中学数学の「正負の符号」は、慣れるまでに時間がかかることがあります。特に、符号の扱いが異なる足し算や引き算、掛け算や割り算で混乱しがちです。この記事では、符号を一度に決めるアプローチを使って、計算ミスを減らす方法を解説します。 なぜ正負の符
算数から高校数学、一部大学数学を扱っているサイトです。数学の定理や証明、計算テクニックなどを解説しています。最近は英語の学習方法である多読にも力を入れているので、
九州大学工学博士。数学サイトを運営しながら、英語多読に挑戦中!目標は年内に100万語達成!!趣味は釣り、水泳、筋トレ、将棋、マインクラフトなどなど!
今回は中1で習う資料の分析について解説します。 資料の分析は数学だけでなく、理科にも活用できる重要な単元になりますので、しっかり理解しておきましょう。 このページに資料の活用で習うの重要事項をまとめています! テスト前などにもぜひご活用くだ
今回は中1で習う空間図形について解説します。 空間図形は平面図形と違って、頭の中でイメージする必要がありますので、難しいと感じる人が多いです。 このページでは空間図形のイメージができるよう、図をたくさん使って解説していますので、テスト前など
図形の移動 まずは図形の移動を解説していきます。 図形の移動には3種類あります。 平行移動 回転移動 対称移動 この3種類の詳細を解説していきますね! 平行移動 図形を一定の方向に、一定の距離だけ動かす移動を「平行移動」といいます。 平行移
今回は中1で習う比例と反比例について解説します。 比例と反比例は関数と呼ばれ、これから習う一次関数や二次関数の基本になりますので、しっかり理解しておきましょう。 このページに比例と反比例の重要事項をまとめていますので、テスト前などにもぜひご
「分数の割り算は分母と分子をひっくり返して計算する」という方法は一般的に知られています。 しかし、なぜこのようにひっくり返すのかを説明できる人は多くはないでしょう。 もし、子供たちがこの疑問を持った場合、それに答えることができないと、子供達
3つの式の連立方程式が出てきて解けない!という方も多いはず。 普段よく見るのは2つの式なので、式が3つもあると難しそうに思えますよね。 でも大丈夫! これを読めばあなたも3つの連立方程式が解けるようになるはずです。 それでは、3つの連立方程
3つの式の連立方程式がなかなか解けずに困っていませんか? 式が3つもあると、なんだか難しそうに感じてしまいますよね。 しかし、解き方は基本の連立方程式の解き方と同じなんです! 今回は、3つの連立方程式の解き方を解説していきます。 3つの連立
3つの式の連立方程式がなかなか解けずに困っていませんか? 式が3つもあると、なんだか難しそうに感じてしまいますよね。 しかし、解き方は基本の連立方程式の解き方と同じなんです! 今回は、3つの連立方程式の解き方を解説していきます。 3つの連立
ここでは、帯分数(たいぶんすう)を仮分数(かぶんすう)に直す方法と問題を説明いたします。 分数ニガテ…という方も多いかもしれませんが、覚えておきたいポイントは2つだけ! 計算も1回しかないので一緒に帯分数を仮分数に直す方法を見てみましょう!
