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ABSTRACT 

This study aimed to assess fear responses to a novel object while experiencing a noxious event to 
determine whether nociception or fear will dominate attention in a fish in novel object testing paradigm. 
This experimentally tractable animal model was used to investigate (1) the degree of neophobia to a 
novel object while experiencing noxious stimulation, (2) the response of the fish after removing the fear-
causing event by using a familiar object, and (3) the effects of removing the nociceptive response by 
morphine administration and examining the response to a novel object. Control animals displayed a 
classic fear response to the novel objects and spent most of their time moving away from this stimulus, as 
well as showing an increase in respiration rate when the novel object was presented. In contrast, 
noxiously stimulated animals spent most of their time in close proximity to the novel object and showed 
no additional increase in respiration rate to novel object presentation. There was evidence of a slight 
hypoalgesia in noxiously stimulated animals. The responses to familiar objects demonstrated that by 
familiarizing the animal with the object, fear was removed from the experiment. Both control and 
noxiously treated animals responded in similar ways to a novel object by spending the majority of their 
time in close proximity. Treatment with morphine reduced effects of noxious stimulation and appears to 
be an effective analgesic. After morphine administration, the acid-injected animals showed a neophobic 
response to a novel object and this was similar to the response of the control fish, with a similar amount 
of time spent moving away from the object and an increase in ventilation in response to the novel object. 
Morphine affected the fear response because both groups approached the novel object more quickly than 
the non-morphine controls. These results suggest that nociception captures the animal’s attention with 
only a relatively small amount of attention directed at responding to the fear of the novel object. 

 

 

Many studies have examined the interplay of attentional mechanisms on pain thresholds and intensity 
and on pain-coping strategies.74 Results from animal models have suggested that diverting attention 
toward a novel stimulus reduces pain-related behaviors (mice37) and even inflammation (birds23). 
Demonstrating attentional modulation of acute pain in humans is less convincing. The anticipation of 
receiving a painful stimulus or participating in cognitive tasks in clinical studies has been shown to modify 
pain responses (eg, reduction of jaw reflex47), but some studies have reported no change in pain intensity 
and threshold when attempting to divert attention.41 In particular, research on learning42 and memory 



tasks25,65 such as concentration33 or attentiveness15 have demonstrated that in humans pain 
predominates attention and has a negative impact on performance of such tasks. For example, human 
subjects experiencing pain judged words significantly slower and recalled fewer words in a memory 
task.43 Therefore, pain adversely affects the acquisition and retrieval of information. 

Anxiety or fear also has an important role in pain modulation because it has an impact on pain-specific 
fear and avoidance behavior.2 In animal models, exposure to a stressful or potentially fearful stimulation 
appears to produce a reduction in pain reactivity.38 This stress or environmentally induced analgesia is 
evident in laboratory1,26 and ecological studies.31,35,36,44,50,56-58,64 The findings of these animal studies have 
suggested that stress-induced analgesia is advantageous in fearful situations, such as confrontation by a 
predator, to show no signs of distress and thereby avoid attack. Stress-induced analgesia might therefore 
be a defensive strategy.38 This suggests that fear or anxiety might be a more demanding or higher priority 
stimulation and might take precedence over pain processing, and as such the intensity of pain might be 
reduced. 

The present study aimed to examine the interplay of fear and nociception and to determine what effects a 
noxious experience might have on an individual’s response to a fearful stimulus. An animal model was 
used because the study species, a lower vertebrate, the rainbow trout (Oncorhynchus mykiss), is 
experimentally tractable for this study. The behavioral responses to acute noxious stimulation have been 
established in this fish, as well as the neurophysiology of the trigeminal nociceptors, which have similar 
properties to mammalian nociceptors.68-70 Relatively little is known about nociception in fish, and so the 
use of a lower vertebrate might demonstrate evolutionary differences between vertebrate groups. The 
subjects were subcutaneously injected with acid, and their neophobic responses were investigated and 
compared with saline-injected animals. Neophobia is a well-established paradigm used to assess 
fearfulness in a variety of animals (rats,28,29 mice,6,20 horses,75 cats,50 birds,67 and fish78) and is defined as 
the avoidance of an unfamiliar object in a familiar environment.3 Responses to novel or unfamiliar objects 
are not only characterized by behavioral aversion but also by potentially detrimental, aversive physiologic 
responses.5,26,30,54,76 These reactions have been shown to be comparable to threatening situations.8,64 
Exposure to a fearful situation might cause a fear-induced analgesia with a reduction in the intensity of 
pain.13 This could be interpreted as fear taking priority over pain in attention. However, pain might be a 
more demanding stimulation, and thus neophobia might be reduced. This study attempted to determine 
the relationship between fear and nociception to assess whether fear responses to a novel object are 
affected by being in pain. 

