
6 provides a wrap-up and highlights the project’s next steps.

2. DATA DEFINITION
In this section we describe AsterixDB’s data definition features.

We illustrate them by example through a small and slightly silly
scenario based on information about users and their messages from
a popular (hypothetical) social network called Mugshot.com.

2.1 Dataverses, Datatypes, and Datasets
The top-level organizing concept in AsterixDB is the Dataverse.

A Dataverse, short for ”data universe”, is a place (akin to a database
in an RDBMS) within which one can create and manage the types,
Datasets, functions, and other artifacts for a given application. Ini-
tially, an AsterixDB instance contains no data other than the system

catalogs, which live in a system-defined Dataverse (the Metadata
Dataverse). To store data in AsterixDB, one creates a Dataverse
and then populates it with the desired Datatypes and Datasets. A
Datatype specifies what its definer wants AsterixDB to know, a pri-
ori, about a kind of data that it will be asked to store. A Dataset
is a stored collection of data instances of a Datatype, and one can
define multiple Datasets of a given Datatype. AsterixDB ensures
that data inserted into a Dataset conforms to its specified type.

Since AsterixDB targets semi-structured data, its data model pro-
vides the concept of open (vs. closed) Datatypes. When defining a
type, the definer can use open Datatypes and tell AsterixDB as lit-
tle or as much about their data up front as they wish. (The more
AsterixDB knows about the potential residents of a Dataset, the
less it needs to store in each individual data instance.) Instances
of open Datatypes are allowed to have additional content, beyond
what the type specifies, as long as they at least contain the infor-
mation prescribed by the Datatype definition. Open types allow
data to vary from one instance to another, leaving ”wiggle room”
for instance-level variations as well as for application evolution (in
terms of what can be stored in the future). To restrict the objects
in a Dataset to contain only what a Datatype says, with nothing
extra in instances, one can opt to define a closed Datatype for that
Dataset. AsterixDB prevents users from storing objects with extra
or illegally missing data in such a data set. The closed, flat subset of
ADM is thus relational. Datatypes are open by default and closed
only if their definition says so, the reason for this choice being that
many Big Data analysts seem not to favor a priori schema design
and ADM’s design targets semi-structured data. To the best of our
knowledge, this support for open and closed Datatypes is novel—
we have not seen similarly flexible schema facilities in other data
management systems, and it consistently garners very positive re-
actions when AsterixDB is presented to outside groups.

Shape-wise, ADM is a superset of JSON [20]—ADM is what
one gets by extending JSON with a larger set of Datatypes (e.g.
datetime) and additional data modeling constructs (e.g. bags) drawn
from object databases and then giving it a schema language. We
chose JSON for its self-describing nature, relative simplicity, and
growing adoption in the Web world. Note that, unlike AsterixDB,
current JSON-based data platforms do not offer the option to define
all (or part) of their data’s schema.

We illustrate ADM by defining a Dataverse called TinySocial to
hold the Datatypes and Datasets for Mugshot.com. The data defi-
nition statements in Data definition 1 show how we can create the
Dataverse and a set of ADM types to model Mugshot.com’s users,
their users’ employment histories, and their messages. The first
three lines tell AsterixDB to drop the old TinySocial Dataverse, if
one exists, and to create a new Dataverse and make it the focus of
the statements that follow. The first type creation statement creates
a Datatype to hold information about one piece of a Mugshot user’s
employment history. It defines a record type with a mix of string
and date data, much like a (flat) relational tuple. Its first two fields
are mandatory, with the last one (end-date) being optional as indi-
cated by the ”?” that follows it. An optional field in ADM is like
a nullable field in SQL – it may be present or missing, but when
present, its data type will conform to the Datatype’s specification
for it. Also, because EmploymentType is open, it is important to
note that additional fields will be allowed at the instance level.

The second create type statement creates a Datatype for Mugshot
users. MugshotUserType is also open since that is the default for
AsterixDB Datatypes. This second type highlights several addi-
tional features of ADM. The address field illustrates one way that
ADM is richer than the relational model; it holds a nested record
containing the primary address of a user. The friend-ids field shows
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drop dataverse TinySocial if exists;
create dataverse TinySocial;
use dataverse TinySocial;

create type EmploymentType as open {
organization-name: string,
start-date: date,
end-date: date?

}

create type MugshotUserType as {
id: int32,
alias: string,
name: string,
user-since: datetime,
address: {

street: string,
city: string,
state: string,
zip: string,
country: string

},
friend-ids: {{ int32 }},
employment: [EmploymentType]

}

create type MugshotMessageType as closed {
message-id: int32,
author-id: int32,
timestamp: datetime,
in-response-to: int32?,
sender-location: point?,
tags: {{ string }},
message: string

}

Data definition 1: Dataverse and data types

another extension of ADM over the relational model and also over
JSON. This field holds a bag (unordered list) of integers – pre-
sumably the Mugshot user ids for this user’s friends. Lastly for this
type, its employment field is an ordered list of employment records,
again a beyond-flat-relational structure.

The last create type statement in the example defines a Datatype
to store the content of a Mugshot message. In this case, since the
type definition for Mugshot messages says closed, the fields that it
lists will be the only fields that instances of this type will be allowed
to contain in Datasets of this type. Also, among those fields, in-
response-to and sender-location are optional, while the rest must
be present in valid instances of the type.

Recall that AsterixDB aims to store and query not just Big Data,
but Big Semi-structured Data. Most of the fields in the create type
statements above could be omitted, if desired, while changing only
two things in terms of the example. One change would be the size
of the data on disk. AsterixDB stores information about the fields
defined a priori as separate metadata; information about fields that
are ”just there” in instances of open Datatypes is stored within each
instance. A logical change would be that AsterixDB would be more
flexible about the contents of records in the resulting Datasets, as it
enforces only the specified details of the Datatype associated with
a given Dataset. The only fields that must currently be specified a
priori are the primary key fields. This restriction is temporary, as
AsterixDB’s next release will offer auto-generated keys.

One other important feature of AsterixDB for managing today’s
Big Data is its built-in support for useful advanced primitive types
and functions, specifically those related to space, time, and text.
Table 1 lists some of the advanced ADM primitive types as well as
some of their corresponding AQL functions. A complete list and
more details can be found in the AsterixDB documentation [14].