分数の足し算と聞くと、「うわっ」と苦手な気持ちが出てくる人も多いと思います。 今回はそんな分数の足し算の中でも、分数と整数の足し算を紹介していきます。 やり方がわかれば難しくないので、しっかり理解していきましょう。 練習問題も用意しているの
「分数」「掛け算」「割り算」「混ざる」 これらのキーワードを並べると、難しいと感じる方もいるかもしれません。 しかし、実際にはたったの「3つのポイント」を理解するだけで、分数の掛け算と割り算の混合計算は簡単になります。それも、分数の足し算や
今回は中1で習う方程式について解説します。 方程式はこれから習う単元の基本になりますので、しっかり理解しておきましょう。 このページに方程式の重要事項をまとめていますので、テスト前などにもぜひご活用ください。 方程式とその解き方 方程式とそ
数Bの授業で学ぶ等比数列は、数学の重要な概念の一つです。 中でも、等比数列の一般項の求め方を理解することは、数列の性質やパターンを分析する上で欠かせません。 今回は、数Bにおける等比数列の一般項の求め方について詳しく解説します。 さらに、具
連立方程式で食塩水の問題が出てきたとき、なんだか難しそう…と思っていませんか? でも安心してください! ポイントを抑えることができれば、誰でも簡単に解くことができますよ。 そこで今回は、食塩水の連立方程式の解き方を解説していきます。 食塩水
文字を使った式 文字の使用 色々な数量を文字($x, y, a, b$など)を使って表し、式を作ることができます。 例) 90円のノートを買うときの代金は90×(ノートの冊数)です。 1冊・・・90×1=90(円)2冊・・・90×2=180
中学1年生の最初に習う正負の数ですが、マイナスの数字が初めて登場します。 算数と数学の違いの基本になりますので、しっかり理解しておきましょう。このページで正負の数の重要事項をまとめていますので、テスト前などにもぜひご活用ください。 正負の数
算数に苦手意識を抱く人にとって、「分数」という言葉は少しドキッとするかもしれません。 しかし、あるポイントさえ押さえれば誰でも簡単に分数×整数を攻略することができます。 今回はわかりやすく分数×整数を解説していきます。 分数と整数のかけ算の
みなさんは連立方程式をつるかめ算で解く方法をご存知ですか? 実は、数学の知識を使わなくても算数の知識で解くことができるので、中学受験でもよく出てくる計算です。 今回はそんな鶴亀算について解説していきたいと思います。 つるかめ算と面積図 つる
みなさんは連立方程式をつるかめ算で解く方法をご存知ですか? 実は、数学の知識を使わなくても算数の知識で解くことができるので、中学受験でもよく出てくる計算です。 今回はそんな鶴亀算について解説していきたいと思います。 つるかめ算と面積図 つる
1次関数 $y$が$x$の関数で、$y$が$x$の1次式で表されるとき、$y$は$x$の1次関数であるといいます。1次関数は一般に次のように表されます。$y=ax+b$ ($a,b$は整数) 比例を表す式、$y=ax$は$b=0$のときの特
4.25を分数に直すと何分の何になるのでしょうか? 小数を分数にする計算は算数でも多く出てくるので、ぜひやり方から覚えていきましょう! 4.25を分数にする まずは答えです。 4.25を分数にすると、4分の17です。 $$4.25=\dis
7.5を分数に直すと何分の何になるのでしょうか? 小数を分数にする計算は小学校でも多く出てくるので、ぜひ求め方から納得していきましょう! 7.5を分数にする まずは答えです。 7.5を分数にすると、2分の15です。 $$7.5=\displ
4.8を分数に直すと何分の何になるのでしょうか? 小数を分数にする計算は算数でも何度も出てくるので、求め方から理解していきましょう! 4.8を分数にする まずは答えです。 4.8を分数にすると、5分の24です。 $$4.8=\display
5.5を分数に直すと何分の何になるのでしょうか? 小数を分数にする計算は小学校でも多く出てくるので、解き方から覚えていきましょう! 5.5を分数にする 初めに答えです。 5.5を分数にすると、2分の11です。 $$5.5=\displays
7.2を分数に直すと何分の何になるのでしょうか? 小数を分数にする計算は小学校でも中学校でもたくさん出てくるので、求め方から納得していきましょう! 7.2を分数にする まずは答えです。 7.2を分数にすると、5分の36です。 $$7.2=\