The study was designed to investigate 3 responses: (1) responses to a novel object, (2) responses to a 
familiar object (ie, removing the fear), and (3) responses to a novel object after morphine administration 
(ie, removing the pain). It was expected that there would be less aversion to a familiar object, and this test 
acted as a control to demonstrate that the responses to the novel object are phobic. Any change in 
neophobia when in pain should be ameliorated by an analgesic, morphine, and, therefore, the noxiously 
stimulated animals should show a similar neophobic response to the control animals. The relationship 
between pain and fear is probably dynamic and the direction of the influence might vary with the situation, 
and so this study also examines the question of whether a noxious stimulus attenuates the fear response 
to a novel stimulus. 

Materials and Methods 

Rainbow trout (n = 30; mean weight, 64.4 ± 6.1g; mean length, 15.7 ± 0.5 cm) were obtained from a  
commercial fish supplier and kept in individual tanks (45 x 25 x 35 cm). Each tank had a flow through 
supply of filtered fresh water kept at approximately 14°C. The experiments were conducted between April 
and June 2002, and the tanks were kept under ambient light conditions. Each tank had opaque sides for 



visual isolation and was also screened from visual disturbance. The tanks had a constant supply of air 
bubbled through an air stone connected to an air pump (Mistral Series 4; Interpet, Surrey, UK) via airline 
tubing. A Series 1 internal filter (Interpet) was also present in each tank to remove debris and uneaten 
food. The tanks were covered by a Perspex (Lucite International, Lancashire, UK) lid, half of which was 
covered by opaque polyethylene (22.5 x 25 cm) secured to the lid, to provide a covered area for 
sheltering. In the uncovered area, a white feeding ring (10-cm diameter) was secured to the side of the 
tank and floated on the surface of the water. The tanks also had transparent tape fixed along the bottom 
and sides of the tank with a centimeter scale drawn on by a waterproof marker pen. Fish were trained 
twice daily (AM and PM) on a simple conditioning task in which they had to come to a feeding ring in 
response to a light cue to receive food. Once a fish had successfully learned this task and performed it for 
8 consecutive trials, it was assumed that its behavior was normal or stress free because it could acquire a 
learning task and it was ingesting food. Stressed fish tend to show anorexia.43 Fish were then assigned to 
the following experimental test groups. Experimental protocols were approved by the Roslin Institute’s 
Ethical Review Board.  

Test Group 1: Response to a Novel Object 

Day 1 

Observations were made on each fish twice for 30 minutes (AM and PM) to record normal opercular beat 
rate (OBR) (gill movements). The fish (n = 10) were observed through a small opening in the screening in 
front of the tank. OBR was recorded 6 times during the 30-minute observation time, and a mean rate per 
minute was calculated. 

Day 2 

Fish were individually anesthetized by using benzocaine (1.5 mL [50 mg/L ethanol]/L) and were assigned 
to an Acid group or a Control group. The Acid group were carefully injected with 0.1 mL of 2% acetic acid 
subcutaneously into the upper and lower frontal lip (n = 5), and the Control group were injected in a 
similar fashion with sterile saline (n = 5). An injection of 2% acetic acid has prolonged effects on the fish’s 
behavior and physiology lasting approximately 5 to 6 hours (unpublished observation), whereas a 0.1% 
injection only lasts for 3 hours.71 Acetic acid was chosen because the protons of the acid stimulate 
nociceptive nerves in mammals.48 The fish were in medium to deep plane anesthesia during this 
procedure and had lost all reflex activity and muscular control. Trout were placed back into their original 
tank and allowed 30 minutes to recover from the anesthesia. After 30 minutes the fish’s behavior was 
recorded for 5 minutes. This consisted of the frequency of nociception-related behaviors. These 
nociceptive behaviors have been described by Sneddon et al71 and are either rocking in which the fish 
rocks from side to side on the substrate on either pectoral fin or rubbing in which the fish rubs the front 
lips into the substrate and against the sides of the tank. After this 5-minute observation period, a novel 
object was slowly lowered into the tank so not to startle the fish and was placed approximately 10 cm 
from the head of the fish. The fish’s response to this was noted during the following 15 minutes, and the 
distance that the fish was from object at all times was judged by using the scale bars present at the 
bottom and up the sides of the tank. Behaviors were also recorded after novel object presentation as well 
as OBR, which was measured at 1, 5, 10, and 15 minutes after object presentation. Once the object had 
been present for 15 minutes, it was carefully removed. Novel object presentation was repeated an 
additional 4 times at hourly intervals, and at each presentation a differently shaped and colored novel 
object was used. The novel objects were made of Lego (Billund, Denmark) Duplo bricks and were red; 
yellow; green; blue, or black in color. The novel objects were made up of a combination of bricks that 
were no longer than 9 cm in length and 6 cm in height. This created 5 different novel objects, and these 