Types functions
string contains

like
matches
replace
word-tokens
edit-distance
edit-distance-check
edit-distance-contains

bag similarity-jaccard
similarity-jaccard-check

date/time/datetime current-date/time/datetime
interval interval-start-from-date/time/datetime
duration adjust-datetime-for-timezone
day-time-duration adjust-time-for-timezone
year-month-duration subtract-date/time/datetime

interval-bin
Allen’s relations on intervals

point spatial-distance
line spatial-area
rectangle spatial-intersect
circle spatial-cell
polygon

Table 1: Sample of advanced types and functions

2.2 Dataset and Index Creation
Having defined our Datatypes, we can now proceed to create a

pair of Datasets to store the actual data.

create dataset MugshotUsers(MugshotUserType)
primary key id;

create dataset MugshotMessages(MugshotMessageType)
primary key message-id;

create index msUserSinceIdx
on MugshotUsers(user-since);

create index msTimestampIdx
on MugshotMessages(timestamp);

create index msAuthorIdx
on MugshotMessages(author-id) type btree;

create index msSenderLocIndex
on MugshotMessages(sender-location) type rtree;

create index msMessageIdx
on MugshotMessages(message) type keyword;

Data definition 2: Datasets and indexes

The two ADM DDL statements shown in Data definition 2 will
create Datasets to hold data in the TinySocial Dataverse. The first
creates a Dataset called MugshotUsers; this Dataset will store data
conforming to MugshotUserType and has the id field as its primary
key. The primary key is used by AsterixDB to uniquely identify
instances for later lookup and for use in secondary indexes. Each
AsterixDB Dataset is stored (and indexed) as a B+-tree keyed on
primary key; secondary indexes point to indexed data by its pri-
mary key. Also, in an AsterixDB cluster, the primary key is used
to hash-partition (shard) the Dataset across the cluster’s nodes. The
create dataset statement for MugshotMessages is similar.

The two create dataset statements are followed by five more
DDL statements, each requesting the creation of a secondary in-
dex on a field of one of the Datasets. The first two will index
MugshotUsers and MugshotMessages on their user-since and times-
tamp fields. These indexes will be B+-tree indexes, as their type is
unspecified and btree is the default. The other three show how
to explicitly specify the desired index type. In addition to btree,
rtree and inverted keyword indexes are supported. Indexes can
have composite keys, and more advanced text indexing is also avail-
able (ngram(k), where k is the gram length, for fuzzy searching).
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2.3 External Data
So far we have explained how to specify Datatypes, Datasets,

and indexes for AsterixDB to store and manage in its role as a full
BDMS. AsterixDB also supports direct access to externally resi-
dent data. Data does not need to be pre-loaded and handed to Aster-
ixDB for storage and management just to be queried—avoiding the
costly (and often infeasible) transfer or duplication of “Big Data”.
The current AsterixDB system offers external data adaptors to ac-
cess local files that reside on the Node Controller nodes of an As-
terixDB cluster and to access data residing in HDFS. To illustrate,
Data definition 3 shows the definition of an external Dataset based
on a local file. In this case, the local file is a CSV version (Figure
3) of an Apache log file (Figure 2). When accessed at query time,
CSV parsing of the data into ADM object instances will be driven
by the type definition associated with the Dataset.

Once defined in this manner, an external Dataset can be accessed
in a query just like any internal Dataset. Unlike an internal Dataset,
however, external Datasets in the current release of AsterixDB are
limited to being read-only and static and indexes cannot be created
on them. (Support for incrementally refreshable external data sets,
as well as indexing externally resident data, is being added to the
system and will arrive in a mid-summer 2014 AsterixDB release.)

create type AccessLogType as closed {
ip: string,
time: string,
user: string,
verb: string,
path: string,
stat: int32,
size: int32

}

create external dataset AccessLog(AccessLogType)
using localfs

(("path"="{hostname}://{path}"),
("format"="delimited-text"),
("delimiter"="|"));

Data definition 3: External data

2.4 Data Feed Creation
Data Feeds are a built-in mechanism that AsterixDB offers to al-

low new data to be continuously ingested into one or more Datasets
from external sources, incrementally populating the Datasets and
their associated indexes. Feed support is provided because the need
to persist and index ”fast flowing” data is ubiquitous in the Big Data
world, and it otherwise involves gluing together multiple systems.
We feel that, just as current DBMSs were created to provide the
commonly required functionality to support data-centric applica-
tions, a BDMS should provide support for continuous data inges-
tion and should be responsible for managing the performance and
fault-tolerance of the ingestion pipeline.

An AsterixDB data feed ingests a continuous stream of data into
a Dataset. User queries then work against the stored data, not on
the incoming stream, just as if the Dataset’s contents had arrived
via loading or insertions. With this approach, the system does not
require a separate notion of queryable streams (with their different
semantics, etc.) distinct from its support for stored data sets.

Data definition 4 shows the declaration of a Data Feed and the
connecting of it to a Dataset for storage. A socket-based feed adap-
tor is used, allowing data from outside to be pushed at AsterixDB
via a TCP/IP socket where the adaptor will listen for data.

In addition to the socket_adaptor there are a few built-in adap-
tors included with AsterixDB. To customize an existing adaptor it
is also possible to apply a previously defined function (see Section

use dataverse TinySocial;

create feed socket_feed
using socket_adaptor

(("sockets"="{address}:{port}"),
("addressType"="IP"),
("type-name"="MugshotMessageType"),
("format"="adm"));

connect feed socket_feed to dataset MugshotMessages;

Data definition 4: Data feeds

2.5) to the output of the adaptor. Finally, AsterixDB also provides
a mechanism to add custom adaptors to the system.

Feeds that process external data, like the one above, are called
Primary Feeds. AsterixDB also supports Secondary Feeds that are
fed from other feeds. Secondary Feeds can be used, just like Pri-
mary Feeds, to transform data and to feed Datasets or feed other
feeds. More about the user model for feeds, its extensibility, and its
implementation and performance can be found in [9]. (Note: Data
feeds are a ”hidden” feature in the current open source system, as
they have not yet been officially documented/released for general
external use. That will change with the next release of AsterixDB,
where Data Feed support will be the “flagship” new feature.)

2.5 User Defined Functions
One final DDL feature that should be mentioned is support for

reusable user-defined functions (UDFs), which are similar in nature
to views in relational databases. (AsterixDB’s AQL UDFs are es-
sentially views with parameters.) As the definition of such a func-
tion requires an AQL function body, we will provide an example
in Query 8 in Section 3 and will provide more information about
UDFs once we have introduced the reader to the basics of AQL.

3. DATA MANIPULATION
The query language for AsterixDB is AQL (Asterix Query Lan-

guage). Given the nature of ADM, we needed a language capable
of dealing nicely with nesting and a lack of a priori schemas; we
also wanted its semantics to be the same with and without schemas.
XQuery [24] had similar requirements from XML, so we chose to
base AQL loosely on XQuery. ADM is simpler than XML, and
XPath compatibility was irrelevant, so we jettisoned the “XML
cruft” from XQuery—document order and identity, elements vs. at-
tributes, blurring of atomic and sequence values—keeping its core
structure and approach to handling missing information. We could
have started over, but XQuery was co-designed by a diverse band
of experienced language designers (SQL, functional programming,
and XML experts) and we wanted to avoid revisiting many of the
same issues and making mistakes that the W3C XQuery team had
made, identified, and fixed in their years of work. Starting from
SQL would have been messier, syntactically and semantically, as
ANSI SQL was designed for flat data—subqueries often have scalar-
at-runtime-else-error semantics—and its treatment of nesting for
its nested table feature is ugly and complex. We wanted a much
cleaner start for AQL. (Also, since AQL is not SQL-based, Aster-
ixDB is “NoSQL compliant”.)