5.6を分数に直すと何分の何になるのでしょうか? 小数を分数にする計算は小学校でも多く出てくるので、ぜひ解き方から納得していきましょう! 5.6を分数にする まずは答えです。 5.6を分数にすると、5分の28です。 $$5.6=\displ
5.25を分数に直すと何分の何になるのでしょうか? 小数を分数にする計算は小学校でも中学校でも多く登場するので、やり方から納得していきましょう! 5.25を分数にする 最初に結論です。 5.25を分数にすると、4分の21です。 $$5.25
6.5を分数に直すと何分の何になるのでしょうか? 小数を分数にする計算は算数でも何度も出てくるので、ぜひ求め方から理解していきましょう! 6.5を分数にする 初めに結論です。 6.5を分数にすると、2分の13です。 $$6.5=\displ
6.25を分数に直すと何分の何になるのでしょうか? 小数を分数にする計算は算数の中でも多く出てくるので、ぜひ解き方から理解していきましょう! 6.25を分数にする まずは解答です。 6.25を分数にすると、4分の25です。 $$6.25=\
3.8を分数に直すと何分の何になるのでしょうか? 小数を分数にする計算は小学校でも中学校でも多く出てくるので、ぜひやり方から覚えていきましょう! 3.8を分数にする 最初に結論です。 3.8を分数にすると、5分の19です。 $$3.8=\d
0.2を分数に直すと何分の何になるのでしょうか? 小数を分数にする計算は小学校でも多く登場するので、ぜひやり方から覚えていきましょう! 0.2を分数にする 最初に結論です。 0.2を分数にすると、5分の1です。 $$0.2=\display
反比例とは、『2つの量の積が常に一定であること』です。 あっちが増えれば、こっちが減る。 そんな関係を持つのが反比例です。それでは身の回りの反比例の例を見ていきましょう! 身の回りの反比例 身の回りの反比例として、3つ紹介しますね! 1人が
反比例とは、『2つの量の積が常に一定であること』です。 あっちが増えれば、こっちが減る。 そんな関係を持つのが反比例です。それでは身の回りの反比例の例を見ていきましょう! 身の回りの反比例 身の回りの反比例として、3つ紹介しますね! 1人が
「ブログリーダー」を活用して、トムソンさんをフォローしませんか?
中学数学の「正負の符号」は、慣れるまでに時間がかかることがあります。特に、符号の扱いが異なる足し算や引き算、掛け算や割り算で混乱しがちです。この記事では、符号を一度に決めるアプローチを使って、計算ミスを減らす方法を解説します。 なぜ正負の符
中学数学の「正負の符号」は、慣れるまでに時間がかかることがあります。特に、符号の扱いが異なる足し算や引き算、掛け算や割り算で混乱しがちです。この記事では、符号を一度に決めるアプローチを使って、計算ミスを減らす方法を解説します。 なぜ正負の符
割り算を逆数にして掛け算にする方法は、計算の効率を高め、符号の誤りを減らすために有効です。本記事では、この考え方を順を追ってわかりやすく解説します。 除法を掛け算に置き換える理由 除法を掛け算に置き換えることで、計算が一貫して同じルールで行
中学数学で負の数を初めて学ぶとき、「負の数同士を掛けると正の数になる」というルールに驚くかもしれません。 → (-1) ×(-1) = 1 「どうしてマイナス同士を掛けたらプラスになるの?」と思う人も多いでしょう。今回は、その理由をわかりや
中学数学で負の数を初めて学ぶとき、「負の数同士を掛けると正の数になる」というルールに驚くかもしれません。 → (-1) ×(-1) = 1 「どうしてマイナス同士を掛けたらプラスになるの?」と思う人も多いでしょう。今回は、その理由をわかりや
中学数学で初めて「負の数」に出会うと、少し戸惑うかもしれません。 「負の数」って一体何なの?どうやって使うの?そんな疑問を解決するために、今回は「負の数」についてわかりやすく説明します。 負の数とは? まず、「負の数」とは、0より小さい数の
中学数学で初めて「負の数」に出会うと、少し戸惑うかもしれません。 「負の数」って一体何なの?どうやって使うの?そんな疑問を解決するために、今回は「負の数」についてわかりやすく説明します。 負の数とは? まず、「負の数」とは、0より小さい数の
みなさん、算数や数学の授業で「公約数」って言葉を聞いたことがありますか? 「公約数」も一見すると難しそうに見えますが、実はシンプルな考え方です。今回は「公約数」について、わかりやすく説明していきます。 約数ってなに? まずは「約数」について