were presented in a random order to each of the 5 fish in the Acid group. The Control group had the 
same order of presentation per fish to make the results comparable between the 2 groups.  

Test Group 2: Response to a Familiar Object 

A different set of fish (n = 10) in this test group were trained on the conditioning task as described above 
except that after they had successfully performed the task 4 times, they had 1 of the objects carefully 
placed into their tank after the AM training trial and removed after the PM training trial. This was done for 
4 days before testing so that the fish could become familiar with the object and were exposed to it for 
approximately 8 hours per day. 

Day 1 

Recordings of the normal respiration rate of the fish were made as described for Test Group 1. The AM 
observation was made without the object being present, whereas the PM observation did have the object 
present. Therefore, the distance that the fish was from the familiar object could be recorded and 
compared with the results from day 2. 

Day 2 

The fish were divided into the Acid group (n = 5) and Control group (n = 5). The experiment was 
conducted as described for day 2 in Test Group 1 except the familiar object was used at each 
presentation.  

Test Group 3: Response to a Novel Object After Morphine Administration 

Day 1 

The experiment was conducted as described for day 1 in Test Group 1 by using a different group of fish 
(n = 10).  

Day 2 

The experiment was carried out as described for day 2 in Test Group 1 except that after injection of the 
acid (n = 5) or saline (n = 5), morphine sulfate at a dose of 0.3 mg/g intramuscularly (30 mg/1 mL sterile 
saline) was injected intramuscularly (0.1 mL/10 g fish weight). This analgesic dose was previously used 
by Ehrensing et al19 to block the learning of aversive conditioning by using electric shock in goldfish, and 
this was reversed by using naloxone. Diffusion time for morphine after intramuscular injection is not 
known in fish, but previous work has shown that it took approximately 10 minutes for intramuscularly 
injected pancuronium to be effective (unpublished observation). Therefore, the 30-minute recovery period 
after morphine injection is likely to be sufficient time for the analgesic to have diffused into the blood and 
body tissues. 

Statistical Analyses 

The data were not normally distributed, so nonparametric tests were used throughout. The proportion or 
percentage of time spent between 0 and 5 cm (<5 cm); 5 and 10 cm (<10 cm); and greater than 10 cm 
(>11 cm) was calculated for each fish in each test group. These distances were chosen because nearer 
than 5 cm was closer in proximity to where the object was originally placed and greater than 10 cm was a 
direct movement away from the object, whereas between 5 and 10 cm might indicate no particular 
movement toward or away from the object. The proportion of time spent at less than 5 cm and greater 
than 10 cm was compared between the Acid and Control groups by using Kruskal-Wallis tests, as was 



the latency to approach the object within each test group and between test groups. Respiration rate was 
compared for the mean value of day 1 with the mean for day 2 both before and after novel object 
presentation by using a Kruskal-Wallis test. To determine whether there was a significant change in 
respiration rate before and after object presentation, Mann-Whitney U test was used to compare the data. 
Rocking and rubbing were only performed by the Acid group on day 2, so the frequencies of these 
behaviors were tested before and after novel object presentation by using Mann-Whitney U tests. The 
influence of individual differences and presentation time differences was also investigated for each 
parameter by using Kruskal-Wallis tests. The tests were performed within test group to compare Control 
and Acid groups but also between test groups to understand the differences between neophobia, 
familiarity, and morphine analgesia. All P values were adjusted for multiple testing where appropriate.  