AQL is an expression language; as such, the expression 1+1 is
a valid AQL query that evaluates to 2. Most useful AQL queries
are based on the FLWOR (\’flau̇(-9)r\) expression structure that
AQL borrows from XQuery. FLWOR stands for for-let-where-
order by-return, naming the five most frequently used clauses of
the full AQL query syntax. A for clause provides an incremental
binding of ADM instances in a sequence (e.g. a Dataset) to vari-
ables, while the let clause provides a full binding of variables to
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12.34.56.78 - Nicholas [22/Dec/2013:12:13:32 -0800] "GET / HTTP/1.1" 200 2279
12.34.56.78 - Nicholas [22/Dec/2013:12:13:33 -0800] "GET /list HTTP/1.1" 200 5299

Figure 2: Apache HTTP server common log format

12.34.56.78|2013-12-22T12:13:32-0800|Nicholas|GET|/|200|2279
12.34.56.78|2013-12-22T12:13:33-0800|Nicholas|GET|/list|200|5299

Figure 3: CSV version of web server log

entire intermediate result expressions. Roughly speaking, the for

clause in AQL is like the FROM clause in SQL, the return clause
in AQL is like the SELECT clause in SQL (but goes at the end of a
query), the let clause in AQL is like SQL’s WITH clause, and the
where and order by clauses in both languages are similar. AQL
also has group by and limit clauses, as we will see shortly.

We will describe AQL by presenting a series of illustrative AQL
queries based on our Mugshot.com schema. Most of the salient
features of AQL will be presented, and of course more detail can
be found in the online AsterixDB documentation [14].

for $ds in dataset Metadata.Dataset return $ds;
for $ix in dataset Metadata.Index return $ix;

Query 1: All Datasets and indexes in the system

We begin our AQL tour with Query 1, which shows two queries
that use the simplest (useful) for and return clauses and show how
the keyword dataset is used to access an AsterixDB Dataset in
AQL. The queries each return the instances in a target Dataset,
and each targets a Dataset in the Metadata Dataverse. The first
one returns the set of all Datasets that have been defined so far,
and the second one returns the set of all known indexes. These
queries highlight the useful fact that AsterixDB “eats its own dog
food” with respect to system catalogs—AsterixDB metadata is As-
terixDB data, so (unlike Hive, for example) AsterixDB catalogs are
stored in the system itself, as is also true in most RDBMSs.

for $user in dataset MugshotUsers
where $user.user-since >= datetime(’2010-07-22T00:00:00’)
and $user.user-since <= datetime(’2012-07-29T23:59:59’)

return $user;

Query 2: Datetime range scan

Query 2 illustrates an AQL where clause. This query’s for clause
conceptually iterates over all records in the Dataset MugshotUsers,
binding each to the variable $user, returning the ADM records for
users that joined mugshot.com from July 22, 2010 to July 29, 2012.
(Of course, the query’s actual evaluation may be more efficient,
e.g., using an index on user-since under the covers.)

for $user in dataset MugshotUsers
for $message in dataset MugshotMessages
where $message.author-id = $user.id
and $user.user-since >= datetime(’2010-07-22T00:00:00’)
and $user.user-since <= datetime(’2012-07-29T23:59:59’)

return {
"uname" : $user.name,
"message" : $message.message

};

Query 3: Equijoin

Query 3 shows a first example where new records are being syn-
thesized by a query. It first selects user records like Query 2, but

then it also selects matching message records whose author-id is
equal to the user’s id—an equijoin expressed in AQL. For each
match, it creates a new ADM record containing two fields, uname
and message, that will contain the users name and the message text,
respectively, for that user/message pair. Note that the query re-
turns a sequence of flat records, i.e., it repeats the user name with
every message. Also, as the match predicate is only true when a
match exists, users without matching messages and messages with-
out matching users are not returned.

for $user in dataset MugshotUsers
where $user.user-since >= datetime(’2010-07-22T00:00:00’)
and $user.user-since <= datetime(’2012-07-29T23:59:59’)

return {
"uname" : $user.name,
"messages" :
for $message in dataset MugshotMessages
where $message.author-id = $user.id
return $message.message

};

Query 4: Nested left outer-join

Query 4 shows a more natural way to match users and messages
in AQL. Users of interest are targeted by the first for and where

clause, and a nested FLWOR expression synthesizes a bag of match-
ing messages for each user. In contrast to Query 3, the result will
include users who have not yet sent any messages, and the result
will be a set of nested ADM records, one per user, with each user’s
messages listed “inside” their user record. This is the equivalent of
a SQL left outer join in AQL, but with a more natural result shape
since ADM permits nesting (unlike the relational model).

for $t in dataset MugshotMessages
return {
"message" : $t.message,
"nearby-messages":
for $t2 in dataset MugshotMessages
where spatial-distance($t.sender-location,

$t2.sender-location) <= 1
return { "msgtxt" : $t2.message }

};

Query 5: Spatial join

Query 5 shows another “join” example, one that illustrates the
use of AsterixDB’s spatial data support. This query goes through
the set of all Mugshot messages and, for each one, uses a nested
query to pair it with a bag of messages sent from nearby locations.

Query 6 illustrates some of AsterixDB’s fuzzy matching capabili-
ties. This query returns the sending user name along with a message
if one of the words in a tokenization of the message fuzzily matches
(˜=) ”tonight”. Fuzzy in this case means that the edit-distance is less
than or equal to 3, e.g., a message that contains the word ”tonite”
would also be returned. The set statements in the query’s pro-
logue are used to specify the desired fuzzy matching semantics; a

1909



set simfunction "edit-distance";
set simthreshold "3";

for $msu in dataset MugshotUsers
for $msm in dataset MugshotMessages
where $msu.id = $msm.author-id
and (some $word in word-tokens($msm.message)

satisfies $word ˜= "tonight")
return {
"name" : $msu.name,
"message" : $msm.message

};

Query 6: Fuzzy selection

functional syntax for fuzzy matching is also available to specify the
matching semantics within the matching predicate itself (which is
needed if a query requires multiple fuzzy match predicates, each
with different match semantics).

for $msu in dataset MugshotUsers
where (some $e in $msu.employment

satisfies is-null($e.end-date)
and $e.job-kind = "part-time")

return $msu;

Query 7: Existential quantification

Query 7 illustrates two more advanced aspects of AQL, namely
existential quantification and the use of an open field (one that’s
not part of the type definition for the data in question). This exam-
ple query uses existential quantification in its where clause to find
users who have a current employment record (i.e., one with a null
end-date) that has a job-kind field whose value is "part-time".
(Note that job-kind is not declared to be a field of EmploymentType.)

create function unemployed() {
for $msu in dataset MugshotUsers
where (every $e in $msu.employment

satisfies not(is-null($e.end-date)))
return {

"name" : $msu.name,
"address" : $msu.address

}
};