みなさん、算数や数学の授業で「公約数」って言葉を聞いたことがありますか? 「公約数」も一見すると難しそうに見えますが、実はシンプルな考え方です。今回は「公約数」について、わかりやすく説明していきます。 約数ってなに? まずは「約数」について
みなさん、算数や数学の授業で「公倍数」って聞いたことがありますか? ちょっと難しそうな言葉ですが、実は簡単なルールを覚えれば誰でも理解できます!今日はその「公倍数」について、わかりやすく説明していきます。 倍数ってなに? まずは「倍数」につ
みなさん、算数や数学の授業で「公倍数」って聞いたことがありますか? ちょっと難しそうな言葉ですが、実は簡単なルールを覚えれば誰でも理解できます!今日はその「公倍数」について、わかりやすく説明していきます。 倍数ってなに? まずは「倍数」につ
今回は中2で習う図形の性質の証明について解説します。 証明の問題は苦手な生徒さんが多く、受験にも出てくる重要な単元になりますので、しっかり理解しておきましょう。 このページに図形の証明の重要事項をまとめています。 テスト前などにもぜひご活用
今回は中2で習う図形の性質について解説します。 図形の性質は角の名前や特徴、合同条件など受験にも出てくる重要な単元になりますので、しっかり理解しておきましょう。 このページに図形の性質の調べ方の重要事項をまとめています。 テスト前などにもぜ
分数がある連立方程式に苦戦している人はいませんか? 分数が入った式は、解くのが難しそうに感じてしまう人も多いですよね。 しかし、コツを抑えれば大丈夫! 今回は、分数がある連立方程式の解き方を解説していきます。 分数がある連立方程式の解き方
連立方程式で小数が出てきたとき、なんだか難しそう……と感じていませんか? 小数があると、計算が面倒そうに見えますよね。 しかし、簡単に解く方法があるんです! そこで今回は、小数がある連立方程式の解き方を解説していきます。 小数がある連立方程
今回は中2で習う連立方程式について解説します。 連立方程式はつまづいてしまう人が多い単元です。 この記事を読んで、しっかり理解しておきましょう。 このページに連立方程式の重要事項をまとめていますので、テスト前などにもぜひご活用ください。 連
連立方程式の答えの書き方で迷っている方はいませんか? どういった形式で答えるのが正解なのか、悩んでしまっている人も多いはず。 そこで今回は、連立方程式の答えの書き方を3つ紹介していきます。 連立方程式の答えの書き方 連立方程式の答えの書き方
今回は中2で習う式と計算について解説します。 式と計算はこれから習う数学の基本になりますので、しっかり理解しておきましょう。 このページに式と計算の重要事項をまとめています。 テスト前などにもぜひご活用ください。 多項式の計算 単項式と多項
今回は中1で習う資料の分析について解説します。 資料の分析は数学だけでなく、理科にも活用できる重要な単元になりますので、しっかり理解しておきましょう。 このページに資料の活用で習うの重要事項をまとめています! テスト前などにもぜひご活用くだ
今回は中1で習う空間図形について解説します。 空間図形は平面図形と違って、頭の中でイメージする必要がありますので、難しいと感じる人が多いです。 このページでは空間図形のイメージができるよう、図をたくさん使って解説していますので、テスト前など
今回は中2で習う図形の性質の証明について解説します。 証明の問題は苦手な生徒さんが多く、受験にも出てくる重要な単元になりますので、しっかり理解しておきましょう。 このページに図形の証明の重要事項をまとめています。 テスト前などにもぜひご活用
今回は中2で習う図形の性質について解説します。 図形の性質は角の名前や特徴、合同条件など受験にも出てくる重要な単元になりますので、しっかり理解しておきましょう。 このページに図形の性質の調べ方の重要事項をまとめています。 テスト前などにもぜ
分数がある連立方程式に苦戦している人はいませんか? 分数が入った式は、解くのが難しそうに感じてしまう人も多いですよね。 しかし、コツを抑えれば大丈夫! 今回は、分数がある連立方程式の解き方を解説していきます。 分数がある連立方程式の解き方
連立方程式で小数が出てきたとき、なんだか難しそう……と感じていませんか? 小数があると、計算が面倒そうに見えますよね。 しかし、簡単に解く方法があるんです! そこで今回は、小数がある連立方程式の解き方を解説していきます。 小数がある連立方程