Figure 1. Mean latency (+SD) to approach the objects for each of the 3 test groups (n = 5 for both Control [shaded 
bars] and Acid [open bars] groups). Test group 1 had a novel object presented, Test group 2 had a familiar object 
presented, and Test group 3 had morphine administered before novel object presentation. *P = .001; NS, not 
significant. 

 

Results 

The data were analyzed to assess individual or presentation time effects on the behavior and respiration 
rate. There were only presentation time effects on OBR because this declined over time in all treatment 
and test groups (H = 22.7, df = 14, P = .001). 

Response to a Novel Object 

Latency to Approach the Object 

The latency to approach the novel object was affected by noxious stimulation and was longer for the 
Control group (mean, 6.8 ± standard deviation 4.0 seconds) than the Acid group (3.19 ± 3.0 seconds; H = 
12.01, df = 1, P = .001; Fig 1). 

Time Spent Moving to and Moving Away From the Object 

Noxious stimulation significantly affected the time spent within 5 cm of the novel object, with the Acid 
group spending the majority of time in close proximity (Control, 2.15% ± 3.6%; Acid, 31.75% ± 26%; H = 
32.33, df = 1, P < .001; Fig 2A). The proportion of time spent moving away from the novel object (>10 cm) 



was also significantly different between the Acid (19.62% ± 23%) and Control groups (76.93 ± 25%; H = 
28.1; df = 1, P < .001; Fig 2B). 

Figure 2. (A) The mean (+SD) proportion of time spent within 5 cm of the object for each of the 3 test groups. (B) The 
mean (+SD) proportion of time spent at distances greater than 10 cm of the object for each test group (n = 5 for both 
Control [shaded bars] and Acid [open bars] groups). Test group 1 had a novel object presented, Test group 2 had a 
familiar object presented, and Test group 3 had morphine administered before novel object presentation. **P < .001; 
*P < .05; NS, not significant. 

 

OBR 

OBR was higher on Day 2 when compared with Day 1 rates for both the Control group (Day 1, median 
52.6 beats/min; Day 2 before, median 67.2 beats/min; Day 2 after, median 72.0 beats/min; H = 12.52, df 
= 2, P = .002) and the Acid group (Day 1, median 55.2 beats/min; Day 2, before: median 80.0 beats/min; 
Day 2 after: 78.0 beats/min; H = 11.18, df =  2, P = .004). OBR significantly increased after novel object 
presentation only in the Control group (pre-object median, 68 beats/min; post-object median, 74 
beats/min; W = 444, P < .001, n = 25; Fig 3B). No such change was recorded in OBR after novel object 
presentation in the Acid group (W = 693.5, P = .280, n = 25; Fig 3B). Overall OBR was higher in the Acid 
group (median, 78 beats/min) than in the control group (median, 67 beats/min; H = 5.40, df = 1, P = .020) 
on Day 2. 

Performance of Nociception-Related Behaviors 

The frequency of rocking declined with presentation time both before (H = 11.16, df = 4, P = .025) and 
after the novel object (H = 14.8, df = 4, P = .005). The frequency of rocking was the same before and after 
the presentation of the novel object (W = 30, P = .676, n = 10; Fig 4A). 



The frequency of rubbing declined with time and so there was a difference between presentation times, 
but this was only significant before the novel object presentation (before: H = 13.99, df = 4, P = .007; 
after: H = 8.0, df = 4, P = .092). The fish showed a reduction in rubbing after novel object presentation   
(W = 742, P = .044; n = 15; Fig 4B). 

Figure 3. Mean (+SD) OBR or respiration rate before and after object presentation. Test group 1 had a novel object 
presented, Test group 2 had a familiar object presented, and Test group 3 had morphine administered before novel 
object presentation. **P < .001; *P < .005; NS (ns), not significant. (Comparison between control and treatment 
groups under line; comparison between before and after respiration rates on data bars). 

 

Response to a Familiar Object 

Latency to Approach the Object 

The latency to approach the familiar object was similar for the Control group (mean, 1.6 ± 1.0 seconds) 
and the Acid group (2.27 ± 1.8 seconds; H = 0.92, df = 1, P = .336; Fig 1). 

Time Spent Moving to and Moving Away From the Object 

There was no difference in the amount of time spent near the object on Day 1 and at the 5 presentations 
of the familiar object on Day 2 (H = 0.3, df = 5, P = .998). Although there was a trend for the Acid group to 
spend more time within 5 cm of the familiar object than the Control group (Control, 27.8% ± 22%; Acid, 
36.2% ± 17%; H = 5.89, df = 1, P = .015; Fig 2A). The proportion of time spent moving away from the 
object (>10 cm) was not significantly different between the Acid (32.6% ± 25%) and Control groups 
(22.2% ± 17%; H = 3.2; df = 1, P = .073; Fig 2B). 