Query 8: Universal quantification and function definition

for $un in unemployed()
where $un.address.zip = "98765"
return $un

Query 9: Function use

Query 8 defines a function (similar to a view in SQL) that returns
the name and address of unemployed users. It tests for unemployed
users by seeing that all their employments have ended. Query 9
then uses this function and selects all unemployed users in the ZIP
code 98765. Such a function can be written by an experienced user
(one with a taste for universal quantifiers) and then used by a novice
user (one with more normal tastes).

avg(
for $m in dataset MugshotMessages
where $m.timestamp >= datetime("2014-01-01T00:00:00")

and $m.timestamp < datetime("2014-04-01T00:00:00")
return string-length($m.message)

)

Query 10: Simple aggregation

Like any reasonably expressive query language, AQL includes
support for aggregation. Query 10 is a first example of an AQL
aggregate query, computing the average message length during a
time interval of interest. AQL aggregates include count, min, max,
avg, and sum as well as sql-count, sql-min, sql-max, sql-avg,
and sql-sum. AQL’s own aggregates have what we consider to
be “proper” semantics regarding null values; e.g., the average of
a set of values is null (unknown) if any of the values encountered
is null. AQL also offers a set of aggregate functions with SQL’s
“best guess” null handling semantics, wherein the average of a set
of values with nulls is the sum of the non-null values divided by the
number of non-null values.

for $msg in dataset MugshotMessages
where $msg.timestamp >= datetime("2014-02-20T00:00:00")
and $msg.timestamp < datetime("2014-02-21T00:00:00")

group by $aid := $msg.author-id with $msg
let $cnt := count($msg)
order by $cnt desc
limit 3
return {
"author" : $aid,
"no messages" : $cnt

};

Query 11: Grouping with sorting and limits

AQL supports grouped aggregation as well and – since Big Data
often means “many groups” – also provides the machinery to get
the ‘top” results, not all results. Query 11 illustrates how the group

by, order by, and limit clauses can be used to group and count
messages by their sender and to report the results only for the three
chattiest Mugshot.com users.

let $end := current-datetime()
let $start := $end - duration("P30D")
for $user in dataset MugshotUsers
where some $logrecord in dataset AccessLog
satisfies $user.alias = $logrecord.user
and datetime($logrecord.time) >= $start
and datetime($logrecord.time) <= $end

group by $country := $user.address.country with $user
return {
"country" : $country,
"active users" : count($user)

}

Query 12: Active users

Query 12 identifies all active users and then counts them grouped
by country. The query considers users that had activity in the last
30 days to be active. Activity data is taken from the web server logs
that are exposed as an external dataset (see Figure 3). This example
also shows the use of datetime arithmetic in AQL.

set simfunction "jaccard";
set simthreshold "0.3";

for $msg in dataset MugshotMessages
let $msgsSimilarTags := (
for $m2 in dataset MugshotMessages
where $m2.tags ˜= $msg.tags
and $m2.message-id != $msg.message-id

return $m2.message
)

where count($msgsSimilarTags) > 0
return {
"message" : $msg.message,
"similarly tagged" : $msgsSimilarTags

};

Query 13: Left outer fuzzy join
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Last but not least, Query 13 closes out our tour of AQL’s query
power by showing how one can express fuzzy joins in AQL. This
example analyzes Mugshot.com’s messages by finding, for each
message where there are one or more counterparts with similar
tags, the similarly tagged messages. Here similarity means Jac-
card similarity of 0.3 (messages with more than 30% of the same
tags). Under the covers AsterixDB has built-in support for both ad
hoc parallel fuzzy joins as well as indexed fuzzy joins.

insert into dataset MugshotUsers
(
{

"id":11,
"alias":"John",
"name":"JohnDoe",
"address":{
"street":"789 Jane St",
"city":"San Harry",
"zip":"98767",
"state":"CA",
"country":"USA"

},
"user-since":datetime("2010-08-15T08:10:00"),
"friend-ids":{{ 5, 9, 11 }},
"employment":[{

"organization-name":"Kongreen",
"start-date":date("2012-06-05")

}]
}

);

Update 1: Simple insert

delete $user from dataset MugshotUsers
where $user.id = 11;

Update 2: Simple delete

Data can enter AsterixDB via loading, feeds, or insertion. AQL’s
support for insert operations is illustrated in Update 1; its corre-
sponding support for doing delete operations is shown in Update
2. The data to be inserted is specified as any valid AQL expression;
in this case the expression is a new record whose content is known a
priori. Delete operations’ where clauses can involve any valid AQL
boolean expression. Currently the AsterixDB answer for modify-
ing data in a Dataset is “out with the old, in with the new’’—i.e.,
a delete followed by an insert. (We are targeting append-heavy use
cases initially, not modification-heavy scenarios.)

In terms of the offered degree of transaction support, AsterixDB
supports record-level ACID transactions that begin and terminate
implicitly for each record inserted, deleted, or searched while a
given AQL statement is being executed. This is quite similar to
the level of transaction support found in todays NoSQL stores. As-
terixDB does not support multi-statement transactions, and in fact
an AQL statement that involves multiple records can itself involve
multiple independent record-level transactions [14].

4. SYSTEM ARCHITECTURE
Figure 4 contains an FMC diagram [10] showing the next level

of detail from Figure 1’s AsterixDB architectural summary. The
top box shows the components of a Query Control Node, which in
the current release coincides with the Hyracks Cluster Controller.

This node receives queries via an HTTP-based API and returns
their results to the requester either synchronously or asynchronously
(in which case a handle to the result is returned and the client can in-
quire about the query’s status and request the result via the handle).
The Query Control Node also runs (a) the AQL compiler that trans-
lates AQL statements to Job Descriptions for the dataflow-engine
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Figure 4: Architecture

Hyracks and (b) the Job Executor that distributes the Job Descrip-
tions to the Hyracks Node Controllers and starts the execution. The
Worker Nodes – represented by the boxes at the bottom of Figure 4
– have to (a) manage their partitions of the data stored in LSM-trees
and to (b) run their parts of each Hyracks Job. In the following sub-
section we will first describe Hyracks and Algebricks (which is a
core part of the AQL compiler), before discussing a few details on
storage and indexing, transactions and data feeds in AsterixDB.

Hivesterix Apache 
VXQuery

Algebricks Algebra Layer M/R 
LayerPregelix

Hyracks Data-Parallel Platform

Hyracks 
Job

Hadoop
M/R JobPregel Job

AQL HiveQL XQuery

AsterixDB

Figure 5: Asterix software stack

4.1 Hyracks
The Hyracks layer of AsterixDB is the bottom-most layer of the

Asterix software stack shown in Figure 5. Hyracks is the runtime
layer (a.k.a. executor) whose responsibility is to accept and man-
age data-parallel computations requested either by one of the layers
above it in the Asterix software stack or potentially by direct end-
users of Hyracks. In the case of AsterixDB, Hyracks serves as the
scalable runtime engine for AQL queries once they have been com-
piled down into Hyracks Jobs for execution.