今回は中2で習う連立方程式について解説します。 連立方程式はつまづいてしまう人が多い単元です。 この記事を読んで、しっかり理解しておきましょう。 このページに連立方程式の重要事項をまとめていますので、テスト前などにもぜひご活用ください。 連
連立方程式の答えの書き方で迷っている方はいませんか? どういった形式で答えるのが正解なのか、悩んでしまっている人も多いはず。 そこで今回は、連立方程式の答えの書き方を3つ紹介していきます。 連立方程式の答えの書き方 連立方程式の答えの書き方
今回は中2で習う式と計算について解説します。 式と計算はこれから習う数学の基本になりますので、しっかり理解しておきましょう。 このページに式と計算の重要事項をまとめています。 テスト前などにもぜひご活用ください。 多項式の計算 単項式と多項
今回は中1で習う資料の分析について解説します。 資料の分析は数学だけでなく、理科にも活用できる重要な単元になりますので、しっかり理解しておきましょう。 このページに資料の活用で習うの重要事項をまとめています! テスト前などにもぜひご活用くだ
今回は中1で習う空間図形について解説します。 空間図形は平面図形と違って、頭の中でイメージする必要がありますので、難しいと感じる人が多いです。 このページでは空間図形のイメージができるよう、図をたくさん使って解説していますので、テスト前など
図形の移動 まずは図形の移動を解説していきます。 図形の移動には3種類あります。 平行移動 回転移動 対称移動 この3種類の詳細を解説していきますね! 平行移動 図形を一定の方向に、一定の距離だけ動かす移動を「平行移動」といいます。 平行移
今回は中1で習う比例と反比例について解説します。 比例と反比例は関数と呼ばれ、これから習う一次関数や二次関数の基本になりますので、しっかり理解しておきましょう。 このページに比例と反比例の重要事項をまとめていますので、テスト前などにもぜひご
「分数の割り算は分母と分子をひっくり返して計算する」という方法は一般的に知られています。 しかし、なぜこのようにひっくり返すのかを説明できる人は多くはないでしょう。 もし、子供たちがこの疑問を持った場合、それに答えることができないと、子供達
3つの式の連立方程式が出てきて解けない!という方も多いはず。 普段よく見るのは2つの式なので、式が3つもあると難しそうに思えますよね。 でも大丈夫! これを読めばあなたも3つの連立方程式が解けるようになるはずです。 それでは、3つの連立方程
3つの式の連立方程式がなかなか解けずに困っていませんか? 式が3つもあると、なんだか難しそうに感じてしまいますよね。 しかし、解き方は基本の連立方程式の解き方と同じなんです! 今回は、3つの連立方程式の解き方を解説していきます。 3つの連立
3つの式の連立方程式がなかなか解けずに困っていませんか? 式が3つもあると、なんだか難しそうに感じてしまいますよね。 しかし、解き方は基本の連立方程式の解き方と同じなんです! 今回は、3つの連立方程式の解き方を解説していきます。 3つの連立
ここでは、帯分数(たいぶんすう)を仮分数(かぶんすう)に直す方法と問題を説明いたします。 分数ニガテ…という方も多いかもしれませんが、覚えておきたいポイントは2つだけ! 計算も1回しかないので一緒に帯分数を仮分数に直す方法を見てみましょう!
分数の足し算と聞くと、「うわっ」と苦手な気持ちが出てくる人も多いと思います。 今回はそんな分数の足し算の中でも、分数と整数の足し算を紹介していきます。 やり方がわかれば難しくないので、しっかり理解していきましょう。 練習問題も用意しているの
「分数」「掛け算」「割り算」「混ざる」 これらのキーワードを並べると、難しいと感じる方もいるかもしれません。 しかし、実際にはたったの「3つのポイント」を理解するだけで、分数の掛け算と割り算の混合計算は簡単になります。それも、分数の足し算や
今回は中1で習う方程式について解説します。 方程式はこれから習う単元の基本になりますので、しっかり理解しておきましょう。 このページに方程式の重要事項をまとめていますので、テスト前などにもぜひご活用ください。 方程式とその解き方 方程式とそ
数Bの授業で学ぶ等比数列は、数学の重要な概念の一つです。 中でも、等比数列の一般項の求め方を理解することは、数列の性質やパターンを分析する上で欠かせません。 今回は、数Bにおける等比数列の一般項の求め方について詳しく解説します。 さらに、具