OBR 

OBR was much lower on Day 1 (median, 52.0 beats/min) than on Day 2 before (median, 61.6 beats/min) 
and after (median, 61.6 beats/min) the presentation of the familiar object in the Control group (H = 9.71, 
df = 2, P = .008) and the Acid group (Day 1 median, 54.0 beats/min; Day 2 before: median, 78.2 
beats/min; Day 2 after: 76.4 beats/min; H = 10.5, df = 2, P = .005). There was no change in OBR after 
familiar object presentation in the Acid group (W = 684, P = .372, n = 25) or in the Control group (W = 
652, P = .786, n = 25; Fig 3B). OBR was higher in the Acid group (median, 76 beats/min) than in the 
Control group (median, 61 beats/min; H = 5.40, df = 1, P = .020) on Day 2. 



Figure 4. (A) Mean (+SD) performance of rocking before (open bars) and after (shaded bars) object presentation. (B) 
Mean (+SD) performance of rubbing before and after object presentation. Test group 1 had a novel object presented, 
Test group 2 had a familiar object presented, and Test group 3 had morphine administered before novel object 
presentation. *P < .05; NS, not significant. 

 

Behaviors 

The frequency of rocking declined with presentation time both before (H = 19.37, df = 4, P = .001) and 
after the familiar object (H = 19.14, df = 4, P = .001). There was no difference in the frequency of rocking 
before and after the presentation of the object (W = 643.5, P = .915, n = 10; Fig 4A). 

The frequency of rocking declined with time and so there was a difference between presentation times, 
but this was only significant before the novel object presentation (before: H = 19.2, df = 4, P = .001; after: 
H = 19.5, df = 4, P = .001). There was no reduction in rubbing after familiar object presentation (W = 
659.5, P = .652; n = 15; Fig. 4B). 

Response to a Novel Object After Morphine Administration 

Latency to Approach the Object 

The latency to approach the novel object was similar for the Control group (mean, 2.42 ± 2.2 seconds) 
and the Acid group (mean, 2.19 ± 1.3 seconds; H = 0.20, df = 1, P = .655; Fig 1). 

Time Spent Moving to and Moving Away From the Object 

The Control and Acid groups spent a similar amount of time spent within 5 cm of the novel object 
(Control, 11.1% ± 9.9%; Acid, 12.7% ± 6.4%; H = 2.64, df = 1, P = .104; Fig 2A). The proportion of time 
spent moving away from the novel object (>10 cm) was significantly different between the Acid (44.1% ± 



17%) and Control groups (58.4% ± 25%; H = 4.86; df = 1, P = .028; Fig 2B). This pattern was similar for 
the first presentation time, but there were no significant differences between the Acid and Control groups 
at presentation times 2, 4, and 5 (Table 1). At presentation time 3, the Control group spent less time 
within 5 cm than the Acid group, but the reverse was true for time spent at more than 10 cm (Table 1). 

Table 1. Statistical Comparison of Time Spent Within Close Proximity to the Test Object (<5 cm) and Time Spent 
Moving Away From Object (>10 cm) for Control (C) and Acid (A) Groups in Each Test Group 

  Presentation Time 
  1  2  3  4  5 
Test Group Distance (cm) C A  C A  C A  C A  C A 

1, Novel <5 
>10 

0 
90.0 

21.0 
0  0 

88.3 
27.0 

0  0 
86.7 

36.0 
1.7  1.7 

81.6 
21.7 
21.6  0 

90.0 
26.7 
25.6 

2, Familiar <5 
>10 

13.3 
32.5 

46.0 
13.7  26.7 

23.3 
26.7 
20.0  18.3 

30.0 
25.0 
45.3  37.5 

21.5 
41.0 
13.3  43.3 

26.7 
38.3 
15.0 

3, Morphine <5 
>10 

16.7 
31.7 

15.0 
21.7  6.7 

43.3 
13.3 
50.0  3.3 

80 
11.7 
35  5.0 

83.3 
6.7 

43.3  12.0 
58.0 

12.0 
55.0 

Median percentage time spent within 5 cm and greater than 10 cm are shown. Kruskal-Wallis tests were used, and the median values in bold show 
statistical differences between the Control and Acid groups in the time spent at that particular distance (n = 5 per group; df = 4). 