Jobs are submitted to Hyracks in the form of DAGs made up of
Operators and Connectors. In Hyracks, Operators are responsible
for consuming partitions of their inputs and producing output par-
titions. Connectors redistribute data from the output partitions and
provide input partitions for the next Operator. Hyracks currently
provides a library of 53 Operators and 6 Connectors. Operators
include different Join Operators (HybridHash, GraceHash, Nested-
Loop), different Aggregation Operators (HashGroup and Preclus-
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teredGroup), and a number of Operators to manage the lifecycle
(create, insert, search, ...) of the supported index structures (B+-
Tree, R-Tree, InvertedIndex, ...). The Connectors are OneToOne,
MToNReplicating, MToNPartitioning, LocalityAwareMToNParti-
tioning, MToNPartitioningMerging and HashPartitioningShuffle.

Figure 6 depicts the Hyracks Job for Query 10. The boxes rep-
resent its Operators and the lines represent Connectors. One thing
that we see is that all Connectors, except for the last one, are One-
ToOneConnectors. This means that no redistribution of data is re-
quired for this part of the plan—and it can be evaluated on the node
that stores the data. The degree of parallelism (the number of Op-
erator instances evaluating in parallel) for these Operators is the
number of partitions that is used to store the Dataset. Looking at
the Operators bottom-up, we see that the first 2 Operators perform
a search on a secondary index. This will return a set of primary
key values that are fed into the search Operator on the primary in-
dex. Note that the primary keys are sorted first to improve the ac-
cess pattern on the primary index. Above the primary index access
we (surprisingly) see two Operators that evaluate a predicate that
should intuitively always be true for records that were identified by
the search on the secondary index. Section 4.4 explains why this
might not be the case and why this selection is needed. Finally, we
see that the avg function that encapsulates the rest of the query has
been split into two Operators: a Local Aggregation Operator that
pre-aggregates the records for the local node and a Global Aggre-
gation Operator that aggregates the results of the the Local Aggre-
gation Operators. Between these Operators is a MToNReplicating-
Connector. As the degree of parallelism for the Global Aggregation
Operator is constrained to be 1, the Connector replicates the results
of all instances of the Local Aggregation Operators to the single
instance of the Global Aggregation Operator. This split maximizes
the distributed computation and minimizes network traffic.

assign $hi := 2014-04-01T00:00:00
assign $lo := 2014-01-01T00:00:00

btree $id := search(msTimestampIdx, $lo, $hi)

sort $id

btree $m := search(MugshotMessages, $id, $id)

assign $l := string-length($m.message)

aggregate $lagg := local-avg($l)

aggregate $agg := global-avg($lagg)

1:1

1:1

1:1

1:1

1:1

1:1

1:1

n:1 replicating

assign $t := $m.timestamp

select $t >= 2014-01-01T00:00:00 and
       $t <  2014-04-01T00:00:00

1:1

Figure 6: Hyracks job

As the first step in the execution of a submitted Hyracks Job,
its Operators are expanded into their constituent Activities. While
many Operators have a single Activity, some Operators consist of

two or more Activities. For example, a HybridHash Join Opera-
tor is made up of two Activities, the Join Build Activity and the
Join Probe Activity. This expansion is made possible by APIs that
Hyracks provides to Operator implementors to enable them to de-
scribe such behavioral aspects of an Operator. Although Hyracks
does not understand the specifics of the various activities of an Op-
erator, exposing the blocking characteristics of Operators provides
important scheduling information to Hyracks – the separation of an
Operator into two or more Activities surfaces the constraint that it
can produce no output until all of its input has been consumed.

To execute a Job, Hyracks analyzes the Activity graph produced
by the expansion described above to identify the collections of Ac-
tivities (Stages) that can be executed at any time (while adhering to
the blocking requirements of the Operators). Each Stage is paral-
lelized and the resulting graph is executed in the order of the de-
pendencies. More details about Hyracks’ computational model, as
well as its implementation and performance, are available in [5].

It is worth noting that Hyracks has been scale-tested on a 180-
node cluster at Yahoo! Research [6]. Each node had 2 quad-core
Intel Xeon E5420 processors, leading to a total of 1440 cores across
the cluster. Hyracks has been driven by Hivesterix [18] to run a
TPC-H workload on 90 nodes and by Pregelix [22] to run PageR-
ank on 146 nodes.∗ The initial experience with running these work-
loads led to a number of improvements that enabled Hyracks to run
well at this scale. The most notable impact was a re-implementa-
tion of the network layer to ensure that there is at most one TCP
connection between any two given nodes at any point in time.

4.2 Algebricks
Figure 5 shows that the open-source Asterix software stack sup-

ports the AsterixDB system but also aims to address other Big Data
requirements. To process a query, AsterixDB compiles an AQL
query into an Algebricks algebraic program. This program is then
optimized via algebraic rewrite rules that reorder the Algebricks
Operators and introduce partitioned parallelism for scalable execu-
tion. After optimization code generation translates the resulting
physical query plan into a corresponding Hyracks Job that uses
Hyracks to compute the desired query result. The left-hand side
of Figure 5 shows this layering. As indicated there, the Algebricks
algebra layer is actually data-model-neutral and it supports other
high-level data languages on this software stack as well [4]. Other
languages today include Hivesterix [18], a Hive port that was built
at UC Irvine, and Apache VXQuery, a parallel XQuery project that
lives in the Apache open source world [23].

As indicated at the second layer of Figure 5, the Asterix open
source software stack also offers a compatibility layer for users who
have Hadoop MapReduce jobs [16] and wish to run them using
the Hyracks runtime. It also includes other experimental Big Data
programming models, most notably Pregelix [22], an open source
implementation of Google’s Pregel programming model [11].

4.3 Storage and Indexing
AsterixDB is novel in having wholly embraced Log-Structured

Merge (LSM) trees [12] as the underlying technology for all of its
internal data storage and indexing. In LSM-trees the state of the in-
dex is stored in different components with different lifecycles. En-
tries being inserted into an LSM-tree are placed into a component
that resides in main memory—an in-memory component. When the
memory occupancy of the in-memory component exceeds a speci-
fied threshold, the entries are flushed into a component of the index
∗Our collaboration with Yahoo! Research has ended and we do not
have access to this cluster anymore. As a result we were not able
to run the full AsterixDB stack at this scale.
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that resides on disk—a disk component. As components begin to
accumulate on disk, they are periodically merged with older disk
components subject to some merge policy that decides when and
what to merge. As entries are initially stored in memory and are
moved to persistent storage in bulk, LSM-trees avoid costly ran-
dom disk I/O and, as a result, enable AsterixDB to support high
ingestion rates—especially for continuous ingestion.

AsterixDB employs a software framework that enables “LSM-
ification” of any kind of index structure that supports a specified
primitive set of index operations. This framework converts an in-
place update, disk-based data structure to a deferred-update, append-
only data structure, enabling efficient ingestion into the index. The
current release of AsterixDB supports LSM-ified B+-trees, R-trees,
and inverted keyword and n-gram indexes.