 

OBR 

There was a significant difference between the OBR on Day 1 (median, 52.0 beats/min) and the OBR on 
Day 2 before (median, 62.0 beats/min) and after (median, 70.2 beats/min) the presentation of the novel 
object in the Control group (H = 12.57, df = 2, P = .002) and in the Acid group (Day 1 median, 52.0 
beats/min; Day 2 before: median, 62.4 beats/min; Day 2 after: 68.8 beats/min; H = 12.0, df = 2, P = .002). 
OBR increased significantly after novel object presentation in the Control group (pre-object median, 62 
beats/min; post-object median, 68 beats/ min; W = 464, P < .001, n = 25; Fig 3B) and the Acid group 
(before: median, 60 beats/min; after: median, 68 beats/min; W = 468, P = .001, n = 25; Fig 3B). Unlike the 
novel object and familiar object treatment groups, OBR was not different in the Acid group (median, 62 
beats/min) compared with the Control group (median, 62 beats/min; H = 0.01, df = 1, P = .934) on Day 2. 

Performance of Nociceptive-Related Behaviors 

The frequency of rocking did not decline with presentation time both before (H = 8.35, df = 4, P = .080) 
and after the novel object (H = 0.0, df = 4, P = 1.0). Statistics could not be performed to compare the 
frequency of rocking before and after presentation of the object, because the data were too low for 
statistical testing (Fig 4A). 

The frequency of rocking declined with time and so there was a difference between presentation times, 
but this was only significant before the novel object presentation (before: H = 15.4, df = 4, P = .004; after: 
H = 4.0, df = 4, P = .406). There was a reduction in rubbing after novel object presentation, but this was 
not significant (W = 690, P = .074; n = 15; Fig 4B).  

Comparisons Between Test Groups 

The latency to approach the object was similar for all 3 Acid groups when comparing the 3 test groups to 
each other (H = 1.25, df = 2, P = .535). However, there was a significant difference between the Control 



groups, with Test Group 1 (TG1) having the longest latency to approach (TG1 median, 5.3 min; TG2 
median, 1.3 min; TG3 median, 1.5 min; H = 30.1, df = 2, P = .001).  

The time spent within 5 cm of the object was different for both Control (TG1 median, 0%; TG2 median, 
2.7%; TG3 median, 8.3%; H = 44.2, df = 2, P < .001) and Acid groups (TG1 median, 26.7%; TG2 median, 
31.7%; TG3 median, 11.7%; H = 27.8, df = 2, P < .001) when comparing between the 3 test groups. In 
the Control groups, a greater proportion of time was spent at greater than 10 cm from the object in Test 
Groups 1 and 3 (TG1, 88.3%; TG2, 26.7%; TG3, 61.1%; H = 32.4, df = 2, P < .001), demonstrating the 
effects of presenting a familiar object. In the Acid group, the Test Group 3 fish spent a much greater 
proportion of time more than 10 cm from the object than in the other 2 test groups, suggesting a 
neophobic response when morphine is administered (TG1, 6.7%; TG2, 21.5%; TG3, 45.8%; H = 21.1,    
df = 2, P < .001). 

OBR was similar in all 3 Control groups (TG1, 67 beats/min; TG2, 61 beats/min; TG3, 62 beats/min; H = 
4.7, df = 2, P = .097). However, OBR was much higher in the Acid groups of Test Groups 1 and 2 than in 
Test Group 3 in which morphine was administered (TG1 median, 78 beats/min; TG2 median, 76 
beats/min; TG3 median, 62 beats/min; H = 8.18, df = 2, P = .017). 

The frequency of rocking was much higher in Test Group 2 with a familiar object present than in Test 
Group 1 in which a novel object was presented. The fish of Test Group 3 performed virtually no rocking, 
demonstrating the antinociceptive effects of morphine (TG1, 0.2 rocks/min; TG2, 0.4 rocks/min; TG3, 0 
rocks/min; H = 10.6, df = 2, P = .005). A similar pattern was shown by the performance of rubbing 
between the 3 different test groups, with relatively little rubbing being performed when morphine was 
administered (TG1, 0.3 rubs/min; TG2, 0.6 rubs/min; TG3, 0.1 rubs/min; H = 10.6, df = 2, P = .005). 

Discussion 

The control animals in Test Group 1 displayed a classic neophobia to a novel object because they took a 
relatively long time to approach the object, they spent very little time in close proximity, and the majority of 
their time was spent moving away from the novel object. These responses are characteristic of neophobia 
in other animals (eg, rats,52 mice,20, cats50 and horses75). In contrast, the noxiously stimulated animals in 
Test Group 1 approached the novel object more quickly and spent a large proportion of time near the 
novel object and less than 20% of their time moving away from the object. These results would suggest 
that the nociception the fish were experiencing might have taken up the majority of their attention, and 
they either ignored the novel object or could not divert attention to a fear response. Therefore, it appears 
as if attention to the noxious event in these fish was more important than performance of fear behavior in 
this experimental paradigm. Although the animals experiencing noxious stimulation did not show fear-
related avoidance behavior, they did show reduced nociception-related behaviors, rocking and rubbing, 
compared with the frequency of these behaviors before presenting the object. This would suggest a 
complex relationship between the possible nociception experienced and fear motivation. Most of the 
animals’ responses were dominated by the noxious state, and so the fish did not show an appropriate 
fear response. The reduction in nociception-related behaviors would indicate hypoalgesia. Hypoalgesia 
has been demonstrated in other animal models of pain22,23,37-39,73 and humans47 when confronted with a 
stressful stimulation. This slight hypoalgesia is of interest because it suggests that the degree of fear 
introduced by the neophobic stimulus did allow the animal to partially divide its attention between fear and 
nociception. 

This behavioral inhibition might have detrimental consequences because an individual experiencing 
nociception might not respond in an appropriate manner to a fearful situation and this might carry severe 
penalties. For this particular study species, exposure to a predator could be fatal if the fish react in a 



similar manner to how they responded to a novel object. Other animal studies have shown that exposure 
to novelty and predators can evoke a stress analgesia with a total reduction in pain 
reactivity.23,32,36,37,45,53,59,61,65,66,75 It has been suggested that the nociception experienced in these studies 
was possibly not severe and so attention could be diverted away to the concurrent task.23 In this study, it 
is unlikely that the fish would have experienced this type of noxious event before, and so this would be 
the most severe or intense noxious experience that they would have potentially endured, and the novel 
object did not resemble a predator and is likely to be less alarming. An alternative hypothesis is that 
because of the relatively simpler brain structure of fish it might be that they have limited capacity for 
responding to more than 1 task, unlike higher vertebrates that have highly evolved brains and can 
partition attention to various tasks at one time. This might be an evolutionary difference between fish and 
the higher vertebrate groups; however, this remains to be tested. 

The behavioral responses by both the Acid and Control groups to a familiar object confirmed that the 
responses by the control animals in Test Group 1 were neophobia because they approached the object 
more quickly and spent a larger proportion of time in close proximity and a smaller amount of time moving 
away from the object. The Acid group also performed more pain-related behaviors in the presence of the 
familiar object. Fish, therefore, like many other animals, have this capability to discriminate between novel 
and familiar objects and to show reduced behavioral and physiologic reactions to a familiar object.7,32,53 
The control fish in Test Group 1 responded physiologically by increasing their ventilation or OBR after the 
novel object was placed in their tank. This OBR response was not observed in the acid-injected animals 
in Test Group 1 or in Acid and Control groups in the familiar object tests. Therefore, this increase in OBR 
might be an indicator of a fear response, and it is well known that fish show a fight or flight stress 
response similar to that of mammals,55 and this includes an increase in breathing rate. In the novel object 
test in which the fish’s attention is dominated by the noxious stimulation, it might be that the OBR does 
not increase after object presentation because little attention and neural processing can be diverted to 
this physiologic response. An alternative explanation is that these fish are already at a maximum 
respiration rate and so show no increase after the novel object. 