As mentioned in Section 2.2, Datasets are represented as par-
titioned LSM-based B+-trees using hash-based partitioning on the
Dataset’s primary key. Secondary indexes on a Dataset are node-
local, i.e., their partitions refer to data in the primary index parti-
tion on the same storage node—enabling secondary index lookups
without an additional network hop. Consequently, secondary index
lookups must be routed to all of a Dataset’s partition storage nodes,
as the matching data could be in any partition. The lookups occur
in parallel on all partitions. The result of a secondary key lookup is
a set of primary keys. The resulting primary keys are used to look
up the data itself. An example can be seen in Figure 6, where the
result of the B+-tree search in msTimestampIdx is sorted before be-
ing used as an input to the search in MugshotMessages. More details
on native storage and indexing in AsterixDB are in [2].

As mentioned earlier, AsterixDB also provides external Dataset
support so that such data, e.g., living in HDFS, does not need to
be loaded into AsterixDB to be queryable. To do this efficiently,
the AQL query compiler interacts with the HDFS name node and
attempts to co-locate query tasks with their associated input data.

4.4 Transactions
As described in Section 3, AsterixDB supports record-level trans-

actions across multiple LSM indexes in a Dataset. Concurrency
control in AsterixDB is based on 2PL. As transactions in Aster-
ixDB just guarantee record-level consistency, all locks are node-
local and no distributed locking is required. Further, actual locks
are only acquired for modifications of primary indexes and not for
secondary indexes. (Latches are employed to ensure atomicity of
individual index operations.) This allows for high concurrency on
a variety of different index structures. To avoid potential inconsis-
tencies when reading the entries of a secondary index while the cor-
responding records of the primary index are being altered concur-
rently, secondary key lookups are always validated by (a) fetching
the corresponding primary index entries while acquiring the neces-
sary locks on the primary keys and (b) validating that the returned
records are still consistent with the criteria for the secondary index
search. This post validation check can be seen in Figure 6, where a
select Operator is introduced to filter out any “inconsistent” records
that are obtained from the primary index.

Recovery in AsterixDB employs a novel but simple method based
on LSM-index-level logical logging and LSM-index component
shadowing. For logical logging, the no-steal/no-force buffer man-
agement policy and write-ahead-log (WAL) protocols are followed,
so each LSM-index-level update operation generates a single log
record. For shadowing, when a new disk component is created by
flushing an in-memory component or merging existing disk com-
ponents, the new component is atomically installed by putting a
validity bit into the component once the flush or merge operation
has finished. Thus, only the committed operations from in-memory

components need to be (selectively) replayed; any disk component
without a validity bit is removed during crash recovery. More de-
tails on transactions in AsterixDB can be found in [2].

4.5 Data Feeds
AsterixDB is unique in providing “out of the box” support for

continuous data ingestion. Data Feed processing is initiated by the
evaluation of a connect feed statement (see Section 2.4). The AQL
compiler first retrieves the definitions of the involved components
(feed, adaptor, function, and target Dataset) from the AsterixDB
Metadata. It then translates the statement into a Hyracks Job that is
scheduled to run on an AsterixDB cluster. The dataflow described
by this job is called a feed Ingestion Pipeline. Like all Hyracks
Jobs, an Ingestion Pipeline consists of Operators and Connectors.

To support cascading networks of feeds, an Ingestion Pipeline
can provide Feed Joints between Operators and Connectors. A
Feed Joint is like a network tap and provides access to the data
flowing along a pipeline. It adds a buffering capability for an Oper-
ator’s output and offers a subscription mechanism and allows data
to be routed simultaneously along multiple paths, e.g., to feed the
Ingestion Pipeline of another feed.

A feed Ingestion Pipeline involves three Stages—intake, com-
pute and store. Each Stage corresponds to an Operator. The Intake
Operator creates an instance of the associated feed adaptor, using
it to initiate transfer of data and to subsequently transform the data
into the ADM format. If the feed has an associated pre-processing
function, it is applied to each feed record using an Assign Operator
as part of the compute Stage. Finally, in the store Stage, the output
records from the preceding intake/compute Stage are put into the
target Dataset and secondary indexes (if any) using Hyracks’ Insert
Operators for the individual index types. More details, e.g. how
dataflow is managed in large cascading networks of feeds or how
fault scenarios are handled can be found in [9].

5. STATUS AND PERFORMANCE

5.1 2013 and 2014 Releases
There have been three public releases of AsterixDB to date. The

beta release (0.8.0) appeared in June 2013. It was the first release
and showed – not uncommon for first releases – a lot of promise but
some room for improvement. Subsequent releases (0.8.3, 0.8.5)
have come out at roughly five month intervals; these have been
stabilization releases with improved performance plus a few minor
features that our initial “customers” needed.

Two larger releases are planned for 2014. Each will have one
“big” feature as their main theme. The first will make feeds avail-
able as described in this paper and in [9]. The second release will
add support for indexes over external Datasets, enabling AsterixDB
to index external data and use such indexes for query processing in
the same way that is possible for internal Datasets today.

AsterixDB is in its childhood and has corresponding limitations.
One limitation, typical of early systems, is the absence of a cost-
based query optimizer. Instead, it has a set of fairly sophisticated
but “safe” rules† to determine the general shape of a physical query
plan and its parallelization and data movement. The optimizer
keeps track of data partitioning and only moves data as changes
in parallelism or partitioning require. Some examples of “safe”
rewritings are (a) AsterixDB always chooses to use index-based ac-
cess for selections if an index is available and (b) it always chooses
parallel hash-joins over other join techniques for equijoins. To give

†The current AQL optimizer includes about 90 rules, with 50 com-
ing from Algebricks and 40 being AQL-specific.
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cost control to users, AsterixDB also supports query optimization
hints. Hints for join methods, grouping algorithms, and overriding
the unconditional use of index-based access paths are supported.

for $user in dataset MugshotUsers
for $message in dataset MugshotMessages
where $message.author-id /*+ indexnl */ = $user.id
return {
"uname" : $user.name,
"message" : $message.message

};

Query 14: Index hint

Example Query 14 contains a hint suggesting that an index-based
nested-loop technique should be used to process its join.

5.2 Use Cases and Lessons
Our ultimate goal in building AsterixDB was to build something

scalable and “cool” that can solve Big Data related problems for
actual users. To this end, we worked with some external users on
pilot projects involving AsterixDB in mid/late 2013. We summa-
rize them briefly here to share some things that were tried and the
benefits that resulted for the AsterixDB effort from watching users
work (and struggle) and then getting their feedback.

Our first pilot involved testing AsterixDB on a cell phone event
analytics use case. This use case was similar in nature to click-
stream analytics; it made heavy use of grouped aggregation to do
windowed aggregation, came with a need to express predicates
about the sequential order of certain events, and was envisioned
as later being applied to very large Datasets. Learnings from this
use case drove significant improvements in our parallelization of
grouped aggregations and avoidance of materialization of groups
that are formed only to be aggregated. It also drove us to add sup-
port for positional variables in AQL (akin to those in XQuery).

Another pilot, somewhat similar, involved social media (tweet)
analytics. It was inspired by AsterixDB’s capabilities around open
Datatypes and grouped spatial aggregation and it involved being
the back-end for an interactive analysis tool prototype. This pilot
required dealing with a large volume of data and, being the first
project to do that, exposed a series of issues in the AQL implemen-
tation. Most notably it unearthed issues related to materializing
groups for aggregation, providing another driver for the material-
ization improvements in the second AsterixDB release.

A third pilot project involved using AsterixDB plus other sta-
tistical tools to do behavioral data analysis of information streams
about events and stresses in the day of a 20-something computer
and social media user. The data came from volunteer subjects’
computer logs, heart rate monitors, daily survey responses, and en-
trance and exit interviews. This use case was “small data” for now,
but drove improvements in our external data import capabilities and
new requirements related to data output formats. It further led us to
add support for temporal binning, as time-windowed aggregation
was needed. Also, one code refresh that we gave this group broke
their system at an inopportune time (right before a paper deadline).
An AsterixDB student had changed the system’s metadata format in
a way that made existing metadata incompatible with his change’s
expectations. This led to the user having to reload all of their data;
it reminded us that we should eat our own dogfood (open types!)
more heavily when managing our metadata.

5.3 Current Performance
We now present some initial results on the performance of Aster-

ixDB versus several widely used Big Data management technolo-
gies (one of each kind). A more comprehensive performance study
is work in progress [13].

5.3.1 Experimental Setup
We ran the reported experiments on a 10-node IBM x3650 clus-

ter with a Gigabit Ethernet switch. Each node had one Intel Xeon
processor E5520 2.26GHz with four cores, 12GB of RAM, and four
300GB, 10K RPM hard disks. On each machine 3 disks were used
for data (yielding 30 partitions). The other disk was used to store
“system data” (e.g., transaction logs and system logs) if a separate
log location is supported by the system.

The other systems considered are MongoDB[21] (2.4.9, 64-bit),
Apache Hive[17] (0.11 on Hadoop 1.0.4 using ORC files), and
System-X, a commercial, shared-nothing parallel relational DBMS
that others have also tested as “System-X”. To drive our experi-
ments we used a client machine connected to the same Ethernet
switch as the cluster nodes. For AsterixDB, we used its REST API
to run queries. For System-X and Hive, their JDBC clients were
used, and for MongoDB, we used its Java Driver (version 2.11.3).

We present results for a set of read-only queries and insert op-
erations. We selected these queries and inserts to test a set of op-
erations that most systems examined here support and thus pro-
vide a relative comparison of AsterixDB to each. For the systems
that support indexing, we use their version of B(+)-trees, as the test
predicates do not involve advanced data types. Note that the pur-
pose of these tests is not to outperform other systems, but rather to
show that AsterixDB does not sacrifice core performance while de-
livering its broader, “one size fits a bunch” feature set. We should
also note that there are a few cases where a given system does not
support a query in a natural way: Hive has no direct support for
indexes, so it needs to scan all records in a table in cases where
other systems use indexes; in such cases we re-cite its unindexed
query time. MongoDB does not support joins, so we implemented
a client-side join in Java to compare it to the other systems’ join
queries. We report average response times on the client side as our
performance metric. The reported numbers are based on running
each workload 20 times, discarding the first five runs in calculating
averages (considering them to be warm-up runs).

We conducted our experiments on a schema similar to the Sec-
tion 3 examples. Specifically, we used three datasets: users, mes-
sages and tweets, all populated with synthetic data. Table 2 shows
the storage sizes. For AsterixDB, we report numbers for 2 differ-
ent open data types: one that contains all the fields that are in the
data (Schema) and one that contains only the required fields (Key-
Only, see Section 2.1). We see the expected differences in dataset
sizes in Table 2. For Hive, we used the ORC file format, which is a
highly efficient way to store data. Hive benefits from the compres-
sion of the ORC format at the storage level. The test schema was
very similar to the schema in Data definition 1, with the records
having nested types. In AsterixDB and MongoDB we stored the
records with nesting; we normalized the schema for System-X and
Hive for the nested portions of the records. ‡ Our read-only queries
were very similar to Section 3’s examples. More details on the
AsterixDB DDL and DML for all tests and on the client-side join
implementation for MongoDB are available online at [15].

5.3.2 Preliminary Results
Table 3 presents the query response times from the various sys-

tems. Below, we consider the queries and results in more detail.
The record lookup query is a single-record selection that retrieves

one complete record based on its primary key (similar to Query 2

‡For Hive, we also tried using a nested schema with the data being
stored as JSON text files. This generally worsened Hive’s perfor-
mance due to the added cost of deserializing records and losing the
efficiency benefits of ORC (columnar) files.
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Users Messages Tweets
Asterix (Schema) 192 120 330
Asterix (KeyOnly) 360 240 600
Syst-X 290 100 495
Hive 38 12 25
Mongo 240 215 478

Table 2: Dataset sizes (in GB)

Asterix
Schema

Asterix
KeyOnly Syst-X Hive Mongo

Rec Lookup 0.03 0.03 0.12 (379.11) 0.02
Range Scan 79.47 148.15 148.33 11717.18 175.84
— with IX 0.10 0.10 4.90 (11717.18) 0.05
Sel-Join (Sm) 78.03 96.76 55.01 333.56 66.46
— with IX 0.51 0.55 2.13 (333.56) 0.62
Sel-Join (Lg) 79.62 99.73 56.65 350.92 273.52
— with IX 2.24 2.32 10.59 (350.92) 14.97
Sel2-Join (Sm) 79.06 97.82 55.81 340.02 66.45
— with IX 0.50 0.52 2.62 (340.02) 0.61
Sel2-Join (Lg) 80.18 101.24 56.10 394.11 313.17
— with IX 2.32 2.32 10.70 (394.11) 15.28
Agg (Sm) 128.66 232.30 130.64 83.18 400.97
— with IX 0.16 0.17 0.14 (83.18) 0.19
Agg (Lg) 128.71 232.41 132.19 94.11 401
— with IX 5.53 5.55 4.67 (94.11) 8.34
Grp-Aggr (Sm) 130.20 232.77 131.18 127.85 398.27
— with IX 0.45 0.46 0.17 (127.85) 0.20
Grp-Aggr (Lg) 130.62 234.10 133.02 140.21 400.10
— with IX 5.96 5.91 4.72 (140.21) 9.03

Table 3: Average query response time (in sec)

but with a primary key predicate). System-X and Hive need to ac-
cess more than one table to get all fields of the record since it has
nested fields. Hive also has to scan all records, which makes it the
slowest by far for this query; we put its response time in paren-
theses, as we wanted to show the number even though Hive is not
designed for such queries. Both AsterixDB and MongoDB utilize
their primary indexes and can fetch all the fields of the record, in-
cluding nested ones, without extra operations.