Intramuscular injection of morphine had a significant analgesic effect in the acid-injected fish by 
substantially reducing nociception-related behaviors and respiration rate, as well as returning the fear 
responses to a novel object to normal. The analgesic effects of morphine are well-known in animals and 
humans;17,39,53 however, virtually no work has been done on analgesia in fish. Fish can become tolerant of 
morphine and have opioid receptors,34 and morphine does impair electric shock aversion training in 
goldfish.19 Morphine has been demonstrated to reduce fear responses,8,9,26,60 and there was a slight 
difference in the neophobia shown by Test Group 3 animals compared with the control animals of Test 
Group 1. Animals in Test Group 3 approached the novel object as quickly as those that approached a 
familiar object, and they also spent less time moving away from the object. Therefore, morphine affects 
fear responses in the trout in a similar way to other animals and humans.9,10,26,60 

Opioids act as an analgesic by inhibiting the release of substance P and calcitonin gene-related peptide 
from the terminals of primary afferent nociceptors.51,77 In peripheral nerves, opioid action is possibly 
mediated by local opioid receptors located on primary afferent neurons.77 In humans, opioids appear to 
reduce the distressing, affective component of a noxious, painful event.14 Opioids diminish the impact of 
stress by attenuating an array of physiologic responses including emotional affective states. In this study, 
morphine ameliorated the behavioral responses to the noxious injection as well as causing a respiratory 
depression and reducing fear responses. These direct effects of opioids have also been seen in humans 
and mammals administered with morphine.14,24,77 Studies examining opioid receptors in fish have shown 
that µ and ᴋ opiate receptors are distributed throughout the fish brain, ie, the telencephalon, optic tectum, 
cerebellum, and thalamus.16 Comparative genetic studies have shown that the opioid receptor family has 



been highly conserved during evolution, with fish opioid receptors having 91% similarity with human 
opioid receptors.46 Relatively little is known about the effects of endogenous opioids in fish, although 
enkephalins and β-endorphins are present in fish neurons.14 One of the functions of opioid receptors in 
mammals is to suppress pain, and it appears they might fulfill the same role here in a lower vertebrate.12 
A further test that could have been used in this study is to examine the reversal effects of naloxone; 
however, it has been clearly demonstrated that naloxone blocks the effects of morphine administration in 
fish.12,19 Therefore, there appears to be a complex opioid system in fish affecting nociception, behavior, 
and physiology.  

In this study nociception-related behavior affected fear responses, and one interpretation is that this 
noxious treatment might command the majority of the attention capacity in fish subject to this 
experimental situation. In human clinical studies, pain interferes with concurrent, competing tasks, such 
as learning and memory tests,25,40,62,66,72 and some research has shown that attentional strategy as an 
analgesic has varying success.18,41 Clinical studies have demonstrated that emotional states of patients 
do have an effect on chronic pain.27,66 It might be that in intense pain there is a behavioral impairment 
because little attention can be diverted away from pain processing, whereas in less intense painful 
situations attention might be easily focused elsewhere. In humans the induction of fear does not affect 
attention bias toward pain-related information, and this has been confirmed by a number of recent 
studies.40,62 In humans, acute pain can be reduced by avoidance or attention distraction strategies such 
as hypnosis or engaging in other activities,72,74 but these have limited application in severe pain cases 
(eg, burn wound care32). Future studies should assess how nociception in fish affects responses to other 
fearful events, such as the presence of a predator, to determine whether nociception always has such a 
profound effect.  

The present study has shown that the trout’s response to noxious stimulation is complicated in nature. 
This suggests the potential for pain perception in this lower vertebrate. A recent review proposed that fish 
were incapable of experiencing pain because they lack a neocortex.63 This definition of pain means that 
only human and primates are capable of pain perception, with other mammals, birds, and amphibians 
also incapable of experiencing pain. Yet many studies have demonstrated pain in monkeys, rats, and 
mice and in particular birds21 that have a very dissimilar brain structure compared with humans. The 
majority of animal pain researchers omit emotion when defining pain because emotion cannot be 
measured directly in any animal.4,10,11,49 The criteria that have been adopted by many studies examining 
animal pain are (1) to show the animal has the neural apparatus to detect noxious stimuli that humans 
have, (2) to demonstrate a noxious event has adverse behavioral and physiologic effects, (3) the animal 
should learn to avoid this noxious stimulus, and (4) the behavioral impairments during a noxious event 
should not be simple reflexes. Recent research on the rainbow trout has shown the presence of 
nociceptors on the head of the trout that are almost identical to human nociceptors in terms of anatomy 
and electrophysiologic properties.68,70 It has also been demonstrated that the trout has a prolonged 
negative behavioral and physiologic response to a noxious event, and this was also seen in the present 
study.71 Other fish species can learn to avoid noxious stimuli such as electric shock.19 The administration 
of an analgesic reduces these responses to almost normal. Together with the results of this study, the 
criteria for animal pain have been fulfilled for the trout. 
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