The range scan query is similar to Query 2. It retrieves a small
set of records with nested fields, using a range predicate on a tem-
poral attribute to select the records. For System-X and Hive, small
joins were needed to get the nested fields. We ran this query two
ways: once without a secondary index on the predicate attribute
(forcing all systems to access all records), and once with a sec-
ondary index. AsterixDB’s response, using Schema types, was
faster than that of System-X (which needed to join) and MongoDB
(which had no schema information). With KeyOnly types Aster-
ixDB had to read more data and its response time was similar to
System-X and MongoDB. Exploiting a secondary index reduced
the cost of query execution considerably in all systems, of course,
as instead of all records, relatively few pages of data were accessed.

For the first join query, we picked a simple select join query (sim-
ilar to Query 3) using a foreign-key relationship. We considered
two cases for this query: with and without an index to support the
foreign key lookups. Moreover, we ran this query in two versions
with respect to the selectivity of the temporal selection predicate.
In the large selectivity version, 3000 records passed the filter, while
only 300 passed in the small selectivity version. As mentioned ear-
lier, for MongoDB we performed the join on the client side. Our
client code finds the list of objectIds of matching documents based
on the selection predicate and then performs a bulk lookup of this
list on the other collection. As Hive has no support for secondary

Batch Size
Asterix
Schema

Asterix
KeyOnly Syst-X Mongo

1 0.091 0.093 0.040 0.035
20 0.010 0.011 0.026 0.024

Table 4: Average insert time per record (in sec)

indexes, we ran Hive only for the no-index case. AsterixDB and
System-X both used hybrid hash joins for the no-index case. In that
case, AsterixDB’s response time increases with KeyOnly types due
to the increased dataset sizes. For the case with an index, the cost-
based optimizer of System-X picked an index nested-loop join, as it
is faster than a hash join in this case. In AsterixDB, our rule-based
optimizer lets users provide a hint (see Query 14) to specify the
desired join method, so we used an index nested-loop join here as
well. For MongoDB, the client-side join is fine for a small number
of documents, but it slows down significantly for a larger number
of documents. This appears to be due to both the larger number of
documents it needs to access from both sides of the join and to the
increased effort on the client side to compute the join results.

We also included a second join query, a double select join, that
has filter predicates on both sides of the join. Again, for this query,
the table gives numbers for both selectivity versions, both without
and with an index. The main difference between this query and the
previous one is the second filter predicate, which reduces the final
result size significantly.

The simple aggregation query in Table 3 is similar to Query 10.
It calculates the average message length in a given time interval.
Again, two cases were considered: without and with an index sup-
porting the filter on the dataset. We considered two versions of
the query based on its filter selectivity (300 vs. 30000 records).
For MongoDB, we needed to use its map-reduce operation for this
query, as it could not be expressed using MongoDB’s aggregation
framework. Hive can only run the no-index case, but benefits from
its efficient ORC file format which allows for a short data scan
time. The bigger data size introduced by KeyOnly data types in As-
terixDB shows its impact again if no index is available to avoid a
full dataset scan. Using the index eliminated scans and improved
response times for all systems that support indexing. The response
times for all systems that used an index are close to one another.

We also considered a grouped aggregation query similar to Query
11. This query groups a subset of records in a Dataset, and within
each group, uses an aggregate to rank and report the top 10 groups.
Again, we ran this query without and with an index to select records,
and with both small and large selectivities. The group-by step and
the final ranking necessitate additional sorting and limiting of the
result, when compared with the simple aggregation query. As a
result, we see a response time increase for all systems. For the in-
dexed with small selectivity version, this increase is quite noticable
in AsterixDB. This appears to have two causes: 1) AsterixDB does
not push limits into sort operations yet, and 2) the way AsterixDB
fetches final partitioned query results introduces some overhead.
We are currently working on both issues.

Data ingestion is another important operation for a Big Data
management system. Table 4 shows the performance of the in-
sert operation in the different systems. (Hive is absent because the
life cycle for Hive data is managed outside the system.) For Mon-
goDB, we set the “write concern” to journaled to provide the same
durability as in AsterixDB and System-X. For a single record insert
(batch size of 1), the current version of AsterixDB performs notice-
ably worse than MongoDB and System-X. This is mainly due to
Hyracks job generation and start-up overheads. By increasing the
number of records inserted as a (one statement) batch, we can dis-
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tribute this overhead to multiple records. With a batch size of 20,
the average insert time per record in AsterixDB drops to a num-
ber that outperforms the other systems. Additionally, for use cases
where an application needs to insert huge volumes of (possibly fast)
data, AsterixDB provides bulk load and data feed capabilities that
can offer even better performance. (The performance of feeds for
providing continuous data ingestion is explored in [9].)

To summarize these experimental findings, the results show that
early AsterixDB is surprisingly competitive with more mature sys-
tems for various types of queries as well as for batched insertions.
For queries that access all records (no indexing), AsterixDBs times
are close to those of the other systems. Similarly, when secondary
indexes are used, AsterixDB enjoys the same benefits as the other
systems that have indexing and therefore operates in the same per-
formance ballpark. Earlier sections of this paper showed the breadth
of AsterixDB’s features; these results show that providing this breadth
does not require sacrificing basic system performance. Based on
these preliminary results, then, it appears that it may indeed be the
case that “one size fits a bunch”.

6. SUMMARY AND FUTURE WORK
This paper has provided the first complete and post-release de-

scription of AsterixDB, a new open source Big Data platform. We
have looked broadly at the system, covering its user model and fea-
ture set as well as its architectural components. Unlike current Big
Data platforms, AsterixDB is a full-function BDMS (emphasis on
M) that is best characterized as a cross between a Big Data ana-
lytics platform, a parallel RDBMS, and a NoSQL store, yet it is
different from each. Unlike Big Data analytics platforms, Aster-
ixDB offers native data storage and indexing as well as querying of
datasets in HDFS or local files; this enables efficiency for smaller
as well as large queries. Unlike parallel RDBMSs, AsterixDB has
an open data model that handles complex nested data as well as flat
data and use cases ranging from “schema first” to “schema never”.
Unlike NoSQL stores, AsterixDB has a full query language that
supports declarative querying over multiple data sets.

In addition to the above, AsterixDB features include a scalable
new runtime engine; all-LSM-based data storage, with B+ tree, R
tree, and keyword and n-gram indexes; a rich set of primitive types,
including spatial, temporal, and textual types, to handle Web and
social media data; support for fuzzy selections and joins; a built-
in notion of data feeds for continuous ingestion; and NoSQL style
ACIDity. In initial tests comparing AsterixDB’s performance to
that of Hive, a commercial parallel DBMS, and MongoDB, Aster-
ixDB fared surprisingly well for a new system. We are now work-
ing to improve and extend AsterixDB based on lessons stemming
from that performance study as well as from pilot engagements
with early users. Planned future work includes seamless integration
with our Pregelix open source graph analytics system, potential use
of HDFS for replicated LSM storage, and support for continuous
queries and notifications to enable “declarative pub/sub” over Big
Data. AsterixDB is available for download at [19].
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